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Source localization from M/EEG data is a fundamental step in many analysis

pipelines, including those aiming at clinical applications such as the pre-surgical

evaluation in epilepsy. Among the many available source localization algorithms,

SESAME (SEquential SemiAnalytic Montecarlo Estimator) is a Bayesian method

that distinguishes itself for several good reasons: it is highly accurate in localizing

focal sources with comparably little sensitivity to input parameters; it allows

the quantification of the uncertainty of the reconstructed source(s); it accepts

user-defined a priori high- and low-probability search regions in input; it can

localize the generators of neural oscillations in the frequency domain. Both a

Python and a MATLAB implementation of SESAME are available as open-source

packages under the name of SESAMEEG and are well integrated with the main

software packages used by the M/EEG community; moreover, the algorithm is

part of the commercial software BESA Research (from version 7.0 onwards).

While SESAMEEG is arguably simpler to use than other source modeling

methods, it has amuch richer output that deserves to be described thoroughly. In

this article, after a gentle mathematical introduction to the algorithm, we provide

a complete description of the available output and show several use cases on

experimental M/EEG data.

KEYWORDS

Bayesian inference, inverse problems, MEG, EEG, open-source software, MATLAB,

Python

1 Introduction

The electromagnetic signals at the scalp produced by neural currents in the brain

are the most direct consequences of brain electrical activity and can be non–invasively

measured by means of MagnetoEncephaloGraphy (Hämäläinen et al., 1993) (MEG) and

ElectroEncephaloGraphy (Baillet et al., 2001) (EEG). Remarkably, M/EEG recordings can

be acquired at the outstanding sampling rate of the order of the millisecond (Gratta et al.,

2001), thus opening the door to the study of the dynamics of neural processes in a wide

variety of conditions, both normal (Sorrentino et al., 2006; Brookes et al., 2011) and

pathological (Stoffers et al., 2007; Stam et al., 2009; Uda et al., 2012; Luria et al., 2020),

with very high precision in time.

Mapping the activity of known sources in the brain to the corresponding M/EEG

signals is called the forward problem (Pursiainen et al., 2011; Vorwerk et al., 2016). This

is a well-posed problem which is solved by giving a parametric representation of the

Frontiers inHumanNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2024.1359753
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2024.1359753&domain=pdf&date_stamp=2024-03-13
mailto:sorrentino@dima.unige.it
https://doi.org/10.3389/fnhum.2024.1359753
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnhum.2024.1359753/full
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Luria et al. 10.3389/fnhum.2024.1359753

sources and by modeling how the electromagnetic field propagates

through the brain compartments. Two main source models have

been proposed in the literature so far: the Distributed Source (DS)

model and the Equivalent Current Dipole (ECD) model. While in

the former the neural current is assumed to be a continuous vector

field inside the brain volume, the latter model assumes instead the

whole brain activity underlying the M/EEGmeasurements to occur

only in a small number of clusters of thousands of synchronously

activated pyramidal cortical neurons. In this setting, each cluster is

represented by a point source, called ECD, and the whole primary

current distribution is approximated by the superposition of a

given number of ECDs. Notably, the ECD model is currently

the standard approach in clinical applications of MEG, such as

the pre-surgical localization of epileptic spikes, and the only one

recommended by the American Clinical Magnetoencephalography

Society (Bagic et al., 2011; Carrette and Stefan, 2019). In order

to model the propagation of the electromagnetic field through

the head, it is crucial to exploit the information about the

physical and geometrical properties of the head, which can be

gathered from high resolution anatomical Magnetic Resonance

Imaging (MRI). Then, discretization of the differential equations

governing the electromagnetic fields can be done using Boundary

Element Methods (BEM) or Finite Element Methods (FEM);

however, BEM can only be used to model homogeneous and

isotropic conductivity, which is clearly a too simplistic model;

FEM, on the other hand, allow to model inhomogeneous and

anisotropic conductivity, but accurate estimates of the spatially-

varying conductivity tensor are typically difficult to obtain. As

a consequence, despite being a well-posed problem, the forward

solution is typically affected by modeling errors as well as

numerical inaccuracies.

The capability of solving the forward problem leads to the

possibility of inferring the location of the generators of brain

activity from M/EEG data, which in turn is called the inverse

problem. This last is ill-posed, since it suffers from the non-

uniqueness of the solution, and exhibits a high sensitivity to noise.

As a consequence, data need to be complemented with anatomical

and physiological prior knowledge, thus sacrificing the exact match

between the recorded and the reconstructed electromagnetic field.

The vast majority of available methods for source localization

provide a single, unique “best” reconstruction of neural activity

from a given dataset, with no quantification of the degree of

reliability of the reconstruction itself, nor any clue about the

existence of alternative solutions. However, ill-posedness implies

that it is impossible to restore the neural generators exactly;

hence, when solving the inverse problem we should not content

ourselves with a single best estimate, and should instead answer the

following questions too: are there other potential solutions? how

certain are we of the single estimate provided? Answering these

questions is difficult: in order to do it, it is necessary to characterize

the probability distribution of the neural current conditioned

on the measured data, i.e. the posterior distribution of the

Bayesian approach.

In a set of publications (Sorrentino et al., 2013, 2014; Luria

et al., 2019; Viani et al., 2021, 2022) we proposed a fully Bayesian

algorithm, based on the ECD source model and belonging to

the class of Sequential Monte Carlo (SMC) samplers (Del Moral

et al., 2006), to solve the M/EEG localization problem. This inverse

solver, called SEquential Semi-Analytic Montecarlo Estimator

(SESAME), is able to sample the whole posterior distribution for the

multi-dipole configuration, thereby providing multiple alternative

solutions, each with an associated quantification of its reliability. In

a couple of recent studies SESAME has been shown to score very

well in terms of localization accuracy when compared to wMNE

and MUSIC in Luria et al. (2020) and to a larger set of inverse

solvers in Pascarella et al. (2023), while also being particularly stable

with respect to input parameters.

In the present paper we present both a Python and a MATLAB

open-source implementation of SESAME, under the name of the

SESAMEEG package. The main idea behind SESAMEEG is to

provide a user-friendly tool that can be used out-of-the-box by the

general audience, but also lets the experienced user the possibility

of providing different kinds of prior knowledge about the problem.

Moreover, to facilitate the entire analysis pipeline, SESAMEEG is

well integrated with the most popular open sourceM/EEG software

and SESAME is also implemented in the commercial CE-marked

software package BESA Research.

The paper is organized as follows. In Sections 2.1.1–2.1.2 we

provide a gentle mathematical introduction to the ECD model and

to the Bayesian approach to source modeling. In Section 2.1.3 we

discuss the impact of input (hyper)parameters on the output of

SESAME, described in Section 2.1.5 A very brief summary of the

computations behind SESAME is provided in Section 2.1.4 and

the factors affecting the computational cost of the algorithm are

discussed in 2.1.6. The SESAMEEG package is described in Section

2.2 and we then proceed with exemplar analysis of experimental

datasets: an MEG dataset in Section 3.1 and an EEG dataset

in Section 3.2. Finally, in Section 4 we discuss the current and

future work.

2 Method

2.1 SESAME: a Bayesian algorithm for
M/EEG source modeling

2.1.1 The source model
Source localization of M/EEG data is typically based on the

following model:

y(t) =

N∑

i=1

G(ri) qi(t)+ ǫ(t) (1)

where:

• y(t) is the measured data at time t, modeled as the

superposition of contributions of different sources;

• G(ri) is the lead field corresponding to a point source located

at ri;

• qi(t) represents the neural current at location ri at time t;

• ǫ(t) is (Gaussian) noise, accounting for measurements noise as

well as forward modeling errors.
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In (1) the sum over i represents the additive contributions of

sources located at different points ri in a given discretized source

space. For the sake of simplicity, we henceforth omit the time

dependence of all variables.

We underline that it is perhaps not common to include forward

modeling errors in the additive noise term ǫ; however, we reckon

it is important to do so because even exact measurements cannot

be explained exactly in a real environment, due to the unavoidable

approximations in the forward model. The use of a Gaussian

distribution to model this contribution might be questionable: so

far this choice is mainly based on practical reasons and lack of

better knowledge; the same model was used in other studies, e.g.,

Rimpiläinen et al. (2019).

In distributed models, source locations {ri}i=1,...,N are assumed

to be known a priori and the number N of distinct source locations

is typically large (∼ 10, 000). The only unknowns would be the

values {qi}i=1,...,N : once these have been estimated, one can localize

brain activity as the points corresponding to maximum values of qi.

The number of unknowns is large (∼ 3× 10, 000) but data depend

linearly on the unknowns.

In the multi-dipole model, the same Equation (1) is used with

the following differences: the number N is now unknown but small

(lower than 10); source locations are also unknown. Therefore the

total number of unknown parameters to be estimated is much

fewer than the corresponding number in the distributed model, but

data depend non-linearly on N and {ri}i=1,...,N , which makes the

problem harder.

In our formulation, we adopt a multi-dipole model for brain

activity. We assume that, within the considered time interval, both

the number and location of the active sources remain fixed; the

only parameter that has a time dependence is the intensity of each

active source.

2.1.2 The Bayesian model
The starting point of Bayesian methods is a set of conceptual

tenets (Kaipio and Somersalo, 2007; Pascarella and Sorrentino,

2011):

• probability is used to quantify uncertainty about any variable

involved in the problem;

• because of the previous item, all variables are considered

random variables; this does not imply that such variables are

random in an ontological sense, but just that our knowledge

of their values is imperfect, and such imperfection can be

represented with a probability distribution;

• the mathematical rule to combine a priori information with

information coming from the data is Bayes rule.

SESAME is a Bayesian inference tool applied to a multi-dipole

model: it aims at approximating the posterior distribution of the

number of sources N, the source locations R = {ri}i=1,...,N and the

source strengths Q = {qi}i=1,...,N , given the data

p(N,R,Q | y) =
p(y |N,R,Q) p(N,R,Q)

p(y)

where

• p(N,R,Q | y) at the left hand side is the posterior distribution;

• the likelihood function p(y |N,R,Q) is set to be Gaussian of

standard deviation σǫ , accounting for the presence of noise in

the data as well as errors in the forward model;

• the second term at the right hand side is the prior p(N,R,Q);

• the denominator is a normalizing constant.

In SESAME we make the further assumption that the

unknowns are a priori independent p(N,R,Q) = p(N) p(R) p(Q)

and set a Gaussian prior on the source strengths p(Q) = N (0, σq);

combined with the Gaussian likelihood, this leads to a conditionally

linear Gaussian model for source strengths. As a consequence, in

the following standard splitting of the posterior

p(N,R,Q | y) = p(Q |N,R, y) p(N,R | y)

the first bit at the right hand side can be computed analytically,

while the second bit is approximated with a SMC sampler algorithm

(Del Moral et al., 2006), briefly described in Section 2.1.4.

2.1.3 Hyper-parameters
It is important to remark that the posterior distribution

depends on the two hyper-parameters mentioned above, namely

the standard deviation σǫ of the Gaussian likelihood and the

standard deviation σq of the Gaussian prior on the dipole strength.

Here we briefly explain how to deal with them.

We start by considering the Gaussian prior on the dipole

strength, with its corresponding standard deviation σq. It is

important to remark that a Gaussian prior is a fairly strong prior,

that forces the unknown to be of the same order of magnitude

as the standard deviation. In principle, this fact can be even used

to our own advantage: in Luria et al. (2019) we showed that

SESAME can be used to mimick distributed sources by setting a

small σq, that forces small dipoles and produces more widespread

reconstructions. On the other hand, for a standard analysis with

a purely dipolar model the dependence of the solution on the

value of σq is actually annoying, but can be strongly reduced by

introducing a hyper-prior, i.e. a prior on the hyper-parameter σq.

This was done originally in Viani et al. (2021), where we presented

an updated model in which the hyper-parameter σq is considered

unknown, and treated as an additional parameter, i.e. sampled

from the hyper-prior and then updated in the SMC steps. In

order to provide as little information as possible on the order of

magnitude of the sources, we chose to use a log-uniform hyper-

prior in the interval [σmin
q , 103σmin

q ], where σ
min
q is chosen based

on the order of magnitude of the data and of the lead field. We have

shown that the introduction of the hyper-prior makes the estimated

configuration stable across over three orders of magnitude of the

(hyper-)hyper-parameter. In the SESAMEEG package, the user can

choose whether to use the hyper-prior and basically ignore the

problem of setting σq, or else to use the value estimated from the

lead field and the data, or else to set a value manually.

The standard deviation of the Gaussian likelihood σǫ currently

represents the main hyper-parameter of SESAME. Understanding

its role is key for an effective use of the algorithm. Roughly

speaking, the value σǫ represents a threshold below which the

discrepancy between the measured data and the data produced
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by the solution can be ignored: if this threshold is set low, then

the algorithm will do its best to reproduce the data accurately;

to this aim, it will likely produce solutions with larger number

of dipoles (which also takes a lot of time). If the threshold is set

high, then the algorithm will produce simple solutions that fit the

data only approximately. As already pointed out in Section 2.1.2,

the role of this hyper-parameter in the Bayesian model is to take

into account both noise in the data and uncertainties/errors in

the forward model. Therefore finding a good value is not always

straightforward, and we are working on removing the dependence

on this hyper-parameter too (Viani et al., 2023). In the open-

source SESAMEEG packages, σǫ is by default estimated as the 20%

of the peak of the signal, as a rule-of-thumb assessment of the

two contributions of measurement noise and forward modeling

error; the experienced user is allowed to change the value of this

hyper-parameter to their liking.

2.1.4 The SMC sampler algorithm
At the core of SESAME is a Sequential Monte Carlo sampler

that approximates p(N,R | y) with a weighted set of candidate

solutions, termed particles, {(Ni,Ri),wi}i=1,...,I , where wi represents

the weight of the i-th candidate solution (Ni,Ri).

In this subsection we provide a very brief summary of the

computations behind SESAME: for more details we invite the

reader to consult (Sommariva and Sorrentino, 2014; Sorrentino

et al., 2014; Viani et al., 2021), where the mathematical model and

the algorithm have been thoroughly described.

The recipe is as follows. An initial set of particles is drawn

from the prior distribution, then the following steps are repeated

until convergence:

1 [MCMC step] each particle is randomly perturbed within a

neighborhood; also, dipoles can be added or removed from the

particle; the perturbation can be accepted or rejected, based

on whether the perturbed version fits the data better than the

original one;

2 [Reweighting] particle weights are updated based on an

importance sampling rule,

3 [Resampling] the particle set may undergo a resampling

procedure, i.e.: particles with low weights are discarded and

particles with large weights are duplicated.

The final set of particles is then used to produce estimates from

the posterior distribution.

2.1.5 SESAME output
Once the posterior has been approximated, SESAME can

provide answers to the following questions: how many sources are

there? What are most probable source locations? How certain are

we about the source locations?

In particular, standard SESAME output encompasses:

• the posterior probability of different number of sources p(N =

i | y) for i = 0, 1, . . . ; this can be visualized e.g. as a pie chart,

as is done below;

• the posterior probability of source locations p(R | y), typically

visualized as a probability map on the brain surface or in

the brain volume; here, a highly focused map indicates low

uncertainty on the estimated source locations; on the contrary,

a widespread map indicates high uncertainty;

• the most probable source locations, identified by first

estimating the number of sources as the number N̂ by

maximizing P(N | y), and then identifying N̂ peaks in the

posterior probability p(R | y, N̂);

• the source time courses of the most probable sources.

At times, the posterior probability of the number of sources

will assign comparable probabilities to distinct models: for example,

it can happen that 60% probability is assigned to a one-dipole

model and 40% probability is assigned to a two-dipole model. In

these cases, SESAME provides both alternative solutions, so that

the user can evaluate which one is more likely to be correct, based

on additional information they might have.

2.1.6 SESAME computational cost
While the specific implementation, outlined in the next Section,

has an impact on the computational cost of the algorithm, few basic

facts are common to all implementations:

• the vast majority of the computational cost is due to theMonte

Carlo sampling of p(N,R | y), while the subsequent calculation

of the source time courses according to p(Q |N,R, y) has a

comparably negligible cost;

• the computational cost of the SMC sampler depends on the

complexity of the posterior distribution, and in particular

grows non-linearly with the estimated number of sources;

• such computational cost is linear in the number of particles.

2.2 The SESAMEEG packages

The SESAME algorithm has been implemented into two

distinct open–source packages, one coded in Python and one

coded in MATLAB, under the collective name of SESAMEEG; a

commercial version is also available as a part of the BESA Research

7.0+ software. The software is platform independent and has been

tested on Windows, macOS and Linux. Apart from being able to

be used as a standalone software, SESAMEEG is well integrated

within the most popular open–source packages for analyzing

human neurophysiological data: Brainstorm (Tadel et al., 2011),

MNE–Python (Gramfort et al., 2013a), FieldTrip (Oostenveld et al.,

2011) and Zeffiro Interface (He et al., 2020). Such integration

has the virtue of letting the user perform all the analysis pipeline

steps—such as data pre-processing and visualization—within the

same toolbox.

Figure 1 summarizes themain inputs of the algorithm; formore

advanced settings the reader is referred to the API documentation,

as detailed below.

The mandatory inputs are the forward solution (namely the

source space and the lead field matrix) and the M/EEG data.

SESAMEEG can run in different analysis scenarios: the source

space can be both cortically constrained and volumetric, and the
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FIGURE 1

Main inputs of the SESAME algorithm. Apart from the mandatory inputs listed in the top blue box, all other inputs have an automatically estimated

default value.

source orientations in the forward solution can be both free and

orthogonal to the surface of the cortex.

Each of the remaining inputs has its own default value, which

has been engineered to let SESAMEEG perform well out–of–

the–box in most common scenarios. However, a high degree of

customization is available to experienced users.

As described in Section 2.1.5, the output of SESAME is an

empirical posterior distribution for a variable number of sources

and for their parameters.

From this distribution, maximum a posteriori estimates are

computed and—conditioned on the estimated number of sources—

a cortical probability map is worked out, which quantifies for each

voxel the posterior probability of containing a dipolar source.

SESAMEEG can visualize SESAME outputs in several different

ways, which vary according to the software environment and

which may also depend on the inputs: as an example, whenever

a volumetric source space is used and a MRI image such as

T1 is available, it becomes feasible to visualize source estimates

overlaid on MRI and to morph estimates to a template brain for

group analysis.

2.2.1 SESAMEEG Python
The Python package SESAMEEG is available at the Python

Package Index (PyPI) repository (https://pypi.org/project/

sesameeg/) and distributed under a Berkeley Software Distribution

(BSD) 3-Clause “New” or “Revised” License. The source code is

available at the GitHub repository (https://github.com/pybees/

sesameeg) while the documentation can be found at https://pybees.

github.io/sesameeg/ and comes with an example gallery in which

all most common use cases are illustrated.

The code is object oriented and its core functionalities are

implemented in the class Sesame. When working in the MNE–

Python framework the latter class has to be instantiated bymeans of

the function mne.prepare_sesame; otherwise, if SESAMEEG

is used as a standalone software, it has to be instantiated directly.

Calling the method apply_sesame on the Sesame instance

then applies SESAME on the given M/EEG data and computes

point estimates from the posterior distribution.

SESAME output can be visualized in multiple ways by means of

the following built-in methods:

• plot_source_number plots the posterior probability of

the number of sources p(N = i | y) as either a pie chart or a

bar plot;

• plot_source_amplitudes plots the amplitude of the

estimated sources as function of time;

• plot_sources plots the posterior probability of source

locations p(R | y) and the estimated sources. By default,

these quantities are visualized on the cortical surface or

superimposed on the MRI image when working within the

MNE–Python framework, and as a PyVista (Sullivan and

Kaszynski, 2019) PolyData object otherwise.

The entire source model analysis can be saved into and loaded

fromHierarchical Data Format (HDF) files by means of the built-in

methods save_h5 and io.read_h5.

Regarding the software architecture, SESAMEEG consists of

the modules sesame.py, emp_pdf.py, particles.py and

dipoles.py, and also comprises several subpackages:

• sesameeg.io implements functionality to save and load

SESAMEEG output;
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• sesameeg.viz implements several functions to visualize

SESAMEEG output;

• sesameeg.mne implements functionality to interface with

MNE–Python objects;

• sesameeg.metrics implements the metrics Goodness

of Fit (GOF), Optimal subpattern assignment (OSPA)

(Schuhmacher et al., 2008), Map Localization Discrepancy

(MLD) and Spatial Dispersion (SD) (Luria et al., 2020).

GOF provides information on how well the reconstructed

electromagnetic field fits the measured data, while SD

quantifies the spatial dispersion of each cortical map and thus

the uncertainty of the reconstruction. By default, GOF and SD

are evaluated and printed at the end of each run of SESAME.

All the four metrics help in quantifying the performance of

SESAME whenever the ground truth is known.

• sesameeg.utils implements a number of utility

functions. These include estimate_noise_std, which

estimates the standard deviation σǫ as the 20% of the

analyzed signal peak and estimate_dip_mom_std,

which estimates the hyper-parameter σq from both the lead

field and the data.

2.2.2 SESAMEEG MATLAB
The Matlab version of SESAMEEG is available at https://

github.com/pybees/sesameeg_MATLAB. The documentation,

which comes with an example script, can be found at https://

pybees.github.io/sesameeg_MATLAB/.

The code is function oriented: SESAME is run by calling

the inverse_SESAME function, taking as input the lead field

matrix, the data matrix and the source space matrix as well

as a configuration structure containing optional configuration

parameters; the output of inverse_SESAME is a structure

containing analysis parameters and representations of the posterior

probability distribution; the essential information can be visualized

by the inverse_SESAME_viewer function which shows both

the posterior probability distribution for the number of sources and

the cortical probability map.

A Brainstorm plugin is also available at https://github.com/

pybees/sesameeg_MATLAB/tree/main/Brainstorm in the form of

the two scripts process_sesame and process_posterior:

the former runs SESAME with the inputs that have been set in

the Pipeline editor GUI (Figure 2); the latter takes the posterior

distribution (which is the output of process_sesame) in input

and computes point estimates.

As detailed in the Brainstorm tutorial on creating new

processes (https://neuroimage.usc.edu/brainstorm/Tutorials/

TutUserProcess), the provided scripts must be copied into the

Brainstorm user folder in order to make SESAMEEG available in

the pipeline editor menus.

2.2.3 Commercial version: BESA
SESAME is also implemented in the commercial CE-marked

software package BESA Research version 7.0 and higher. While

not being substantially different from its open-source counterparts,

SESAME in BESA has the added value of being part of a complete,

user friendly software for EEG andMEG data analysis. The user can

FIGURE 2

Pipeline editor GUI of Brainstorm calling the SESAME algorithm. The

first process (SESAME) runs the algorithm in the selected time

window, with the optional input parameters. The output of SESAME
may be the input of the Plot Sources process which computes

dipole estimates from the posterior distribution.

analyze any data segment of EEG, MEG, or combinedM/EEG data.

Unlike in the open-source packages, the baseline interval is used

to estimate the noise variance. Like in the open-source packages,

parameters for noise and signal estimation, as well as hyper-prior

usage can be adjusted by the user; spatially non-uniform priors

can be set additionally, e.g., by reading in other modality data like

fMRI or by running a different distributed source reconstruction

method prior to invoking the SESAME algorithm. The posterior

probability map is displayed in a 3D viewer. The user can browse

through detected maxima in the map, and seed discrete sources

from those, e.g. to determine the precise temporal activation

pattern. The computation time depends on the complexity of

the probability distribution. Figure 3 shows the application to an

averaged EEG segment of inter-ictal epileptic discharges that had

several activation foci. For this data set, computation with default

parameters (using hyper-priors, perform 50 iterations) took 15

seconds on a Windows laptop with Intel Core i9 processor (2.4

GHz) and 8 cores.

3 Results

The present Section showcases the application of SESAMEEG

in source modeling analyses from M/EEG experimental datasets.

The main focus of this Section is on the presentation and

interpretation of SESAME output, particularly how this is affected

by the choice of the noise standard deviation parameter. For

examples concerning the benefits of using of non-uniform
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FIGURE 3

SESAME implementation in the BESA software applied to an averaged EEG segment of inter-ictal epileptic discharges. (A) SESAME runs through

several iterations, converging to the most likely posterior map. (B) After completion, the user can browse through the maxima. (C) Sources can be

seeded from maxima to examine the temporal activation pattern. (D) display of model, residual, and global field power after the SESAME-informed

dipole solution was created.

spatial priors we refer to Viani et al. (2022), while for an

example of application in the frequency domain we refer to

Luria et al. (2019).

3.1 MEG experimental data

Figures 4A, B portray experimental MEG data consisting in

the average evoked response to auditory stimuli presented to the

left ear. The description of the entire experiment can be found in

Gramfort et al. (2013a,b) andwill not be repeated here. Data and the

forward solution are freely available in the sample open dataset

which comes with the MNE-Python package.

In this Section, we exploit these data to conduct a threefold

analysis with SESAMEEG Python: we first show how SESAME

reconstructs the brain activity when default values are used as input

parameters; then we explore how the choice of the noise standard

deviation influences the obtained solution in terms of both the

number and the location of the estimated dipoles; finally we present

an example in which SESAME finds two alternative scenarios with

non-negligible probabilities.

We extract the topographies from 45ms to 135

ms around the M100 peak and we perform the source

localization running SESAMEEG with its default values

(see Figure 1).

As shown in Figures 4C, D, SESAME identifies, with full

probability, two active dipoles as the generators of the measured

field. Figure 4C depicts the cortical probability map on an

inflated brain, with colored dots representing the estimated

dipole locations, one in the right auditory cortex and the other

contralateral very near to the auditory cortex. The posterior

distribution looks sharply peaked around the estimated loci,

which holds the information of a very small uncertainty in

the reconstruction. We stress the fact that this map is distinct

from an intensity map, as it is solely associated with the

probability of the source locations. Figure 4D shows the estimated

source amplitude time courses, with the same color code as in

Figure 4C: the source located in the right hemisphere activates

before the other, with a peak to peak latency difference between

the cortices for the M100 activity that is quantified in 17

ms. The estimated source configuration is therefore fairly in

line with the literature (Kaiser et al., 2000; Gramfort et al.,

2013b).

The whole script can be found in the documentation example

gallery. For this data set, computation with the default parameters

took 79 seconds on a Linux laptop with Intel Core i7 processor (3.3

GHz) and 8 cores.
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FIGURE 4

Top row: average evoked response to auditory stimuli presented to the left ear as recorded by MEG magnetometers (A) and gradiometers (B); the

vertical blue translucent rectangle denotes the time window from 45ms to 135ms analyzed by SESAME. Bottom row: Reconstructed source

configuration. (C) shows a pie chart indicating 100% probability of the 2-dipole configuration, and the cortical probability map on an inflated brain,

with colored dots representing the estimated dipole locations; preserving the same color code, the estimated source amplitude time courses are

plotted in (D).

We now want to show the impact of the noise standard

deviation parameter on the solution, as discussed in Section

2.1.3. To do so, we modify the analysis setting by explicitly

underestimating and overestimating the parameter value

with respect to SESAMEEG’s default. We present the results

in Figure 5.

In the top row the parameter value has been underestimated as

the 6.5% of the maximum measured magnetic field. The estimated

number of sources is six, with negligible probability assigned to

other configurations. This result is in line with Section 2.1.3: when

underestimating the noise standard deviation, SESAME has to

introduce additional sources in order to explain finer details of the

data. In this case, each of the two sources of Figure 4 is practically

split into three components.

In the bottom row the parameter value has been overestimated

as the 65% of the data peak. The estimated number of sources is one,

again with negligible probability assigned to other configurations.

This result is in line with Section 2.1.3 too: as lesser fit is required

with the data, the estimated solution is simpler, the location is more

uncertain and the estimated source time course weaker. Of the two

sources of Figure 4 only the stronger one has survived.

In Figure 6 we finally present a case where SESAME provides

two alternative solutions with non-negligible probabilities.

This output was obtained by setting the noise standard

deviation as the 64% of the data peak, i.e., slightly smaller

than the value used in Figures 5C, D. We happen to fall in

a borderland in which both the one dipole configuration

and the two dipoles configuration can possibly explain the

measured field: the most probable solution clearly resembles that

of Figure 5; however, with a 20% of probability, SESAME

consider an alternative scenario more similar to that of

Figure 4, even if the spatial localization is more uncertain in

this case.

We stress the fact that being able to automatically provide

information about the existence of alternative solutions and

characterize their relative probabilities is an asset of SESAME

which, to the best of our knowledge, is not provided by other

inverse solvers that typically limit their output only to the most

probable source configuration.

3.2 EEG experimental data

Figure 7A shows the average of multiple Interictal Epileptiform

Discharges (IED) as recorded by a 128 channels EEG and

acquired in a patient who suffered from focal epilepsy. Data are

part of a Brainstorm tutorial dataset (https://neuroimage.usc.edu/

brainstorm/Tutorials/Epilepsy) and we refer the reader therein for

a thorough clinical description. For application of SESAME we

built a BEM forward model using OpenMEEG (Gramfort et al.,

2011) with three compartments and standard conductivities (scalp

1, skull 0.0125, brain 1).

We perform a source modeling analysis by means of the

Brainstorm plugin of SESAMEEG. Referring to the Pipeline editor

Frontiers inHumanNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1359753
https://neuroimage.usc.edu/brainstorm/Tutorials/Epilepsy
https://neuroimage.usc.edu/brainstorm/Tutorials/Epilepsy
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Luria et al. 10.3389/fnhum.2024.1359753

FIGURE 5

(A–D) SESAME source modeling results from the same data portrayed in Figure 4, with di�erent values of σǫ . Top row: Parameter value

underestimated as the 6.5% of the maximum measured magnetic field. Bottom row: Parameter value overestimated as the 65% of the data peak. Left

column: cortical probability maps, with colored dots representing the estimated dipole locations. Right column: the estimated source amplitudes.

FIGURE 6

(A–D) Alternative SESAME solutions from the same data portrayed in Figure 4, with σǫ set to the 64% of the data peak.
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FIGURE 7

(A) EEG experimental data consisting in the average of multiple IEDs

acquired in a patient who su�ered from focal epilepsy; the vertical

blue translucent rectangle denotes the time window from -11ms to

0ms analyzed by SESAME. (B) Cortical probability map which

indicates that the irritative zone is probably contained within the

superior frontal gyrus.

GUI depicted in Figure 2, we select the time window from -11ms to

0ms, we leave the noise standard deviation field empty

so that SESAMEEG automatically estimates the parameter value

as the 20% of the analyzed signal peak and we run the SESAME

process using 100 Monte Carlo samples.

The resulting cortical probability map shown in Figure 7B

indicates that SESAME localizes the irritative zone in the superior

frontal gyrus with the estimated epileptic focus in the left

hemisphere. This agrees with the clinical history of the patient

who, after invasive monitoring of the supposed epileptogenic zone

(Dümpelmann et al., 2012), underwent a left frontal resection

which led to an Engel 1A postsurgical outcome with a follow-up

of 5 years.

For this data set, computation with the default parameters took

27 seconds on a Linux laptop with Intel Core i7 processor (3.0 GHz)

and 8 cores.

4 Discussion

Amongst available methods for source localization from

M/EEG data, SESAME represents an unicum: on the one hand,

it outperforms the majority of other localization methods in

terms of reconstruction accuracy with focal sources, as shown

recently (Pascarella et al., 2023); on the other hand, to the best

of our knowledge, it features the unique capability of quantifying

the degree of confidence of the estimated source configuration,

and to provide multiple alternative scenarios whenever the data

are ambiguous.

In this paper we presented SESAMEEG, a set of software

packages written in different languages and easily integrated in

most commonly used software analysis pipelines. In Section 3 we

showed that SESAMEEG provides good reconstructions of neural

activity from both MEG and EEG data when used with the default

parameters. The aim of SESAMEEG is therefore to make the

benefits of Bayesian source modeling of M/EEG data available to

the largest possible audience.

A long way has been gone but there is still just as much to go.

To begin with, the dipolar model SESAME is based on clearly

limits the applicability of the method to experimental conditions in

which the involved sources are highly focused. We are currently

working at a generalization of the method that encompasses the

source extent among the unknown parameters to be estimated.

Successful work in this direction would have the additional benefit

of enabling a quantification of the extent of the source, with its

associated uncertainty.

A second key point in the future development of SESAME

concerns a more detailed modeling of the forward model errors.

While these are currently accounted for as an zero-mean additive

component, more can be done along the lines suggested e.g.,

in Rimpiläinen et al. (2019). Better modeling of this component

would lead to more accurate source reconstruction as well as better

uncertainty quantification.

Finally, as the whole Monte Carlo procedure underlying

SESAME can be a bit heavy particularly when the number

of sources is large, implementation of the code in a parallel

environment exploiting GPUs should be pursued.
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