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The COVID-19 pandemic has a�ected millions worldwide, giving rise to

long-term symptoms known as post-acute sequelae of SARS-CoV-2 (PASC)

infection, colloquially referred to as long COVID. With an increasing number

of people experiencing these symptoms, early intervention is crucial. In this

study, we introduce a novel method to detect the likelihood of PASC or Myalgic

Encephalomyelitis (ME) using a wearable four-channel headband that collects

Electroencephalogram (EEG) data. The raw EEG signals are processed using

Continuous Wavelet Transform (CWT) to form a spectrogram-like matrix, which

serves as input for various machine learning and deep learning models. We

employ models such as CONVLSTM (Convolutional Long Short-Term Memory),

CNN-LSTM, and Bi-LSTM (Bidirectional Long short-term memory). Additionally,

we test the dataset on traditional machine learning models for comparative

analysis. Our results show that the best-performingmodel, CNN-LSTM, achieved

an accuracy of 83%. In addition to the original spectrogram data, we generated

synthetic spectrograms using Wasserstein Generative Adversarial Networks

(WGANs) to augment our dataset. These synthetic spectrograms contributed

to the training phase, addressing challenges such as limited data volume and

patient privacy. Impressively, the model trained on synthetic data achieved an

average accuracy of 93%, significantly outperforming the original model. These

results demonstrate the feasibility and e�ectiveness of our proposed method in

detecting the e�ects of PASC and ME, paving the way for early identification

and management of the condition. The proposed approach holds significant

potential for various practical applications, particularly in the clinical domain. It

can be utilized for evaluating the current condition of individuals with PASC or

ME, and monitoring the recovery process of those with PASC, or the e�cacy

of any interventions in the PASC and ME populations. By implementing this

technique, healthcare professionals can facilitate more e�ective management

of chronic PASC or ME e�ects, ensuring timely intervention and improving the

quality of life for those experiencing these conditions.
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1 Introduction

The COVID-19 pandemic had an unparalleled effect on global

health, causing widespread morbidity and mortality. In addition

to the acute phase of the illness, a considerable number of

individuals encounter long-term symptoms following recovery

from the initial stage (Di Toro et al., 2021). Termed post-acute

sequelae of SARS-CoV-2 infection (PASC) or, colloquially, “long

COVID” (Raveendran et al., 2021), there is concern that these

individuals will go on to experience Myalgic Encephalomyelitis

(ME), commonly referred to as chronic fatigue syndrome. ME

is a chronic, often debilitating condition characterized by severe

fatigue, neurological issues, and a range of flu-like symptoms that

are not alleviated by rest. The etiology of ME remains unclear,

although it commonly occurs after viral infections, suggesting a

post-viral syndrome potentially linked to disruptions in immune

system functioning. ME has consistently presented a complex

challenge for patients and healthcare providers, with its array

of symptoms often leading to significant delays in diagnosis

and effective management (Ghali et al., 2022). In examining the

aftermath of viral epidemics, contemporary research provides

insight into the long-term consequences experienced by patients.

A recent study analyzed a sample of 465 patients with PASC and

found that 58% met the criteria for ME, indicating substantial

occurrences of post-viral conditions after the COVID-19 health

crisis (Jason and Dorri, 2022). This trend is particularly concerning,

given the parallels between the symptom profiles of ME and

PASC. This concern is reinforced by multiple studies highlighting

the long-term health challenges following COVID-19 and other

viral outbreaks (Herridge et al., 2003; Moldofsky and Patcai,

2011; Komaroff and Bateman, 2021; Logue et al., 2021; Movahed

and Rezaeian, 2022). Given these insights, the importance of

early identification becomes even more pronounced, highlighting

the need for timely interventions to manage these long-term

effects efficiently. These commonalities include fatiguability, sleep

abnormalities, musculoskeletal pain, weakness, memory loss,

impaired eye-hand coordination, and brain fog. Collectively, these

symptoms present numerous challenges to the healthcare industry

specifically and the household and labor forcemore generally, given

the over nine billion dollars U.S. in estimated productivity loss from

ME patients alone (Reynolds et al., 2004).

The pandemic has accelerated the adoption of various

technologies in healthcare, including the Internet of Things (IoT).

IoT is a term that encapsulates the process of integrating everyday

objects into the digital sphere through internet connectivity,

thereby enabling these objects to transmit and receive data.

Advancements in IoT technology have played a crucial role in

neuroscientific research by enabling the collection of critical health

data from wearable devices, thus making health monitoring more

accessible and user-friendly (Pap et al., 2020). Specifically, scientists

have been utilizing Electroencephalogram (EEG) signals collected

with IoT devices to gain insights into and identify these cognitive

impairments. This non-invasive technique captures the brain’s

electrical activity and has shown promise in predicting neurological

disorders (Alturki and AlSharabi, 2020).

However, one of the challenges in this context is the limited

availability and accessibility of user-friendly, wearable EEG devices

for widespread monitoring and indentification of PASC and ME

symptoms. To address this challenge, we introduce a novel method

to detect the likelihood of individuals developing such chronic

conditions using a commercially available four-channel headband

that collects EEG data. Exploring cognitive load and working

memory capacity, concepts previously investigated in e-learning

(Xiong and Kong, 2020), can provide critical insights into these

cognitive impairments.

Machine Learning (ML), an application of artificial intelligence,

offers powerful tools for identifying patterns and making

predictions from complex datasets, particularly useful in analyzing

EEG signals. In studying cognitive impairments, machine learning’s

capacity to discern subtle patterns in brain activity data, often

overlooked by human inspection alone, can have significant

implications for early and accurate diagnosis. Recent studies have

effectively used machine learning methods and EEG data in various

ways. One research paper explored the impact of high altitude

on attention control processes, using machine learning to identify

cases of chronic high-altitude hypoxia (Liu et al., 2022). In another

study, a blend of Convolutional Neural Networks (CNN) and

machine learning classifiers were applied, achieving impressive

results in detecting epilepsy with high accuracy across EEG datasets

(Hassan et al., 2022). These examples highlight the wide range

of uses and potential benefits of machine learning alongside EEG

data for detecting cognitive impairments. This approach could

be extended to cognitive disorders, including PASC and ME, to

facilitate early and accurate diagnosis.

Another significant challenge is the need for a robust and

standardized methodology to compare the performance of various

machine learning and deep learning models for PASC/ME effects

detection using EEG data. Our study addresses this issue by

transforming raw EEG signals via Continuous Wavelet Transform

(CWT) into a spectrogram-like matrix (Chaudhary et al., 2021).

This matrix is then applied to train diverse models, including

CONVLSTM (Convolutional Long Short-Term Memory; Shi

et al., 2015), CNN-LSTM (Hochreiter and Schmidhuber, 1997;

Krizhevsky et al., 2012), and Bi-LSTM (Bidirectional Long short-

term memory; Graves et al., 2013). These models are trained and

are compared with traditional machine learning models in our

analysis. As per our preliminary results, the CNN-LSTM model

demonstrated the highest efficacy, showing substantial promise in

distinguishing between healthy participants and those affected by

PASC or ME.

A distinct aspect of our approach involves generating synthetic

data to enhance the machine learning models used in our

study. Given the challenges in obtaining large volumes of EEG

data and respecting patient privacy, we employ Wasserstein

Generative Adversarial Networks (WGANs; Arjovsky et al., 2017)

to generate synthetic spectrograms. These synthetic spectrograms

mimic the EEG patterns in healthy individuals and those suffering

from PASC and ME. By using WGANs, we can significantly

augment our dataset without compromising patient confidentiality.

The synthetic spectrograms are processed separately for healthy

and PASC + ME participants to maintain distinct data classes,

allowing for focused analysis. Incorporating this synthetic data

into the training phase has shown promising results, notably

improving the model’s performance metrics. Therefore, synthetic
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FIGURE 1

Sequential methodology for EEG data processing and ML model development in PASC and ME detection.

data addresses critical challenges such as data volume and

privacy and shows significant potential for improving the model’s

predictive capabilities. On a related note, recent studies highlight

the value of synthetic data for safeguarding privacy, particularly

in healthcare applications. By applying GANs (Goodfellow et al.,

2014), one such study proved that synthetic medical records are

not just high-quality but also offer formidable protection against

potential data leaks (Ashrafi et al., 2023). In this study, we

describe the implementation ofmachine learning and deep learning

models to distinguish brain wave activity collected from individuals

affected by PASC or ME from healthy control participants during

the performance of a challenging rule-based visuomotor skill task.

The remainder of this paper is organized as follows: Section

2 describes the methodology used in our study, including data

collection, preprocessing, and the implementation of machine

learning and deep learning models. Section 3 presents the

evaluation and results of our experiments. Finally, Section 4

concludes the paper and outlines directions for future research.

2 Data generation and preprocessing

2.1 Overview

This section outlines our comprehensive process for generating

and preparing data, focusing on the detailed collection, cleaning,

and augmentation of data derived from a Cognitive-Motor

Integration (CMI) task. Our aim is to enhance the data’s quality

and reliability to ensure it is well-prepared for analysis. Figure 1

illustrates the step-by-step methodology for processing EEG data

tailored for detecting effects of PASC and ME.

2.2 Participants

The behavioral data and electroencephalogram recordings were

collected from 23 participants, as detailed in Table 1. This group

included 10 healthy control participants, six participants with

PASC, and seven participants with ME. The healthy participants

had no history of brain injury or neurological illness. All procedures

were approved by York University’s Human Participants Research

Committee, and all participants provided informed consent

to participate.

TABLE 1 Distribution of participants by group, average age (mean, std.

dev.), and health condition.

Group Number of
participants

Age
(mean)

Age (Std.
dev.)

Control 10 31.6 18.24

ME 7 45.71 10.33

PASC 6 44.67 18.45

ME/PASC

combined

13 45.23 14.57

2.3 Experimental task

In this study, we employed a between-subjects design. This

design involved using two distinct groups of participants to

compare the effect of health on performance. The between-

subjects design is advantageous in preventing potential carry-over

or learning effects that may influence the results when a single

participant is exposed to multiple conditions. In our case, the two

groups comprised healthy participants and the combined PASC and

ME participants. The PASC and ME groups were combined based

on their kinematic behavioral performance not being significantly

different. Participants performed computer-based visuomotor skill

evaluation tasks using the BrDI application (BrDI: Brain Dynamics

Indicator, 3MotionAI Inc.). They sat at a desk with a 10.1-inch

tablet (Samsung Galaxy Tab) within easy reach for these tasks. The

task, as depicted in Figure 2, involved using the index finger of the

participant’s dominant hand to navigate a cursor (white dot, 5 mm

diameter) from the screen to one of the four peripheral targets (up,

down, left, or right relative to center).

Beginning the trial required guiding the cursor to a solid green

circle (Figure 2). After holding the cursor there for 2 s, a green circle

appeared at one of the peripheral targets. The trial concluded when

the cursor remained in the final target for ∼500 ms. The task had

20 trials: five trials directed toward each of the four targets. The task

demanded the integration of spatial and cognitive rules, requiring

participants to perform amore complex task involving CMI relative

to directly moving the finger to a target. Specifically, on the tablet,

a vertical line split the display such that the location of the required

hand movement and the guiding visual information were spatially

decoupled. In addition, the cursor feedback was inverted by 180

degrees, requiring participants to slide their finger in one direction

Frontiers inHumanNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1359162
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Ahuja et al. 10.3389/fnhum.2024.1359162

FIGURE 2

An illustration of the tablet screen divided into two halves by a

vertical line. The white dot represents the cursor that the participant

controls, and the green dot denotes the target. Blue arrows display

the visual feedback reversal, which requires Cognitive-Motor

Integration for successful task completion in addition to the spatial

decoupling of hand and target.

to move the cursor in the opposite direction to reach the target.

Participants were instructed to move as quickly and accurately

as possible and were allowed two practice trials to ensure they

understood the task. They were further instructed to minimize

unnecessary eye blinking and jaw clenching, as these actions could

introduce noise into the EEG data and potentially affect the study’s

results. The task took ∼5 min to complete. Previous findings from

our groups have reliably demonstrated the sensitivity of this task

to detect brain network dysfunction during the control of rule-

based visuomotor skill performance (Salek et al., 2011; Hawkins

and Sergio, 2014; Hawkins et al., 2015; Hurtubise et al., 2016, 2020;

Sergio et al., 2020; Smeha et al., 2022).

2.4 Data acquisition and recording

In this study, EEG data collection was critical to our

analysis. We utilized the portable Muse2TM headband system

(InteraXon Inc., Toronto, Canada) equipped with four electrodes—

TP9, TP10, AF7, and AF8—to record real-time neural activity

while participants engaged in visuomotor tasks. Adhering to the

International 10–20 System for electrode placement, as illustrated

in Figure 3, ensured standardized and optimal positioning of

electrodes for EEG data capture. The recording frequency was set at

256 Hz, optimizing the resolution of neural signal detection during

the tasks. Each participant’s EEG data were collected for a precise

duration of ∼30 s, carefully timed to encompass the entirety of

the experimental task engagement, resulting in around 20,000 data

points per participant.

At this initial stage of data collection, our methodology was

designed to ensure a robust capture of neural dynamics across the

multiple channels provided by the Muse2 system. This approach

allowed us to secure a comprehensive dataset, ready for the

subsequent stages of cleaning and preprocessing as outlined in

Section 2.5. Emphasizing the maintenance of the raw EEG signals’

fidelity, including the distinct contributions from each of the four

electrodes, laid the groundwork for an in-depth examination of the

complex patterns within the collected neural data.

2.5 Data cleaning and preprocessing

The data cleaning and preprocessing process involved a series

of steps to develop a high-quality dataset appropriate for machine

learning evaluation. Owing to the high sensitivity of the Muse

2 device, the EEG signals were subjected to noise interference,

including disruptions caused by participant’s eyes blinking or jaw

clenching. Such instances introduced noise into the dataset and

potentially resulted in blank values. Hence, noise elimination was

an imperative step.

This was accomplished through the use of two Python libraries,

NumPy and Pandas. NumPy is a powerful library that enables

efficient manipulation of large numerical data arrays. Pandas, built

on top of NumPy, provides tools for data cleaning, such as handling

missing data. This process was critical in enhancing the dataset’s

efficiency by eliminating duplicate values and minimizing model

bias. After cleaning the dataset, it was partitioned into training and

testing sets, following a 70–30 ratio for the train-test split. The data

points were standardized using the StandardScaler algorithm from

the sklearn library to ensure the data compatibility with machine

learning algorithms. Standardization is the process of scaling the

features such that they have a mean (µ) of zero and a standard

deviation (σ ) of one, thereby putting them on the same scale. This

is achieved by applying the following formula:

x′ =
x− µ

σ
(1)

In Equation (1), x′ represents the standardized value, x is the

original data point, µ is the mean of the feature vector, and σ is

the standard deviation of the feature vector. By using this formula,

we ensure that every standardized data point reflects how many

standard deviations it stands from the mean of the original data.

This standardization step is critical because it enables the machine

learning model to converge faster and achieve higher accuracy.

Next, the Continuous Wavelet Transform (CWT) was applied

to the signals to extract time-frequency information. This

transformation enabled the extraction of time and frequency

features in the data, providing valuable insights for PASC and ME

effects detection. The transformed data were then converted into

spectrogram-like matrices (Figures 4, 5) using the CWT, which

were used as input for machine learning and deep learning models.

Spectrograms offer a visual representation of the frequency content

of the EEG signals over time, allowing the models to learn spatial

and temporal patterns effectively.

2.6 Synthetic data generation

2.6.1 Overview
Synthetic data generation is an essential technique for

augmenting datasets, especially in areas where obtaining additional

real data is challenging or raises privacy issues. A similar approach
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FIGURE 3

Muse 2 headband and the 10–20 system of electrode placement for Muse.

FIGURE 4

Sample spectrogram for healthy participants.

has been proven successful in augmenting medical image datasets,

significantly improving the classification performance (Frid-Adar

et al., 2018). In this task, we create synthetic spectrogram data

through Wasserstein Generative Adversarial Networks (WGANs)

to discern patterns in the EEG signals of healthy individuals and

those afflicted with PASC and ME. With the aid of WGANs, we

generate synthetic spectrograms that are incorporated into the

training phase. After the model is trained, it is then evaluated on

the original, unaltered test dataset. The results, measured through

evaluation metrics, highlight the benefits of integrating synthetic

data into the training process. This strategy amplifies the volume

of training data and addresses privacy issues since synthetic data

does not directly trace back to individual participants, ensuring

their anonymity.

FIGURE 5

Sample spectrogram for PASC participants.

2.6.2 Generating original spectrograms
While our approach to generating spectrograms mirrors

the original methodology outlined previously, there exists one

significant distinction. In the original methodology, datasets from

healthy participants and PASC/ME patients were combined and

processed collectively. However, our synthetic approach processes

and handles the datasets separately, as shown in Figure 6. This

ensures we maintain distinct spectrogram and label data for each

class, allowing for more focused analysis for both categories.

Finally, each class’s spectrogram and label data are saved for

subsequent analyzes.

2.6.3 Generating synthetic spectrograms
The process of generating synthetic spectrograms involves

training a Wasserstein Generative Adversarial Network (WGAN)
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FIGURE 6

Methodology for generating synthetic spectrograms.

on the original spectrogram data to produce synthetic results.

Here’s a step-by-step breakdown:

• Loading data: The dataset was initially loaded from the

original spectrograms, which were stored in the “.npy” format.

This format is a file format used by NumPy, a library in Python

for numerical computing.

• Defining the neural network architectures: The Generator

is tasked with creating the synthetic data, built upon three

dense layers, each supplemented with batch normalization

and leaky ReLU activation functions. On the other hand, the

Critic replaces the traditional discriminator in WGANs and

is designed with dense layers equipped by dropout and leaky

ReLU functionalities.

• Training process: Our approach used the RMSprop optimizer

to train the generator and the critic. This training employed a

specific loss function derived from WGANs. We initiated the

training process by generating synthetic images from random

inputs. Furthermore, we proceeded to train the critic and

the generator sequentially. A crucial aspect of our method

required maintaining the critic’s weights within the range of

–0.01 to 0.01, ensuring the process functioned as intended.

• Generation of synthetic data: Throughout the training cycle,

every set of 100 epochs generates the synthesis of new data

samples that are then appended to the synthetic dataset.

• Post-processing and saving: In this step, the synthetic data

undergoes denormalization to revert to its initial scale.

Subsequently, the synthetic labels are allocated, and both the

data and labels are archived for further model training.

3 ML model development

3.1 Overview

This section progresses to the next stage of our study,

focusing on the application of specific machine learning and

deep learning models, including Support Vector Machines (SVM),

Random Forest (RF), Logistic Regression (LR), Convolutional

Neural Networks (CNN), and Long Short-Term Memory (LSTM)

networks, to our meticulously prepared dataset. Our aim is to use

these models to distinguish between healthy subjects and those

diagnosed with PASC and ME, with the refined visuomotor data

serving as the basis for our analysis.

3.2 Machine learning

Our work uses ML methodologies such as SVM, RF, and LR

to categorize participants based on the features extracted from the

processed EEG data. These algorithms showcase their flexibility

and efficacy in various classification tasks related to PASC and ME

effects detection.

3.2.1 Logistic Regression
Logistic Regression (LR) is chosen for its exemplary capability

in binary classification tasks, perfectly suited to differentiate

between healthy individuals and those with PASC and ME

within our study. The model’s strength lies in its transparent

relationship between predictors and the probability of outcomes,

providing valuable insights into how variables affect disease risk.

This transparency is particularly beneficial in a clinical research

setting, where understanding variable impacts is key. Although LR

assumes a linear relationship between predictors and outcomes,

which might oversimplify the complex patterns in EEG data,

this limitation can be addressed through sophisticated feature

engineering techniques. Additionally, LR’s effectiveness is bolstered

by regularization techniques, like L1 and L2, which help prevent

overfitting by penalizing large coefficients, thus enhancing the

model’s predictive performance and generalizability. The strategic

selection of LR, therefore, balances its computational efficiency

and ease of interpretation against its limitations, making it a

robust choice for analyzing the nuanced dynamics of neurological

conditions in our dataset.

3.2.2 Support Vector Machines
Support Vector Machines (SVM) are selected for their

exceptional efficacy in managing high-dimensional spaces, which

is particularly relevant for EEG data analysis within our research.

The strength of SVMs lies in their ability to form a hyperplane

or multiple hyperplanes in such spaces, facilitating classification,
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regression, and other types of analyzes. The key advantage of

using SVM lies in its capacity to handle complex data structures

through the use of kernel functions, enabling it to model

nonlinear relationships effectively. This capability is crucial for

analyzing the nuanced patterns present in neurological conditions.

However, the selection of the appropriate kernel and the tuning

of hyperparameters require careful consideration to prevent model

overfitting. Despite these considerations, the ability of SVMs to

transform feature spaces and optimize margins renders them an

invaluable asset for identifying the nuanced variances in brain

activity indicative of PASC and ME. The intentional application of

SVMs in our research utilizes their advanced mathematical basis to

derive meaningful insights from the EEG data, highlighting their

importance in the field of detailed diagnostic methods.

3.2.3 Random Forest
Random Forest (RF) is chosen for its ensemble learning

approach, which integrates the predictions from multiple decision

trees to improve accuracy and control overfitting—common issues

in machine learning models. RF’s capability for both classification

and regression tasks adds to its adaptability. Within our research,

the technique of generating several decision trees across different

segments of the dataset and employing their average to boost

accuracy and reduce overfitting is especially beneficial. This

approach enables the model to capture a broad spectrum of

patterns in the EEG data, which might be missed by more

simplistic models. One drawback of RF is its potential for high

computational complexity, especially with a large number of trees

or in cases of very deep trees. A limitation of RF, however, is

the potential increase in computational demand, particularly when

dealing with a significant number of trees or extremely complex

trees. Despite this, its effectiveness in preventing overfitting and

managing datasets with intricate variable relationships renders RF

crucial to our study. By implementing Random Forest, we leverage

the combined strength of various decision processes to deepen our

insights into detecting PASC and ME, thus enhancing the accuracy

and dependability of our results.

3.3 Deep learning

This section offers a detailed overview of the deep learning

models employed in this research, encompassing Convolutional

Neural Networks (CNN), Long Short-Term Memory (LSTM)

networks, and Gated Recurrent Unit (GRU) networks. These

models serve as the foundation for the ConvLSTM, CNN-LSTM,

GRU, and BiLSTM techniques utilized in our work.

3.3.1 Convolutional Neural Networks
CNNs are a type of deep learning model designed explicitly for

handling grid-like data, such as images or time series data, making

them particularly suitable for our study as we have converted EEG

data into spectral image-like data. Their unique structure, which

typically includes convolutional layers, activation layers, pooling

layers, and fully connected layers, allows them to excel at detecting

patterns in such transformed data. The convolutional layers apply

filters to the input data, enabling the network to learn and recognize

patterns. This is especially beneficial in our context as convolutional

layers are highly effective at processing image data, recognizing

spatial hierarchies and patterns that traditional methods might

overlook. Activation layers introduce non-linearity into the model,

which allows it to learn complex patterns. Pooling layers play a

critical role in reducing the spatial dimensions of the data, which

helps control overfitting and minimize computation time. Lastly,

fully connected layers consolidate the learned features and produce

the final classification output. In this study, we have integrated

CNNs into the ConvLSTM and CNN-LSTM models to efficiently

extract spatial features from the transformed EEG data. For the

schematic representation of the CNN architecture used in this

research, refer to Figure 7.

3.3.2 Long Short-Term Memory
LSTM networks, a type of recurrent neural network (RNN)

architecture, excel at learning and retaining long sequences of input

data, making them particularly suited for time series and sequential

data. This is largely because of their unique architecture that can

capture temporal dependencies across time, crucial for the EEG

data in this study. Figure 8 provides a graphical representation of

a typical LSTM unit, which comprises a memory cell and three

essential gates: the input, forget, and output gates.

Each gate is represented by a fully connected layer with a

sigmoid activation function, resulting in output values in the range

of 0–1. Intuitively, the input gate determines the extent to which the

new input influences the current memory cell state. The forget gate,

on the other hand, decides whether to retain or discard the current

memory value. Lastly, the output gate controls the influence of the

memory cell on the unit’s output at the current time step. Alongside

the gates, an input node computed with a tanh activation function

is also present. This node provides a normalized version (–1 to 1)

of the current input for the memory cell. The gating mechanisms

combined with the memory cell enable LSTM networks to learn

and recall long-term dependencies in the data, which are typically

challenging for traditional RNNs. Given their ability to handle

temporal patterns, this study incorporates LSTM networks into the

ConvLSTM and CNN-LSTM models to efficiently learn temporal

patterns from the EEG data.

3.3.3 Convolutional Long Short-Term Memory
The ConvLSTM model is designed to capture both spatial and

temporal dependencies in the input data, while also incorporating

a self-attention mechanism. It starts with a series of convolutional

layers, followed by batch normalization, activation, and dropout

layers. The output of these layers is then reshaped and fed into

a ConvLSTM2D layer, which combines convolutional operations

with LSTM cells. After the ConvLSTM2D layer, a pooling layer is

used to reduce the spatial dimensions, followed by a self-attention

layer (Vaswani et al., 2017) to compute attention scores for each

input data element, considering the contextual importance of each

element in the input sequence. A flatten layer is used, followed by

dense layers to produce the final output. This architecture enables

the network to process data in a spatially localized manner while
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FIGURE 7

Schematic representation of a basic Convolutional Neural Network (CNN).

FIGURE 8

Diagram of a Long Short-Term Memory (LSTM) network highlighting the Input, Forget, and Output gates.

also capturing temporal patterns and considering the importance

of each element in the sequence.

3.3.4 CNN-LSTM
The CNN-LSTM model combines the feature extraction

capabilities of Convolutional Neural Networks (CNNs) with the

sequential learning ability of Long Short-Term Memory (LSTM)

networks. The architecture consists of a series of convolutional

layers, followed by batch normalization, activation, and dropout

layers. After the CNN layers, a pooling layer is used to reduce the

spatial dimensions. The output is then fed into LSTM layers to learn

temporal patterns in the data. Additionally, this model incorporates

a self-attention mechanism, which computes attention scores for

each input data element, considering the contextual importance of

each element in the input sequence.

3.3.5 BiLSTM
The BiLSTM model captures information from both the past

and future contexts by processing the input data in both forward

and backward directions. The architecture begins with a series of

convolutional layers, followed by batch normalization, activation,

and dropout layers. The output from these layers is then fed into

bidirectional LSTM layers, with one LSTM processing the input

data in the forward direction and the other in the reverse direction.

The outputs of both LSTMs are concatenated, and the combined

output is fed through dense layers to produce the final output.

This model is particularly effective for sequence-to-sequence

learning tasks, capturing information from both directions to

improve predictions.

3.3.6 Gated Recurrent Unit
The GRU model is a simplified variant of the LSTM

architecture, designed to capture both spatial and temporal

dependencies with fewer parameters. The model starts with a

series of convolutional layers, followed by batch normalization,

activation, and dropout layers. The output from these layers is

then fed into GRU layers, which use the update and reset gates

to control the flow of information through the network. The

operation of update and reset gates within the GRU model is

quantitatively described by Equations 2 and 3, respectively. After

the GRU layers, dense layers are used to produce the final output.

This architecture achieves similar performance to LSTMs while

being computationally more efficient, making it suitable for tasks

involving time series analysis and natural language processing.

Update gate: zt = σ (Wzxt + Uzht−1 + bz) (2)

Reset gate: rt = σ (Wrxt + Urht−1 + br) (3)
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TABLE 2 Wilcoxon signed-rank test results.

Comparison P-
value

Corrected
P-value

Reject null
hypothesis

CNN-LSTM vs.

ConvLSTM

0.275391 0.413086 False

CNN-LSTM vs.

BiLSTM

0.001953 0.003906 True

CNN-LSTM vs.

GRU

0.921875 0.921875 False

ConvLSTM vs.

BiLSTM

0.001953 0.003906 True

ConvLSTM vs.

GRU

0.625000 0.750000 False

BiLSTM vs. GRU 0.001953 0.003906 True

Where σ is the sigmoid activation function, W, U, and b are

weight matrices and bias vectors.

4 Evaluation and results

4.1 Statistical analysis of model
performance

In our study, we conducted a detailed evaluation of our models

using 10-fold cross-validation to ensure a thorough assessment of

their performance. This was followed by a statistical comparison

using theWilcoxon signed-rank test to analyze the accuracy of four

models: CNN-LSTM, ConvLSTM, BiLSTM, and GRU. The null

hypothesis for our analysis was that there is no significant difference

in the accuracies between any two models being compared. Our

analysis focused on identifying statistically significant differences

in model accuracies, with results detailed in Table 2. The analysis

revealed no significant differences in performance between CNN-

LSTM, ConvLSTM, and GRU, indicating that their abilities to

classify EEG patterns related to PASC and ME are statistically

comparable, thereby failing to reject the null hypothesis for

these comparisons. However, when comparing the BiLSTM model

against the others, significant differences were observed, suggesting

that the BiLSTM model’s performance distinctly varies from that

of the CNN-LSTM, ConvLSTM, and GRU models, leading to the

rejection of the null hypothesis in these instances.

The statistical analysis conducted in our study highlights the

task of EEG pattern classification for PASC and ME, where no

single model uniformly outperforms others across all metrics.

The distinctive statistical performance of the BiLSTM model, in

comparison to the CNN-LSTM, ConvLSTM, and GRU models,

underscores the variability in model efficacy under different

evaluation frameworks. This variability suggests that the choice of

model cannot be predicated solely on one type of performance

assessment, such as accuracy from conventional train-test splits

or cross-validation. It points to the necessity of a diversified

evaluation strategy, considering the varied nature of EEG data and

the specific requirements of real-world applications. This variability

among models points to the importance of understanding each

TABLE 3 Comparison of model training time and training parameters.

Model Training time
(minutes)

Training
parameters

CNN-LSTM 4 1,443,490

ConvLSTM 16 12,197,295

GRU 6 630,086

Bi-LSTM 9 660,627

model’s performance nuances, including how they handle EEG data

complexities andmeet the classification goals, as key considerations

in model selection.

4.2 Dataset composition and segmentation

Prior to evaluating the performance of our models, we took

several considerations into account while preparing the training

and testing datasets. Initially, we collected extensive EEG data

from each participant, leading to a robust set of ∼350 k data

points for healthy subjects and 450 k for those with PASC + ME.

Through a windowing process, we distilled this information into

7,651 segments for healthy participants and 13,799 segments for

the combined group of PASC + ME participants. To balance the

datasets and mitigate any potential classification bias, we equalized

the number of data segments for each group, resulting in a final

dataset of 7,651 segments per group.

The training and testing sets were then constructed from these

balanced groups at the subject level, ensuring that all EEG data

from a single participant was included in only one of the sets. This

approach was taken to maintain the integrity of the subject-specific

EEG patterns and avoid the model learning idiosyncratic features

that could lead to overfitting. As such, 70% of the segments from

each group were randomly selected to form the training set, totaling

10,761 segments, while the remaining 30% were allocated to the

testing set, comprising 4,541 segments. This split was deliberately

chosen to evaluate the models’ ability to generalize their learned

patterns to an independent dataset that they had not encountered

during the training phase. Details regarding the training time and

parameters of the models used in our study can be found in Table 3.

4.3 Model evaluation

In this study, we evaluated the performance of various machine

learning (ML) and deep learning (DL) models for detecting

PASC and ME effects using EEG data. The evaluation metrics

employed included accuracy, precision, recall, and F1-score, with

macro averaging applied for precision, recall, and F1-score.

The calculation of these metrics, crucial for understanding the

effectiveness of the predictive models, is based on the standard

formulas represented by Equations 4–7.

The formulas for Accuracy, Precision, Recall, and F1-score are

as follows:

Let TP = True Positives, FP = False Positives,TN =

True Negatives, FN = False Negatives.
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TABLE 4 Performance metrics comparison for machine learning models.

Model Accuracy Precision Recall F1-score

LR 63% 62% 64% 63%

RF 77% 72% 75% 74%

SVM 51% 55% 51% 42%

TABLE 5 Evaluation of deep learning models based on key performance

metrics.

Model Accuracy Precision Recall F1-score

CNN-

LSTM

83% 85% 82% 83%

ConvLSTM 77% 80% 77% 77%

GRU 63% 64% 63% 62%

Bi-LSTM 70% 71% 70% 70%

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1-score = 2×
Precision× Recall

Precision+ Recall
(7)

Upon conducting a comparative analysis, it was found that

deep learning models outperformed their machine learning

counterparts. Detailed performance metrics for each of these

models are provided in Tables 4, 5. Table 4 specifically presents the

metrics for the ML models. Among these models, the Random

Forest model achieved the best performance with an accuracy of

77%, indicating that its ensemble learning approach provided a

more reliable and stable classification model for detecting effects

of PASC and ME. The Logistic Regression model attained a 63%

accuracy, accompanied by average accuracy of 63% for precision,

recall, and F1-score. In comparison, the Support Vector Machine

model demonstrated a 51% accuracy and achieved accuracy of 55%

for precision, 51% for recall, and 41% for F1-score.

As shown in Table 5, where the performance metrics for DL

models are presented, ConvLSTM and CNN-LSTMmodels showed

promising results, with the CNN-LSTM model demonstrating the

highest performance, exhibiting an accuracy of 83%, precision of

85%, recall of 82%, and an F1-score of 83%.

The superior performance of the CNN-LSTM model can be

attributed to its unique combination and order of CNN and LSTM

layers. Unlike other models, the CNN-LSTM architecture starts

with CNN layers, which are excellent at extracting spatial features

from the data. It then feeds these features into LSTM layers,

which excel at capturing temporal dependencies in sequences. This

model capitalizes on the strengths of both components: CNN layers

efficiently process spatial information, reducing the complexity

of the input before it’s passed to the LSTM layers, which can

then focus on extracting the time-based patterns without being

TABLE 6 Performance metrics across multiple runs: “0” indicates healthy

individuals and “1” indicates PASC and ME individuals.

Run Class Precision Recall F1-
score

Accuracy

1 0 90% 97% 94% 94%

1 97% 90% 94%

2 0 87% 97% 92% 92%

1 97% 87% 92%

3 0 92% 98% 95% 95%

1 98% 92% 95%

4 0 92% 97% 94% 94%

1 97% 92% 94%

5 0 85% 97% 91% 90%

1 97% 84% 90%

Avg. accuracy 93%

overwhelmed by high dimensional raw input. Therefore, the CNN-

LSTM model can analyze both spatial and temporal aspects of the

data more efficiently while considering the contextual importance

of each input sequence element. These findings suggest that deep

learningmodels, particularly the CNN-LSTMmodel, show promise

as effective tools for identification and management of PASC and

ME effects using EEG data, which is crucial for the neuroscience

field. Timely intervention could improve patient outcomes and

contribute to a better understanding of the long-term effects of

COVID-19 and ME on the brain.

4.4 Evaluation of synthetic spectrograms

Following the application of our synthetic data generation

methodology, the model underwent extensive classification metric

assessments, the detailed results of which are presented in Table 6.

Over the course of five separate runs, the results consistently

highlighted the model’s proficiency in differentiating EEG patterns

between healthy participants and those affected by PASC and ME.

By averaging themetrics across these runs, themodel demonstrated

a high level of performance, achieving ∼93% in precision, recall,

and F1-score for both classes. Notably, the consistent average

accuracy of 93% across all runs underscores the model’s robustness

and the effectiveness of incorporating synthetic data in the

training process.

This decision to train models exclusively on synthetic inputs,

rather than a combination of synthetic and original inputs, was

guided by several key considerations. Our methodology aimed

to evaluate the models’ robustness and adaptability to data that

simulates real-world variability but does not carry the same

potential biases or limitations inherent to the original dataset.

Training exclusively on synthetic data provided a clear baseline

to assess the effectiveness of data augmentation techniques in

enhancing model performance. It allowed for a straightforward

comparison between models trained on purely original data versus

those trained on synthetic data, thereby isolating the impact of

synthetic data generation on model accuracy.
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TABLE 7 Comparison between original and synthetic datasets.

Metric Original
dataset

Synthetic
dataset

Di�erence

Mean

(µV)

810.74 851.28 40.54

Std. dev. 42.74 44.54 1.80

Moreover, this approach facilitated a controlled experiment to

assess the synthetic data’s value in training robust and generalizable

models. By training themodels solely on synthetic inputs, we aimed

to explore the efficacy of synthetic data in compensating for the

limitations of the original dataset, such as limited volume and

privacy concerns.

While the current phase of our research did not explore the

combined use of augmented (synthetic) and original inputs during

training, we acknowledge this as an important area for future

investigation. Combining both data types could potentially leverage

the strengths of each—enhancing model performance further by

providing a richer and more diverse training set. Future work

will aim to explore this possibility, examining the optimal ratio

of synthetic to original data and its effects on model efficacy and

reliability in real-world applications.

4.5 Comparison of original vs. synthetic
spectrograms

In this segment, a comparison was made between the

performance metrics of the CNN-LSTM model trained on original

and synthetic data. While the original data-trained CNN-LSTM

achieved an accuracy of 83%, the synthetic data-trained model

registered a commendable average accuracy of 93% over multiple

runs. Additionally, we compared the mean and standard deviation

differences between the original and synthetic datasets, as shown

in Table 7. It is worth noting that the values in both datasets

were normalized, accounting for the low magnitudes observed in

the mean and standard deviation. The standard deviation of the

original dataset is ∼42.74, which closely aligns with the 44.54

observed in the synthetic dataset, with a minor difference of 1.80,

reflecting a percentage difference of ∼4%. On the other hand,

the original dataset features a mean of ∼810.74, similar to the

synthetic data’s mean of 851.28 with a minor difference of 40.54,

which translates to a percentage difference of ∼5%. These results

suggest that the synthetic data generation methodology is reliable

and offers an enhanced performance potential when training the

model. Moreover, it indicates the potential of synthetic data to

augment existing datasets and significantly enhance the predictive

capabilities of deep learning models, especially in areas where the

collection of extensive real-world data might be challenging or

time-consuming.

5 Conclusion and discussion

In conclusion, our study demonstrates the potential of

using EEG data combined with machine learning and deep

learning techniques to detect and differentiate between

healthy participants and those affected by PASC and ME.

The findings suggest that deep learning models, particularly

the CNN-LSTM model, are promising tools for the detection

and management of PASC and ME neurological effects, as

evidenced by their superior performance compared to traditional

machine learning approaches such as SVM, RF, and LR. The

ConvLSTM and CNN-LSTM models effectively captured spatial

and temporal dependencies in the data, contributing to their

remarkable performance.

A significant advancement in our research is the introduction of

synthetic spectrograms generated through Wasserstein Generative

Adversarial Networks (WGANs). These synthetic spectrograms

were used in a separate training phase and notably achieved an

average accuracy of 93%, enhancing performance metrics. This

success underlines the utility of synthetic data in training models

where real-world data is limited or raises privacy concerns. These

insights have significant implications for the neuroscience field,

where detection and intervention could lead to improved patient

outcomes and a better understanding of the long-term effects

of COVID-19 and ME on the brain. The study also highlights

the importance of data preprocessing and feature engineering in

developing high-quality datasets for training and testing machine

learning and deep learning models. The utilization of Continuous

Wavelet Transform and spectrogram-inspired matrices facilitated

the efficient extraction of time and frequency characteristics from

the EEG data, yielding crucial insights for identifying the effects of

PASC and ME.

In our study, the Wilcoxon signed-rank test revealed critical

insights into how well CNN-LSTM, ConvLSTM, BiLSTM, and

GRU models distinguish between EEG patterns of healthy

participants and those diagnosedwith PASC andME.Our statistical

analysis found no significant differences in efficacy among CNN-

LSTM, ConvLSTM, and GRU, suggesting these models are equally

viable choices based on accuracy. This finding implies that

selection among these models could instead consider factors like

computational efficiency or ease of use. While differences were

noted with the BiLSTM model, no single model consistently

outperformed the others across all metrics, highlighting the

importance of choosing a model based on the specific context and

needs of the task.

Future research endeavors will extend beyond merely applying

deep learning models to EEG data analysis toward unraveling

the intricate mechanisms that often remain obscured within these

models’ operational processes. Motivated by pioneering studies

such as the one introducing interpretable sinc-convolutional neural

networks for EEG motor execution decoding (Borra et al., 2020),

we aim to delve deeper into the interpretability of the deep

learningmodels utilized in our investigations. This groundbreaking

approach has demonstrated that it is possible to integrate a sinc-

convolutional layer into a convolutional neural network, enabling

a transparent interpretation of the learned filters directly in the

frequency domain. Such an advancement not only allows for a

slight increase in decoding accuracy but also facilitates a granular

understanding of the EEG features that are most pivotal for

model predictions, such as the significant role of the high Ŵ

band and the spatial localization of EEG electrodes contributing to

movement decoding.
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Inspired by these findings, our future work will prioritize the

exploration of similar interpretable architectures and techniques,

including gradient-based analyzes, to ascertain the relevance of

specific EEG bands and electrode placements in the context of

PASC and ME. Furthermore, building on the work of Farahat

et al. (2019), which systematically evaluated convolutional neural

networks for EEG signal decoding and introduced saliency maps

for EEG feature visualization, we will explore new methods for

visualizing the decision-making processes of neural networks. This

will not only enhance the transparency and reliability of our models

but also provide insights into the neural correlates of cognitive

tasks, potentially revealing new EEG features and patterns critical

for understanding neurological conditions.

Ultimately, this study provides a valuable foundation for

developing non-invasive, efficient, and accurate diagnostic

tools to detect and manage the long-term effects of both

PASC and ME on the neural control of skilled motor

performance, improving patient care and contributing to a

deeper understanding of this complex condition. The integration

of interpretability and transparency in deep learning models

represents a crucial step forward in making these advanced

analytical techniques more accessible and understandable

for clinical neuroscience, thereby enhancing their utility in

real-world applications.
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