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Recording the tactile P300 with 
the cEEGrid for potential use in a 
brain-computer interface
M. Eidel *, M. Pfeiffer , P. Ziebell  and A. Kübler 
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Brain-computer interfaces (BCIs) are scientifically well established, but they 
rarely arrive in the daily lives of potential end-users. This could be in part because 
electroencephalography (EEG), a prevalent method to acquire brain activity for 
BCI operation, is considered too impractical to be applied in daily life of end-
users with physical impairment as an assistive device. Hence, miniaturized EEG 
systems such as the cEEGrid have been developed. While they promise to be a 
step toward bridging the gap between BCI development, lab demonstrations, 
and home use, they still require further validation. Encouragingly, the cEEGrid has 
already demonstrated its ability to record visually and auditorily evoked event-
related potentials (ERP), which are important as input signal for many BCIs. With 
this study, we aimed at evaluating the cEEGrid in the context of a BCI based 
on tactually evoked ERPs. To compare the cEEGrid with a conventional scalp 
EEG, we recorded brain activity with both systems simultaneously. Forty healthy 
participants were recruited to perform a P300 oddball task based on vibrotactile 
stimulation at four different positions. This tactile paradigm has been shown 
to be feasible for BCI repeatedly but has never been tested with the cEEGrid. 
We found distinct P300 deflections in the cEEGrid data, particularly at vertical 
bipolar channels. With an average of 63%, the cEEGrid classification accuracy 
was significantly above the chance level (25%) but significantly lower than the 
81% reached with the EEG cap. Likewise, the P300 amplitude was significantly 
lower (cEEGrid R2–R7: 1.87  μV, Cap Cz: 3.53  μV). These results indicate that a 
tactile BCI using the cEEGrid could potentially be operated, albeit with lower 
efficiency. Additionally, participants’ somatosensory sensitivity was assessed, but 
no correlation to the accuracy of either EEG system was shown. Our research 
contributes to the growing amount of literature comparing the cEEGrid to 
conventional EEG systems and provides first evidence that the tactile P300 can 
be recorded behind the ear. A BCI based on a thus simplified EEG system might 
be more readily accepted by potential end-users, provided the accuracy can 
be substantially increased, e.g., by training and improved classification.
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1 Introduction

Electroencephalography (EEG) is a versatile and accessible tool to record brain activity 
non-invasively from the scalp and is therefore widely used in psychology, neuroscience and 
medicine. One field of application particularly relevant for the present study are EEG based 
brain-computer interfaces (BCIs), a technology that allows users to interact with the 
environment without requiring muscular control.
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In a BCI, brain activity is acquired with EEG or similar technology 
and translated into commands by specialized machine learning 
algorithms (for a review, see Lotte et al., 2018). This allows access to a 
variety of functions, often for communication and device control 
(Vaughan, 2003; Kübler, 2019; Saha et al., 2021). Many BCI paradigms 
rely on event-related potentials (ERPs) such as the P300 as input signal 
to determine the user’s intent (Polich and Margala, 1997; McFarland, 
2020). P300 BCIs are based on the oddball-paradigm (Donchin et al., 
1978), in which the user has to concentrate on rare and randomly 
occurring “target” stimuli while ignoring frequent “non-target” 
stimuli. Target stimulus rarity and unexpectedness have long been 
considered important factors to elicit large P300 amplitudes in the 
oddball paradigm, though this notion has recently been challenged 
(Verleger and Śmigasiewicz, 2016; Wascher et al., 2020). Generally, 
P300 amplitude and location may vary between individuals, which 
might be due to numerous factors, for example the subject’s age (van 
Dinteren et al., 2018).

The P300 is typically measured at electrode positions Fz, Cz and 
Pz. It appears in the EEG as a positive deflection about 300 ms after 
the target stimulus (Polich, 2007). Thus, it can be used to automatically 
detect which stimulus was attended by the user, which is the basis of 
many BCI approaches.

Due to their independence from voluntary motor control, BCIs 
have the potential to be a valuable assistive tool to restore or enhance 
functions even for patients with severe motor paralysis (Kaufmann 
et al., 2013; McCane et al., 2014; Botrel et al., 2017; Eidel et al., 2021). 
Potential BCI end-users, thus, include people diagnosed with the 
locked-in syndrome (LIS), a state of near-complete paralysis, which can 
manifest in patients with amyotrophic lateral sclerosis, stroke, or other 
conditions (Bauer et  al., 1979; Wolpaw et  al., 2002; Smith and 
Delargy, 2005).

Although there is a considerable need for innovative devices to 
assist patients with severe or even total motor paralysis in their daily 
lives, prospective end-users rarely get the chance to establish BCIs in 
their own home (with a few notable exceptions; for an overview see 
Sellers et al., 2010; Kübler, 2019; Allison et al,. 2020). Thus, a notable 
translational gap remains, despite the fact that BCIs have long been 
proven feasible under laboratory conditions (Kübler, 2013; Kübler 
et al., 2015; Nijboer, 2015). The user-centered approach to BCI design 
has been adapted to evaluate BCI operation in a multimodal way 
(Zickler et al., 2011). It includes measures of efficiency (accuracy) and 
effectiveness (speed in relation to accuracy) of a BCI, but also the 
individual user satisfaction (Choi et al., 2017; Han et al., 2022). Low 
user satisfaction has been suggested as a major contributor to the 
translational gap, as BCI users often report that they were not satisfied 
with certain practical aspects of the EEG hardware. Frequent remarks 
include that setting up the EEG was too difficult for caregivers, the 
EEG cap cumbersome with too many cables, and that the EEG gel in 
the hair was unpleasant (Kübler et al., 2014; Lynn et al., 2016; Eidel 
and Kübler, 2020). On top of that, the EEG cap is often considered as 
too visually prominent and aesthetically unappealing (Zickler et al., 
2011; Hoon Lee et al., 2014).

Notably, there are efforts to alleviate some of these issues, for 
example by developing alternative and more compact EEG systems. 
An extensive study recently confirmed that the auditory N100, MMN, 
P300 and N400 could be  recorded reliably with electrodes placed 
around the ears (Meiser and Bleichner, 2022), despite some expected 
signal loss as compared to standard scalp-EEG positions. In fact, 

specialized ear-EEG systems already exist: Examples include tiny EEG 
sensors that are placed into the concha and outer ear canal (Looney 
et al., 2011; Kidmose et al., 2013) as well as devices that are positioned 
around or behind the ear (Do Valle et  al., 2014), particularly the 
cEEGrid (Debener et al., 2015). The cEEGrid is a semi-disposable, 
flex-printed sensor array of ten Ag/AgCl electrodes per ear (Figure 1 
shows the channel configuration for the right ear). With its c-shape, it 
is simply attached around the ear with double-sided adhesive tape. 
Only a small amount of gel is added onto the electrode surfaces to 
ensure low impedances. This gel is protected from drying out by the 
tape seal around it. Indeed, test subjects wore cEEGrids for several 
hours of normal activity outside of the lab with no substantial decline 
in recording quality (Debener et  al., 2015). A cEEGrid system is 
flexible and can be connected wirelessly, allowing for high mobility 
while being relatively unobtrusive and discreet.

Multiple studies have already described how ERPs, for instance the 
N100, P100 and P300, can be recorded and reliably classified using the 
cEEGrid – sometimes with accuracies statistically on par with those 
from an EEG cap (Debener et al., 2015; Bleichner et al., 2016; Denk 
et al., 2018). Notably, it was found that classification of several ERPs 
worked best at bipolar channels, in particular from electrode pairs 
which have a large inter-electrode distance and are arranged toward the 
origin of the signal of interest (Bleichner et al., 2016). These studies 
used either visual or auditory stimulation to elicit the P300. To our 
knowledge, a tactile P300 has never been recorded with the cEEGrid.

Thus, with the present study, we  aimed at providing a first 
demonstration of a cEEGrid in combination with our tactile BCI 
system (Kaufmann et al., 2014), which was originally developed for 
potential wheelchair control by paralyzed users. Tactile and other 
non-visual P300 paradigms (e.g., auditory BCIs) have already been 
shown to be feasible with conventional scalp EEG recording (Furdea 
et al., 2009; Brouwer and van Erp, 2010; Schreuder et al., 2011; Hill and 
Schölkopf, 2012; Riccio et al., 2012; Kaufmann et al., 2014; Simon et al., 
2015; Baykara et al., 2016; Halder et al., 2016). Importantly, tactile and 
auditory BCIs could pose a valuable alternative for end-users with 
impairment of eyesight or gaze control, who may not be able to operate 
visual paradigms efficiently (Kübler and Birbaumer, 2008; Brunner 
et  al., 2010). Moreover, several studies confirmed the tactile BCI 
modality was feasible for severely impaired, potential end-users with 
LIS (Severens et al., 2014), in one example even during a long-term 
study at the patient’s own home (Eidel et  al., 2021). Although the 
performances of tactile P300 BCIs are usually lower than those of visual 
paradigms (see Eidel and Kübler, 2020 for an overview), we  have 
repeatedly found that training led to significant performance increases 
among healthy participants (Herweg et al., 2016; Eidel and Kübler, 
2020; Ziebell et  al., 2020). Latest evidence further suggested that 
somatosensory sensitivity correlated with accuracy and with 
performance increases across multiple sessions (Eidel and Kübler, 2022).

To summarize, many crucial preconditions for successful use of a 
BCI as an assistive tool for patients have been met, but the translational 
gap remains. It appears that the frequent requests (e.g., Zickler et al., 
2011) for a simpler, less cumbersome and less visible alternative to the 
EEG cap might be fulfilled with the cEEGrid, such that BCIs may 
be more readily implemented and accepted by potential end-users.

With this study, we  aimed to explore whether the cEEGrid 
constitutes a potential option for the home use of a tactile BCI. First, 
however, we  need to further validate the cEEGrid as a device for 
potential tactile P300 BCI control. Thus, we focused on assessing its 
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feasibility in an application focused, tactile BCI scenario built around 
established BCI software, and compared it directly to an established 
cap EEG.

This approach was guided by several hypotheses: Based on 
numerous observations from other modalities, we expected that the 
tactile P300 can be  recorded with the cEEGrid and that ERP 
amplitudes correlate between cEEGrid and scalp EEG (H1).

Secondly, we hypothesized that cEEGrid classification accuracy in 
a typical BCI setting would be significantly above chance level (H2a) 
or even above the 70% criterion for useful BCI control (Kübler et al., 
2001) (H2b). We further expected that classification accuracy would 
not be significantly lower as compared to an EEG cap (H3) (Bleichner 
et al., 2016).

Additionally, we sought to confirm previous observations of a 
correlation between somatosensory sensitivity and classification 
accuracy (H4).

2 Methods

2.1 Participants

Forty healthy participants (P) were invited and completed one 
BCI session. However, two had to be excluded from analysis due to 
bad recording quality at key cEEGrid positions. Another participant 

was excluded because he reported that he did not fully concentrate on 
the tactile stimuli.

The final sample, thus, comprised n = 37 participants (27 female, 
10 male). The age of the participants ranged between 21 and 59 years 
(M = 24.6, SD = 6.2). From three of the participants (P13, P16, and 
P32), a single run each was excluded from cEEGrid analysis due to 
technical issues during the recording. All participants except P1 had 
no prior experience with a tactile BCI. Participants gave written 
informed consent to the procedure and received either a monetary 
compensation of € 10/h or course credits. The study was approved by 
the ethical review board of the Institute of Psychology at the University 
of Würzburg, Germany (GZEK 2013-11) and conducted in accordance 
with the ethical guidelines of the Declaration of Helsinki.

2.2 General session procedure

Participants were seated in front of a monitor and set up with 
tactile stimulation devices. Firstly, they performed a brief 
somatosensory intensity discrimination task. After EEG preparation, 
participants were given an abbreviated demonstration run of the 
paradigm. This was done to give participants an opportunity to get 
used to the unfamiliar tactile stimulation and confirm that they 
understood the procedure, so that they could fully concentrate on the 
task during the first actual run.

FIGURE 1

Hardware setup. On the right ear cEEGrid (version V3), channels R4a and R4b serve as ground and reference, respectively. Left ear channels are named 
analogously (L1, L2 etc.). Also shown is a single C2 tactor (Engineering Acoustic Inc., Casselberry, United States) and the four tactor positions. To 
facilitate stimulus perception, two devices were attached per position (activated synchronously).
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Participants then performed six tactile P300 runs with short 
breaks in between. During a run, all tactor positions were activated 
multiple times in a random sequence. Participants were instructed 
to concentrate only on the current target position indicated on the 
monitor (e.g., by silently counting the target vibrations) and to 
ignore all other stimuli. They were advised to avoid unnecessary 
blinking and other muscular activity. During a run, the target 
position (either front, back, left or right) was pseudo-randomly 
switched after ten vibrations of each tactor. Each body position was 
the target twice per run, without immediate repetitions of the same 
position. Participants received no online feedback of results. After 
six runs, this process resulted in a total of 480 target and 1,440 
non-target trials.

2.3 Stimulation

Vibrotactile stimulation was applied with tactor devices (C2 
tactors; Engineering Acoustic Inc., Casselberry, United States) which 
translated the stimulation provided by BCI2000 into short vibrations 
of 220 ms (vibration frequency: 250 Hz, inter-stimulus interval: 
400 ms). Tactors were positioned at right and left thighs, abdomen 
and upper back of the participants, as in previous studies based on 
this paradigm (e.g., Kaufmann et al., 2014; Eidel and Kübler, 2020), 
since it was assumed that this setup facilitated stimulus discrimination 
due to the relatively large distances between these body positions 
(Brouwer and van Erp, 2010). Figure 1 shows a single C2 tactor and 
an overview of all tactor positions on the body. To minimize possible 
confounding effects, the tactors were adjusted until participants 
reported no perceivable intensity differences between the four 
tactor positions.

2.4 Intensity discrimination

To test whether the participants’ individual tactile sensitivity had 
a predictive function on BCI performance, we implemented a simple 
intensity discrimination task at the beginning of the session, as 
described in Eidel and Kübler (2022) (similar approaches were used 
in Nagarajan et al., 1998; Mahns et al., 2006).

Briefly, participants received an array of various two-stimulus 
trials and had to report whether they perceived an intensity difference 
between the two stimuli. A first reference stimulus was set to 100% 
intensity, whereas the second could be decreased in 5% steps. Stimuli 
pairs were separated by a pause of 500 ms. Pre-recorded tactor noises 
were presented over speakers, such that the participants could not 
hear the actual sounds from the tactor device.

The intensity of a trial was set pseudo-randomly. Typically, very 
similar or extremely different second stimuli were reliably reported as 
such. In between, however, there were intensity ranges in participants’ 
responses were inconsistent after several repetitions of the same trial. 
Those intensities were tested more frequently. Hence, several 
responses across all stimulus intensities were processed to determine 
a threshold value at which a participant could not tell whether the 
second stimulus intensity was equal or lower as compared to 
the reference.

To calculate a sensitivity metric, each participant’s response 
ratio for each stimulus intensity was projected onto a scale from 0 

(always reported as unequal) to 1 (always reported as equal). A 
sigmoidal function was automatically fit to these data (see 
Figure  2), and the intensity value at the response ratio of 0.5 
was extracted.

The sensitivity threshold was thus defined as the intensity value 
(of the second stimulus) that was perceived as equal in 50% of trials. 
The thresholds were subjected to a Pearson correlation test with the 
participants’ offline accuracies.

2.5 EEG recording and preprocessing

Scalp EEG was recorded from twelve passive Ag/AgCl electrodes 
at positions Fz, FC1, FC2, C3, Cz, C4, P3, Pz, P4, O1, Oz, and O2, with 
ground and reference electrodes placed at the left and right earlobes. 
For the cEEGrid system, the area around both ears was cleaned 
thoroughly with alcohol swabs and abrasive gel. A small drop of 
electrolyte gel was added onto the electrode surfaces before both 
cEEGrids were attached. The cEEGrids are semi-disposable. If one was 
being reused, double sided stickers were placed around the electrodes 
for better adhesion. Both cEEGrids were connected to an amplifier 
with an adapter cable.

Impedances at the scalp electrodes were kept below 5 kΩ and 
below 30 kΩ at the cEEGrid (Debener et  al., 2015). If cEEGrid 
impedances were too high, a syringe with a blunt metal tip was used 
to add more gel without removing the cEEGrid if possible (as a result, 
32 participants had values below 15 kΩ at all positions).

The signal from both EEG systems was digitized with two separate 
BrainAmp amplifiers (Brain Products, Gilching, Germany) and 
received by the BrainVision Recorder software. These data were 
relayed to BCI2000 (Schalk et al., 2004) via the remote data access 
protocol and stored using a resolution of 250 Hz and a 48–52 Hz notch 
filter. BCI2000 handled the paradigm control (i.e., randomization and 
presentation of stimuli) and the recording of EEG data and markers. 
Since BCI2000 has no native support for tactor control, a Python 2.7 

FIGURE 2

Example of a response curve from the tactile discrimination task 
(data from P3). A sigmoidal fit was used to estimate the point at 
which the second stimulus was reported as equal in 50% of trials. 
The respective stimulus intensity (here at 78%) was extracted as the 
participant’s threshold for analysis.
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UDP script was used to address the tactor’s API (provided by 
the manufacturer).

No online classification was performed, as two different EEG 
systems were involved in the recording. Providing feedback from a 
combination of EEG data, but also from just one of the EEG systems 
might have confounded our observations. Instead, we  focused on 
offline analysis for both systems separately, without extensive 
pre-processing of the data, as an indicator of potential 
online performance.

For analysis of the ERP physiology, EEG data were bandpass 
filtered (0.1 to 30 Hz). For the following analysis, vertical bipolar 
channels were calculated for the cEEGrid. Bipolar combinations of ear 
channels have been analyzed thoroughly (Debener et  al., 2015; 
Bleichner et  al., 2016; Meiser and Bleichner, 2022), and certain 
combinations are known to approximate positions on the scalp (da 
Silva Souto et al., 2021).

Data from both EEG systems were then split into epochs of 800 ms 
post-stimulus, plus an additional 100 ms pre-stimulus period for 
baseline correction. Epochs were rejected as artefacts if they contained 
any value above or below 75 μV. Valid epochs were averaged separately 
into target and non-target groups for visual analysis and extraction of 
physiological features. All offline processing was performed with 
MATLAB© (R2015b).

2.6 EEG analysis

Both EEG systems were evaluated and compared based on two 
metrics: Target classification accuracy (offline), and ERP amplitude 
(visual and quantitative analysis).

For quantitative analysis of the ERP, the mean target amplitudes, 
calculated from a specific time window, were extracted from each 
participant’s target epoch average. For the scalp EEG, analysis was 
focused on a time window of 350–650 ms (post-stimulus) at positions 
Fz, Cz and Pz.

ERP analysis for the cEEGrid was focused on the vertical bipolar 
channels R1–R8, R2–R7, R3–R6, R4–R5 and their left counterparts 
(Bleichner et al., 2016), which are known to extrapolate toward the 
classical central scalp positions (highest P300 amplitudes in our data 
were recorded at Cz) (da Silva Souto et al., 2021).

Initial analysis revealed that the ERPs at positions behind the ear 
had a slightly higher latency. The time window for amplitude 
extraction was thus shifted to 400–700 ms post-stimulus.

Offline accuracy was calculated for the two EEG systems 
separately with a leave-one-out cross-validation approach to 
prevent overfitting. Classification with either EEG system was 
based on all available electrodes (cap: 12, cEEGrid: 18) plus the 
eight bipolar channels in case of the cEEGrid. It was performed 
with the stepwise linear discriminant analysis classifier included 
in BCI2000.

Accuracies from the two EEG systems were subjected to a 
two-tailed paired t-test. To detect differences in the EEG physiology, 
a repeated measures ANOVA of the mean amplitudes was calculated 
on the EEG channels of interest. If the assumption of sphericity was 
violated, Greenhouse–Geisser adjusted results are reported. Finally, 
we ran a Pearson correlation test between the two channels with the 
highest ERP mean amplitude of either EEG system (Pacharra 
et al., 2017).

3 Results

3.1 ERP comparison

Cap EEG data from P15 was excluded from analysis due to an 
abundance of electromagnetic stimulation artefacts originating from 
the tactors. Initial assessment indicated that for the cEEGrid, the 
recorded ERP was indeed highest at the vertical bipolar channels, in 
particular at those with the highest inter-electrode distance. Thus, the 
following analysis focused on L2–L7, L3–L6, R2–R7, and R3–R6. 
Figure 3 shows the grand averages of post-stimulus epochs from these 
channels in comparison to Fz, Cz and Pz. Visual analysis revealed a 
distinctive positive deflection in the P300 range. In the cEEGrid, the 
ERP peak appeared slightly later (M = 501 ms post-stimulus) than at 
the central midline positions (M = 463 ms).

Table  1 shows the mean amplitudes extracted from the 
channels of interest. Mean amplitudes recorded from the EEG cap 
reached up to M = 3.53 μV (SD = 2.92) at Cz, and from the cEEGrid 
up to 1.87 μV (SD  = 2.72) at R2–R7. Mean amplitudes at the 
cEEGrid channels were generally lower than at the central 
midline electrodes.

A repeated measures ANOVA revealed a significant effect of 
electrode position on ERP amplitude (F(2.96, 103.6) = 13.20, p < 0.001, 
ηp

2 = 0.274). Bonferroni-corrected post-hoc comparisons indicated a 
significant difference between Cz and all four bipolar channels of the 
cEEGrid. For both Fz and Pz, we  found a significant amplitude 
difference to L2–L7, L3–L6, and R3–R6. Amplitudes at R2–R7, the 
cEEGrid channel with the highest mean values, were not significantly 
different to Fz and Pz (p > 0.05).

Comparison of channels within the same electrode system (e.g., 
Fz vs. Cz vs. Pz), revealed no significant difference between scalp 
electrodes or any combination of the bipolar cEEGrid positions 
(p > 0.05).

Figure  4 shows all ERP averages from channel R2–R7 per 
participant. This visualization reveals high heterogeneity in the 
individual responses to the tactile stimuli: Some participants appeared 
to have no clear deflection in the P300 range (e.g., P10), others showed 
a particularly high peak (e.g., P9). In two cases (P23 and P37), a 
deflection with a negative polarity was found. For comparison, 
Figure 5 provides the same overview for position Cz, where similar 
observations were made (note that different scaling was used in 
Figures 3–5 for better visibility). Finally, Pearson correlation between 
the mean amplitudes of Cz and R2–R7 was significant (rp = 0.753, 
p < 0.001).

3.2 Target classification

The cross-validated offline accuracies were very heterogeneous. 
Individual averages ranged from 6 to 98% for the cEEGrid and from 
42 to 100% for the scalp EEG (see Table 2 for an overview). Thus, all 
scalp EEG accuracies were above the threshold of approximately 37% 
(Billinger et al., 2013; Combrisson and Jerbi, 2015) to be considered 
to be  significantly (α = 0.05) above the chance level of 25%. This 
threshold was also reached with the cEEGrid system for all but three 
participants (P10, P34, and P35). The usability criterion of at least 70% 
(Kübler et al., 2001) was met by 27 participants with the scalp EEG 
and 14 participants with the cEEGrid.
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With a mean of 63% (SD  = 21), cEEGrid accuracies were 
significantly lower than accuracies calculated from the scalp electrodes 
(M = 81%, SD = 17) (paired t-test, p < 0.001). Nonetheless, Pearson 
correlation between accuracies of both EEG systems was high and 
significant (rp = 0.647, p < 0.001).

3.3 Intensity discrimination

Somatosensory sensitivity thresholds were extracted based on the 
data from the intensity discrimination task. Table  2 provides an 
overview of the determined sensitivity thresholds per participant. As 
in our last study (Eidel and Kübler, 2022), some participants quickly 
revealed a distinct threshold, whereas the responses of other 
participants were less consistent, necessitating more trials (on average, 
37 ± 8.7 trials were applied). The equal/unequal responses from P20 
were still too inconsistent to calculate a threshold, despite performing 
53 trials, and were excluded from the analysis. P25 was excluded since 
no sounds could be played to mask the tactor buzzing due to technical 
problems with the speakers.

On average, the sensitivity threshold was determined at a second-
stimulus intensity of M = 74.6% (at this intensity, participants correctly 
detected the difference of the stimuli in 50% of trials). Guided by 
hypothesis H4, we  calculated a Pearson correlation between the 
discrimination thresholds and offline accuracies obtained from both 
the scalp EEG and the cEEGrid. However, no significant correlation 
could be revealed in either case (both p > 0.1). We ran an exploratory 
analysis for potential correlations of the discrimination thresholds 
with the mean ERP amplitudes from both systems but found no 
significant effects.

4 Discussion

4.1 ERP elicitation (H1)

Analysis of the EEG physiology from scalp positions verified that 
a tactile P300 was successfully elicited with this paradigm. In the time 
window of interest, average amplitudes were highest at Cz 
(M = 3.53 μV), slightly exceeding the respective values from our 
previous studies (2.73 μV, Eidel and Kübler, 2020; 2.95 μV, Eidel and 
Kübler, 2022).

There was a notable inter-subject variability of P300 amplitudes, 
which might be due to a variety of factors, including motivation (Kleih 
et  al., 2010) and age (van Dinteren et  al., 2018), as well as 
somatosensory sensitivity and target discrimination difficulty 
(Comerchero and Polich, 1999; Eidel and Kübler, 2022).

As expected, the highest amplitudes in the cEEGrid system were 
found at the vertical bipolar channels (up to 1.87 μV at R2–R7) 
(Bleichner et al., 2016; da Silva Souto et al., 2021). At these channels 
we  found a smaller deflection (as compared to the scalp), which 
we  interpreted as the P300. The significant and relatively high 
correlation (rp = 0.753) of mean amplitudes between scalp EEG and 
cEEGrid supported this interpretation.

These two observations – reduced cEEGrid amplitudes, but a 
notable correlation to scalp EEG data – are well in line with previous 
ERP studies with the cEEGrid (e.g., Debener et al., 2015; Pacharra 
et  al., 2017). Smaller ERP amplitudes at the cEEGrid were often 

observed in the literature, possibly due to the distance from the areas 
of their physiological origin, the small distance between the bipolar 
electrodes, or because the bipolar combination does not perfectly 
match the 10–20 position of interest (Bleichner et al., 2016; Garrett 
et al., 2019). Moreover, the signal-to-noise ratio (SNR) of the P300 and 
other ERPs were generally lower at the cEEGrid in comparison to cap 
measurements (Pacharra et al., 2017). A decrease at of the cEEGrid 
SNR was also reported for subcortical auditory potentials (Garrett 
et  al., 2019). However, some signal loss is to be  expected when 
recording certain ERPs at ear positions, even with conventional 
electrodes (Meiser and Bleichner, 2022). Overall, though the method 
of extrapolation using the bipolar combinations of ear channels has 
been shown to be useful, it appears that it cannot always compensate 
for the distance to the signal source.

The P300 at the cEEGrid might also have been affected by factors 
specific to the tactile paradigm. For instance, while the visual P300 
amplitude is often largest over parietal regions (Ravden and Polich, 
1999; Kaufmann et  al., 2011), in the tactile modality highest 
amplitudes are often measured at central or even frontal electrode 
positions (Thurlings et al., 2012; van der Waal et al., 2012; Kaufmann 
et al., 2014; Severens et al., 2014; Herweg et al., 2016; Eidel and Kübler, 
2020). These positions might be less accessible for the cEEGrid, which 
could further explain the reduced amplitudes behind the ear.

Overall, we found strong evidence to support hypothesis H1 and, 
thus, provide first evidence that the tactually evoked P300 can 
be recorded by the cEEGrid.

4.2 BCI performance (H2–H3)

Offline accuracies were calculated to provide an indicator of 
potential online performance of the cEEGrid in comparison to the 
conventional scalp EEG recording.

The average cEEGrid accuracy of 63% was significantly above the 
chance level, which confirmed our prediction H2a (while also lending 
further support for H1, predicting P300 elicitation). Unfortunately, the 
usability criterion of 70% was not reached on average, such that H2b 
was not confirmed on the group level. Still, 39% of participants met or 
exceeded this threshold and could potentially operate a tactile BCI 
with the cEEGrid.

Comparing both systems, we  found that accuracies at the 
cEEGrid were significantly lower, mirroring our observations from 
the EEG physiology. Hypothesis H3 must, thus, be rejected. This 
was in contrast to other studies which reported no significant 

TABLE 1 Mean amplitudes obtained from the two EEG systems.

System Position Mean amplitude 
[μV] (SD)

EEG Cap

Fz 2.70 (3.61)

Cz 3.53 (2.92)

Pz 2.68 (2.36)

cEEGrid

R2–R7 1.87 (2.72)

R3–R6 1.69 (2.49)

L2–L7 1.58 (2.11)

L3–L6 1.63 (2.06)

Bold values indicate the highest value per electrode system.
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FIGURE 3

Post-stimulus epochs averaged across all participants. All plots are displayed with the same scale. Shaded areas indicate standard error between 
participants. ERPs on the bipolar cEEGrid channels were clearly visible, but smaller than at Fz, Cz, and Pz.
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accuracy differences between cEEGrid and scalp EEG (e.g., 
Bleichner et al., 2016). The distance of the cEEGrid from relevant 
generators of the tactually evoked P300 may account for this 
difference in accuracy.

In any case, the high correlation between the two systems suggests 
that both captured the same physiological process (Bleichner 
et al., 2016).

A closer look at the performance calculated from scalp 
positions revealed that accuracies (M = 81%) were well above both 

chance level and the 70%-criterion. This value was very close to 
the online performance of 79% (session one) reported in our 
previous study which used the same paradigm (Eidel and Kübler, 
2022). This also indicates successful replication, which is an 
important side effect in light of the replication crisis (Shrout and 
Rodgers, 2018).

Interestingly, in the study by Bleichner et al. (2016), above-chance 
classification results were achieved by 85% (scalp EEG) and 80% 
(cEEGrid) of participants. With the present paradigm, although 

FIGURE 4

Average post-stimulus epochs from R2–R7 for each participant. ERP polarity was inversed for P23 and P37.
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cEEGrid classification accuracy was significantly lower as compared 
to the scalp EEG, the above-chance rate was achieved by 92% of 
participants (100% for scalp EEG data). Although it is hard to compare 
these different paradigms, the relatively high above-chance rate seems 
encouraging, as it shows that a meaningful information transfer may 
be possible for most users.

Accuracy achieved with the tactile P300 BCI has been shown to 
improve with training (Eidel and Kübler, 2022). We hypothesize that 
such improvement would also occur when using the cEEGrid, though 
this must be  tested in further studies with healthy and physically 

impaired participants alike. Further improvement might also 
be possible by utilizing more advanced classification algorithms (Lotte 
et al., 2018). Future studies should identify which algorithms perform 
best with the specific design of the cEEGrid.

4.3 Somatosensory sensitivity (H4)

The average discrimination threshold was determined at 
74.6%, which was almost identical to the value from our last 

FIGURE 5

Average post-stimulus epochs for each participant at Cz. As in the cEEGrid data, ERP polarity of P37 was inversed.
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study (74.9% in session one, Eidel and Kübler, 2022). In contrast 
to the results of the prior study, however, we  found no  
significant correlation between the somatosensory sensitivities 
and (offline) accuracies. Hypothesis H4 could, thus, not 
be supported.

The role of somatosensory sensitivity therefore remains 
inconclusive, since the previously observed correlation with accuracy 
could not be  reproduced. Still, it may play an important role for 
training effects of the tactile paradigm (as shown in Eidel and Kübler, 
2022), but this could not be analyzed in the single-session design of 
the present study and awaits further investigation.

5 Significance and conclusion

Our study adds to the growing list of literature that compares 
ear-centered EEG with more conventional EEG setups (e.g., Mikkelsen 
et al., 2015; Bleichner et al., 2016; Pacharra et al., 2017; Garrett et al., 
2019). The main goal of this study was to describe the cEEGrid 
system’s capability to record the P300 when elicited with an existing 
tactile BCI paradigm. Hence, the study was designed for best 
comparability of the EEG systems in a potential online BCI scenario, 
but at this stage, not for speed or optimization of 
classification algorithms.

Overall, we found clear evidence that the P300 can be measured 
with the cEEGrid and that the obtained epochs could be feasibly 
classified with a widely used BCI machine learning algorithm. 
However, both ERP amplitudes and classification accuracies were 
significantly lower as compared to the simultaneously recorded 
scalp EEG. Since multiple studies demonstrated that the accuracy 
of the tactile paradigm can be significantly improved across several 
sessions, even a brief training program might alleviate this 
performance issue. If higher performances can be achieved, the 
small and flexible cEEGrid system would constitute a promising 
tool to increase home application among patients with severest 
motor impairment up to the locked-in or complete locked-in 
syndrome, who might accept it more readily than a conventional 
cap EEG system.
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