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Attention deficit/hyperactivity disorder (ADHD) is a neuropsychological disorder 
that occurs in children and is characterized by inattention, impulsivity, and 
hyperactivity. Early and accurate diagnosis of ADHD is very important for 
effective intervention. The aim of this study is to develop a computer-aided 
approach to detecting ADHD using electroencephalogram (EEG) signals. 
Specifically, we  explore a Gabor filter-based statistical features approach for 
the classification of EEG signals into ADHD and healthy control (HC). The EEG 
signal is processed by a bank of Gabor filters to obtain narrow-band signals. 
Subsequently, a set of statistical features is extracted. The computed features 
are then subjected to feature selection. Finally, the obtained feature vector is 
given to a classifier to detect ADHD and HC. Our approach achieves the highest 
classification accuracy of 96.4% on a publicly available dataset. Furthermore, 
our approach demonstrates better classification accuracy than the existing 
methods.
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1 Introduction

On a global scale, it is estimated that approximately 5% of children are affected by attention 
deficit hyperactivity disorder (ADHD) (Song et  al., 2021), one of the most common 
heterogenous disorders affecting children, characterized by inattention, impulsiveness, and 
hyperactivity. Children with ADHD have an adverse impact behavioral patterns, particularly 
in education and interpersonal growth, it may even extend into adulthood (Altınkaynak et al., 
2020). According to Xu et al. (2018) and TaghiBeyglou et al. (2022), individuals with ADHD 
spanning from childhood to adulthood often experience challenges in psychosocial and 
neuropsychological functioning. Untreated ADHD leads to worse social and professional 
functioning, a larger chance of comorbid, and a higher risk of serious depressive and anxiety 
disorders (American Psychiatric Association, 2013). Therefore, early detection and timely 
therapeutic intervention are of essential importance in preventing the severity of ADHD 
in children.

Traditionally, the diagnostic assessment of ADHD in children is conducted by psychiatrists 
through interviews with parents and/or the child. Manual diagnosis can be subjective, and this 
evaluation process is often time-consuming, demands a high level of medical expertise, and 
can be prone to error in certain cases (Khare and Acharya, 2023). In recent years, quantitative 
techniques such as brain signaling examinations have been conducted to establish a diagnosis.

Researchers have been utilizing many neuroimaging techniques to diagnose ADHD, some 
of them are magnetoencephalography (MEG) (Hamedi et al., 2022), magnetic resonance 
imaging (MRI) (Zhou et al., 2021), and electroencephalogram (EEG) (Allahverdy et al., 2016). 
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However, some of these approaches, such as MEG, are radioactive, 
bulky, and costly (Khare and Acharya, 2023). On the other hand, EEG 
signals are portable and cost-effective solutions for ADHD detection 
(Maniruzzaman et al., 2023), and they have also been used in various 
applications (Kumar et al., 2015; Khare and Bajaj, 2020).

Over the last decade, researchers have extracted various linear, 
non-linear, and morphological features from time (Yang et  al., 
2016; Khaleghi et al., 2020; Maniruzzaman et al., 2023), frequency 
(Mueller et al., 2010; Kaur et al., 2019; Khaleghi et al., 2020), and 
time-frequency (Öztoprak et al., 2017; Altınkaynak et al., 2020; Joy 
et  al., 2022) domain-based methodologies. Altınkaynak et  al. 
(2020) utilized event-related potentials (ERPs), while participants 
engaged in an auditory oddball task, which resulted in longer P300 
latency for ADHD patients and smaller P300 amplitude for healthy 
control (HC). Maniruzzaman et al. (2023) performed a channel 
selection method and extracted various times, morphological, and 
non-linear features for the classification of ADHD and HC. The 
approach in Khaleghi et al. (2020) extracted various morphological, 
non-linear, time, frequency, and time–frequency-based features; 
among these non-linear features (Petrosian and Katz fractal 
dimensions, Lyapunov exponent, approximate entropy, and 
Lempel-Ziv complexity) extracted from EEG, provides a good 
quantitative tool in the detection of ADHD. Similarly, Kaur et al. 
(2019) extracted time-domain features, namely morphological, 
complexity features (power of scale-freeness and graph index 
complexity), and frequency-domain features such as Katz and 
Higuchi algorithm for diagnosis. Chow et al. (2019) developed an 
approach based on Hjorth mobility (M), and the results indicated 
that M values in the control group were significantly higher than 
the ADHD individuals. In the frequency domain, the power of 
different EEG frequency bands was used to diagnose ADHD 
(Altınkaynak et al., 2020). It indicates increased theta power and a 
higher theta/beta ratio in ADHD patients compared to HC, but the 
use of non-linear features outperformed frequency band features 
(González, 2022). Altınkaynak et  al. (2020) investigated the 
entropy of the discrete wavelet transform (DWT) of auditory 
evoked potentials for the classification between ADHD and HC, 
and it exhibited significantly different values in both groups. 
Similarly, Castro-Ospina et al. (2012) investigated the occurrence 
of low-frequency bands computed through wavelets and empirical 
mode decomposition (EMD) to find the differences in the patterns 
of ERP waves between ADHD patients and control subjects. Tor 
et al. (2021) computed autoregressive modeling coefficients and 
relative wavelet energy from EMD and DWT for the detection 
of ADHD.

Since the EEG signal is characterized by non-stationary behavior 
and a diverse range of time-frequency components, using Gabor filters 
can be an advantage for discovering the signal's descriptive features. 
In recent years, researchers have prominently used Gabor filters in 
image processing (Hu et  al., 2020), and computer vision-based 
applications (Oppong et al., 2022). In addition, Gabor filter-based 
features have been found to be effective in signal classification tasks 
(Kumar et al., 2015) and even integrated into deep learning models 
(Barshooi and Amirkhani, 2022; Hammouche et al., 2022; Khalifa 
et  al., 2022; Oppong et  al., 2022). Despite these advantages, the 
potential of the Gabor filter has not been explored for ADHD 
detection. Therefore, in this paper, we explore the bank of Gabor filters 
for ADHD detection.

To the best of our knowledge, there has been no prior investigation 
that evaluated Gabor filter-based features for the classification of EEG 
signals into ADHD and HC.

The following contributions made by our study are:

 1. Explored Gabor-based statistical features for the classification 
of EEG signals into ADHD and HC.

 2. Our approach has been validated using 10-fold cross-validation 
and an 80:20 train-test split.

 3. Our approach has outperformed the existing approaches in the 
detection of ADHD.

This paper is organized as follows: Section II explains the 
experimental procedure for ADHD detection. In Section III, Results 
and Discussion is presented, and finally, the conclusions are provided 
in Section IV.

2 Methodology

In this section, Figure 1 represents the flowchart of the proposed 
approach. First, the EEG signals are processed using the bank of 
Gabor filters. This process converts a non-stationary EEG signal to a 
narrow-band signal. From each of those narrow-band signals, 
we extract a set of statistical features. Finally, the features extracted are 
concatenated and fed to classifiers to classify EEG signals into ADHD 
or HC. The description of each step is given below.

2.1 Gabor filters

The Gabor filter acts as a bandpass filter and provides good time-
frequency localization (Gabor, 1946). Furthermore, using a bank of 
Gabor filters for the decomposition of signal makes it easier to extract 
discriminating information from a particular frequency range. The 
mathematical representation of the Gabor filter is as follows:
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where fc- central frequency,
σ – Standard deviation of the Gaussian function.
The response z t( ) is computed through the convolution of the 

input signal y t( ) with the Gabor function g t( ) as described by 
Equation (1). Finally, the magnitude of the Gabor response will 
be determined for feature extraction.

2.2 Statistical features

The feature extraction process is crucial in the classification 
process, as the choice of features significantly impacts the 
performance of the classification. Local binary pattern (LBP)-based 
histogram features are commonly used to extract features from the 
responses of Gabor filters (Kumar et al., 2015; Samiee et al., 2017; 
Sunil Kumar and Kanhangad, 2017; Kumar and Kanhangad, 2018). 
The length of the histogram (feature length) is 256. As we  are 
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conducting multichannel EEG signals (19 channels), extracting the 
traditional features will lead to a high-dimensional feature vector. 
Therefore, we have extracted four statistical features from each of 
the Gabor filter responses. In our study, statistical features such as 
entropy, standard deviation, skewness, and kurtosis were extracted 
from the magnitude of the response z t( ). Mathematical equations 
for the aforementioned features can be found in Sunil Kumar and 
Kanhangad (2017).

2.3 Feature concatenation and 
classification

In this process, the feature vector is constructed through the 
concatenation of statistical features extracted from z t( ) across all the 
channels. To classify the EEG segment into ADHD and HC, the 
feature vector is fed into classifiers. In our approach, we have used two 

classifiers; namely support vector machine (SVM) (Maniruzzaman 
et al., 2023) and k-nearest neighbors (k-NN) (Altınkaynak et al., 2020).

2.4 Feature selection

Feature selection (FS) is important for improving the performance 
of predictive models by eliminating redundant elements in a dataset, 
thereby maintaining only the most important features. In our study, 
we explored the t-test (Maniruzzaman et al., 2023) and the chi-square 
test (Rangarajan and Mahanand, 2014) to decrease the length of the 
feature vector and improve the accuracy (Acc) of classification.

The algorithm of our proposed approach is given below.

2.4.1 Algorithm of our proposed approach
Step 1: process the multichannel EEG segment with a bank of 

Gabor filters.

Feature 
Concatenation

Feature 
Selection

Classifier

Statistical
Features

Statistical
Features

Statistical
Features

Gabor Filter 1 Gabor Filter 2 Gabor Filter 3

EEG Segment

ADHD HC

FIGURE 1

Block diagram of proposed Gabor filter-based ADHD detection approach.
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Step  2: compute statistical features from each of the 
Gabor responses.

Step 3: concatenate the features corresponding to each individual 
channel to get the final feature vector. Apply the FS technique to 
reduce the length of the feature vector.

Step 4: train the classification models, such as k-NN and SVM, 
and evaluate their performance.

3 Experimental results

This section presents a comprehensive description of the dataset, 
followed by Results and Discussion.

3.1 Dataset

In our study, a publicly available dataset (Nasrabadi et al., 2020) 
has been utilized for detecting ADHD from EEG signals. The EEG 
signals acquired in this dataset include 61 children diagnosed with 
ADHD and 60 HC, and all the participants were within the age range 
of 7 to 12 years. The diagnostic criteria for the ADHD group with 
confirmation, are based on psychiatric evaluation in accordance with 
DSM-IV guidelines (American Psychiatric Association, 2013). 
Notably, the ADHD children had received Ritalin treatment for up to 
6 months. The control group was free of psychiatric disorders, 
epilepsy, and high-risk behaviors. EEG recordings were acquired 
according to the 10-20 standard, utilizing 19 channels, and a sampling 
frequency of 128 Hz. In our study, the EEG signal is divided into 
segments with a duration of 30 and 60 s. For further information 
about the dataset, refer Nasrabadi et al. (2020).

3.2 Results

To validate the performance of our approach, the following 
metrics are used namely, Acc, specificity (Sp), and sensitivity (Sn) in 
which Sp denotes the capacity to correctly categorize normal data, 
while Sn signifies the ability to identify ADHD-related events, whereas 
Acc is defined as the ratio of correctly classified segments to the total 
number of segments in the test set.

In order to study the influence of the number of Gabor filters, 
we have performed our experiments by selecting the number of Gabor 
filters as 3, 4, and 5. The central frequency ( fc) and standard deviation 
(σ ) of the individual filters are selected to cover the range of 
frequencies extending from 1 to 64  Hz (half of the sampling 
frequency). These parameters are shown in Table 1. Figure 2 shows an 
exemplary plot of the raw EEG signals and magnitude response of the 

Bank of Gabor filters with five filters (the parameters involved in each 
of these Gabor filters is shown in Figure 2).

To show the effectiveness of our approach, we have performed two 
sets of experiments: in the first set, we  conducted 10-fold cross-
validation, and in the second set, we divided the entire dataset into 
80:20 train-test data.

The performance metrics obtained are shown in Tables 2–7. More 
specifically, Tables 2–4 show the results obtained when an EEG 
segment of 30 s is used, while Tables 5–7 show when an EEG segment 
of 60 s is used for classification purposes.

Tables 2–4, it is evident that our approach performs better when 
the number of Gabor filters is set to 3 or 5, while the performance of 
the approach was comparatively inferior when the number of Gabor 
filters is set to 4 for 30-s duration. It can also be observed from our 
results that the classification improved when FS was included at the 
same time, and the number of features performed was reduced.

To understand the impact of segment length on the performance 
of the proposed approach, we  performed the experiments by 
segmenting the EEG signals for 60 s. These results are shown in 
Tables 5–7. It can be observed from Tables 5–7 that the proposed 
approach achieved a maximum Acc of 90.9% when a 60-s segment is 
used. The performance is inferior when compared to the performance 
achieved with 30 s of EEG data.

3.3 Performance comparison

The performance comparison of our approach with existing 
approaches is shown in Table 8. Our approach has achieved better 
performance than the existing approaches in Chen et al. (2019), 
Altınkaynak et al. (2020), Ekhlasi et al. (2021), Kim et al. (2021), 
Parashar et al. (2021), Maniruzzaman et al. (2022), and Alim and 
Imtiaz (2023). The approaches in Chen et al. (2019), Altınkaynak 
et al. (2020), and Kim et al. (2021) have performed experiments on 
different datasets, while the approaches in Ekhlasi et al. (2021), 
Parashar et al. (2021), Maniruzzaman et al. (2022), and Alim and 
Imtiaz (2023) have performed experiments on the same dataset as 
ours. Chen et al. (2019) performed four distinct methods: relative 
spectral power, spectral power ratio, complexity analyses, and 
bicoherence for resting-state EEG feature extraction. The classifier 
constructed by selecting features from all four methods obtained an 
Acc of 85% on data acquired from 108 subjects. Kim et al. (2021) 
investigated the mismatch negativity (MMN) features, exploring 
both sensor-level attributes such as amplitude, latency, and source-
level characteristics across various brain regions and achieved an 
Acc of 81%. It should be noted that authors have collected data from 
only 79 subjects. Altınkaynak et  al. (2020) analyzed wavelet, 
non-linear (Higuchi algorithm), and morphological features (P300 
latency and amplitude parameters) by using different classifiers and 
obtained the highest Acc of 91.3%. Parashar et  al. (2021) used 
various combinations of channels from different brain regions 
(frontal, central, occipital, and parietal) that are directly fed to 
classifiers for classification purposes. When considering all channels 
of the right hemisphere, the authors reported an Acc of 84%. Alim 
and Imtiaz (2023) used EEG linear features from the four sub-bands 
and achieved an Acc of 94.2%. Ekhlasi et al. (2021) obtained the 
effective connectivity matrices (ECMs) of each individual by 
directed phase transfer entropy (dPTE) between each pair of 

TABLE 1 Gabor filter parameters used in our approach.

No. of Gabor 
filters

Central frequency Standard 
deviation

3 12.8, 25.6, 38.4 10, 10, 5

4 12.8, 25.6, 38.4, 51.2 10, 10, 10, 10

5 10.24, 20.48, 30.72, 40.96, 

51.2

12, 12, 12, 12, 10

https://doi.org/10.3389/fnhum.2024.1369862
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Sathiya et al. 10.3389/fnhum.2024.1369862

Frontiers in Human Neuroscience 05 frontiersin.org

electrodes, achieving an Acc of 89.7% with the selected features of 
the effective connectivity vector (ECV). Maniruzzaman et al. (2022) 
extracted morphological and time-domain features such as absolute 
amplitude, positive area, negative area, total area, peak-to-peak, 
mean, median, energy, power, standard deviation, skewness, 
kurtosis, coefficient of variation, H parameter activity, mobility, and 
complexity of EEG signals and obtained an Acc of 94.2%. However, 
our Gabor filter-based approach achieved the highest classification 
Acc of 96.4 %, outperforming the existing approaches. The superior 
performance of our approach is due to the efficacy of the Gabor 
filter in time-frequency domain localization (Gabor, 1946). 
Extracting features from the narrow-band signals (obtained after 
processing through the bank of Gabor filters) may lead to an 
effective time-frequency representation of EEG signals, which could 

be  the possible reason for its superior performance. The key 
advantage of our approach is that it is simple yet effective for 
detecting ADHD. Whereas, the limitation of our approach is that 
the number of features increases as the number of Gabor 
filters increases.

4 Conclusion

In this paper, we have proposed an automated approach for the 
detection of ADHD using Gabor filter-based statistical features. Our 
methodology showed superior performance compared to the existing 
approaches to ADHD detection, signifying its potential as an efficient 
screening tool. However, this approach needs to be validated on a 

FIGURE 2

Plot of (A) Raw EEG signal. (B–F) Magnitude response of each of the Gabor filters in the filter bank.

TABLE 2 Performance metrics obtained with an EEG segment of 30 s and three Gabor filters.

Validation Classifier FS Acc (%) Sn (%) Sp (%) No. of features

10-fold

SVM

Without FS 86.1 83.26 88.25 228

Chi-square 85.9 72.12 89.52 120

t-test 84.1 79.18 87.93 80

k-NN

Without FS 89.5 84.89 92.69 228

Chi-square 91.6 88.57 93.96 120

t-test 88 83.67 91.42 80

80:20

SVM

Without FS 77.7 80.61 90.47 228

Chi-square 89.3 79.59 89.68 140

t-test 81.2 73.46 86.50 83

k-NN

Without FS 88.4 82.65 92.06 228

Chi-square 92.9 86.73 93.25 140

t-test 90.2 70.08 91.26 83
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TABLE 5 Performance metrics obtained with an EEG segment of 60 s and three Gabor filters.

Validation Classifier FS Acc (%) Sn (%) Sp (%) No. of features

10-fold

SVM

Without FS 82.1 75 87.5 228

Chi-square 81.7 76.04 85.95 45

t-test 77.7 69.79 83.59 35

k-NN

Without FS 76.8 68.75 82.81 228

Chi-square 77.7 67.70 85.15 45

t-test 86.2 79.16 91.04 35

80:20

SVM

Without FS 75 70.12 87.37 228

Chi-square 75 67.53 87.37 45

t-test 79.5 68.83 84.46 35

k-NN

Without FS 86.4 59.74 81.55 228

Chi-square 90.9 67.53 86.04 45

t-test 88.6 67.53 91.26 35

The bolded values indicate the classifier models with the highest accuracy scores among the ones presented in each table.

TABLE 4 Performance metrics obtained with an EEG segment of 30 s and five Gabor filters.

Validation Classifier FS Acc (%) Sn (%) Sp (%) No. of features

10-fold

SVM

Without FS 95.2 93.46 96.49 380

Chi-square 94.5 93.87 94.90 85

t-test 95.5 93.46 97.13 148

k-NN

Without FS 92.7 91.83 93.31 380

Chi-square 93.4 89.79 96.17 85

t-test 93.4 89.79 96.17 148

80:20

SVM

Without FS 94.6 88.77 95.23 380

Chi-square 96.4 89.79 92.85 85

t-test 88.4 75 73.71 79

k-NN

Without FS 93.7 86.22 92.85 380

Chi-square 91.9 89.79 94.44 85

t-test 88.6 77.04 91.26 79

The bolded values indicate the classifier models with the highest accuracy scores among the ones presented in each table.

TABLE 3 Performance metrics obtained with an EEG segment of 30 s and four Gabor filters.

Validation Classifier FS Acc (%) Sn (%) Sp (%) No. of features

10-fold

SVM

Without FS 95.3 94.69 95.85 304

Chi-square 93.7 92.24 94.90 85

t-test 96.1 95.10 96.81 144

k-NN

Without FS 93.4 91.02 95.22 304

Chi-square 93.9 81.22 86.62 85

t-test 95.5 94.28 96.49 144

80:20

SVM

Without FS 93.7 90.30 96.03 304

Chi-square 95.5 91.83 94.44 85

t-test 94.6 93.87 95.63 159

k-NN

Without FS 93.7 89.29 94.04 304

Chi-square 92.8 87.75 95.23 85

t-test 96.4 91.83 96.42 159

The bolded values indicate the classifier models with the highest accuracy scores among the ones presented in each table.

https://doi.org/10.3389/fnhum.2024.1369862
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Sathiya et al. 10.3389/fnhum.2024.1369862

Frontiers in Human Neuroscience 07 frontiersin.org

TABLE 7 Performance metrics obtained with an EEG segment of 60 s and five Gabor filters.

Validation Classifier FS Acc (%) Sn (%) Sp (%) No. of features

10-fold

SVM

Without FS 84.4 80 87.69 380

Chi-square 80.4 73.73 84.61 60

t-test 84 75.78 90 79

k-NN

Without FS 78.7 67.36 86.92 380

Chi-square 84 77.89 88.46 60

t-test 85.8 76.84 92.30 79

80:20

SVM

Without FS 82.2 72.36 89.42 380

Chi-square 86.7 67.73 85.57 50

t-test 86.7 80.26 85.57 79

k-NN

Without FS 77.8 59.21 86.53 380

Chi-square 75.6 64.47 87.5 50

t-test 86.7 67.10 82.69 79

TABLE 6 Performance metrics obtained with an EEG segment of 60 s and four Gabor filters.

Validation Classifier FS Acc (%) Sn (%) Sp (%) No. of features

10-fold

SVM

Without FS 85.3 80 89.23 304

Chi-square 79.6 71.57 85.38 74

t-test 86.2 81.05 90 100

k-NN

Without FS 77.8 63.31 86.15 304

Chi-square 80 71.57 86.15 74

t-test 82.2 72.63 89.23 100

80:20

SVM

Without FS 84.4 76.31 84.61 304

Chi-square 86.7 78.94 87.5 100

t-test 88.9 80.26 87.5 76

k-NN

Without FS 86.7 65.78 85.57 304

Chi-square 75.6 77.63 87.5 100

t-test 80 71.05 90.38 76

TABLE 8 Performance comparison with existing approaches.

Author Dataset Feature extraction Classifier Acc

Chen et al. (2019) 108
Power spectral features are used with SVM for 

classification.
SVM 84.59%

Kim et al. (2021) 79
Mismatch negativity (MMN) features as biomarkers for 

classification.
– 81.0%

Altınkaynak et al. (2020) 46 Wavelet-based features SVM, k-NN RF, AB, MLP, NB, LR 91.3%

Parashar et al. (2021) 120 Different combinations of the feature channels AB, RF, SVM 84%

Alim and Imtiaz (2023) 120 PCA-based features to train a Gaussian SVM model. SVM 94.2% (80:20)

Ekhlasi et al. (2021) 121 Directed Phase Transfer Entropy ANN 89.7%

Maniruzzaman et al. (2022) 121
Morphological

Time-domain
SVM, k-NN, MLP, LR 94.2%

Present study 121
Gabor filter-based features were employed as features 

with SVM and k-NN.
SVM, k-NN

96.1% (80:20), 

95.5% (10-fold).

SVM: support vector machine; AB: Ada boost; RF: random forest; ANN: artificial neural network; k-NN: k-nearest neighbor; MLP: multilayer perceptron; LR: logistic regression; NB: naïve Bayes. 
The bolded values indicate the classifier models with the highest accuracy scores among the ones presented in each table.
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larger dataset before being used for any clinical purposes. As a part of 
our future study, we plan to explore deep-learning approaches for 
ADHD detection. Furthermore, we would like to explore Gabor filters 
for applications such as the classification of sleep stages and 
schizophrenia detection, which involves the classification of 
EEG signals.
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