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Introduction: Alzheimer’s disease (AD) is a progressive neurodegenerative

disease resulting in memory loss and cognitive decline. Synaptic dysfunction

is an early hallmark of the disease whose e�ects on whole-brain functional

architecture can be identified using resting-state functional MRI (rsfMRI). Insights

into mechanisms of early, whole-brain network alterations can help our

understanding of the functional impact of AD’s pathophysiology.

Methods: Here, we obtained rsfMRI data in the TgF344-AD rat model at the

pre- and early-plaque stages. This model recapitulates the major pathological

and behavioral hallmarks of AD. We used co-activation pattern (CAP) analysis

to investigate if and how the dynamic organization of intrinsic brain functional

networks states, undetectable by earlier methods, is altered at these early stages.

Results: We identified and characterized six intrinsic brain states as CAPs, their

spatial and temporal features, and the transitions between the di�erent states. At

the pre-plaque stage, the TgF344-AD rats showed reduced co-activation of hub

regions in the CAPs corresponding to the default mode-like and lateral cortical

network. Default mode-like network activity segregated into two distinct brain

states, with one state characterized by high co-activation of the basal forebrain.

This basal forebrain co-activation was reduced in TgF344-AD animals mainly

at the pre-plaque stage. Brain state transition probabilities were altered at the

pre-plaque stage between states involving the default mode-like network, lateral

cortical network, and basal forebrain regions. Additionally, while the directionality

preference in the network-state transitions observed in the wild-type animals

at the pre-plaque stage had diminished at the early-plaque stage, TgF344-AD

animals continued to show directionality preference at both stages.

Discussion: Our study enhances the understanding of intrinsic brain state

dynamics and how they are impacted at the early stages of AD, providing

a nuanced characterization of the early, functional impact of the disease’s

neurodegenerative process.
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Introduction

Resting-state functional MRI (rsfMRI), offering insight into the

brain’s functional organization and connectivity, has emerged as a

powerful non-invasive tool in Alzheimer’s disease (AD) research.

Insights obtained using this imaging technique have shown

potential for early detection of AD, as it identified brain network

alterations and abnormalities before the onset of clinical signs

(Sheline and Raichle, 2013). RsfMRI records spontaneous low-

frequency fluctuations in the blood-oxygenation-level-dependent

(BOLD) signals as an indirect measure of neuronal activity at

rest, such as during quiet wakefulness or while lying still with

eyes closed. It allows for the mapping of brain-wide functional

connectivity (FC), defined as the strength of the temporal

correlation of BOLD activity between spatially distant regions, and

in turn unveils resting-state networks (RSNs) constituted by brain

regions with correlated activity. Predominantly active during rest

and associated with introspection and memory, the Default Mode

Network (DMN) is a particularly relevant RSN in AD (Badhwar

et al., 2017), as its reduced connectivity is indicative of the disease’s

progression (Greicius et al., 2004; van denHeuvel and Sporns, 2013;

Alves et al., 2019; Ramzan et al., 2019). Furthermore, the DMN’s

anti-correlation with the Task-Positive Network (TPN), which is

engaged during cognitive tasks, is diminished in AD, thus reducing

the segregation between DMN and TPN (Belloy et al., 2018b).

Understanding changes in FC within and between the DMN, TPN,

and other RSNs has shown to be highly relevant to elucidate AD’s

impact on brain function and potential for early detection and

monitoring of disease progression (Agosta et al., 2012; Ibrahim

et al., 2021).

Animal models of AD provide critical insights into the disease’s

pathophysiology and enable the exploration of especially early

impact of AD pathology. The short lifespan allows for monitoring

the evolution of the disease phenotype in a relatively brief period,

even before onset of the behavioral phenotype. One such model,

the TgF344-AD rat, is characterized by the presence of human

APPswe and PS11E9 mutations, leading to the progressive build-

up of amyloid beta (Aβ) deposits starting at 6 months of age

(Cohen et al., 2013; Joo et al., 2017), accompanied by accumulation

of phosphorylated tau (pTau) (Joo et al., 2017; Rorabaugh et al.,

2017), gliosis, neuronal loss and cognitive impairments similar

to those observed in human AD (Braak et al., 2011; Cohen

et al., 2013; Munoz-Moreno et al., 2018). Impairments in spatial

reference learning, spatial navigation and working memory have

been observed starting at 6 months of age (Berkowitz et al., 2018;

Tournier et al., 2021), with anxiety-like behavior preceding already

at the age of 4 months (Pentkowski et al., 2018).

RsfMRI in rodents shows similar features as in humans;

in particular analogs of RSNs have been identified in mice

and rats (Lu et al., 2012). In previous work using different

MRI modalities including rsfMRI in TgF344-AD female rats

(Anckaerts et al., 2019) we have shown that changes in FC

preceded structural changes. A small decrease in FC at the

age of 6 months (in connections involving the hippocampus,

cingulate, retrosplenial and sensorimotor cortices) was followed by

widespread hypoconnectivity at 10 months. Another study (Tudela

et al., 2019) showed lowered DMN overall mean connectivity at

5 months and decreased anterior-posterior DMN connectivity at

15 months. More evidence of network-level alterations preceding

plaque formation was found in regional FC alterations at 5 months,

located in the right insular cortex, amygdala and hypothalamus

(Munoz-Moreno et al., 2018, 2020), The combined findings of these

studies emphasize the relevance of this model in characterizing not

only AD’s pathology and behavioral phenotype, but also its impact,

especially at early stages, on brain function.

These rsfMRI studies assumed static, constant FC throughout

the scan. However, advances like sliding window FC analyses

have revealed FC fluctuations that are missed with static FC

(Hutchison et al., 2013; Calhoun et al., 2014), and changes in

activity patterns over the scan’s duration (Lurie et al., 2020; Maltbie

et al., 2022; Xu et al., 2022). One such approach uncovers the quasi-

periodic patterns (QPPs) (Majeed et al., 2011), which are recurring

spatiotemporal patterns of brain activity within a predefined time

window. QPPs are obtained using a sliding window approach,

where repetitive patterns of brain-wide neural activity are detected

and averaged across them. Depending on the window size, QPPs

can range from a single spatiotemporal brain state pattern to a

sequence of them. In contrast to sliding window FC approaches,

which yield one FC matrix per window, QPPs facilitate further

insights into the dynamics of the activity states within the window

itself (Belloy et al., 2018a, 2021; Yousefi et al., 2018; Yousefi and

Keilholz, 2021). In the context of AD, QPP’s have been used to

detect early alterations in preclinical models (Belloy et al., 2018b;

van den Berg et al., 2022). Our study using QPPs in TgF344-AD

rats (van den Berg et al., 2022) highlighted a specific alteration:

while overall FC between the basal forebrain (BFB) and the

default mode-like network (DMLN) showed no notable differences,

there was a distinct reduction in their coactivation within the

QPP in TgF344-AD rats already at the pre-plaque stage of 4

months of age. This finding underscores the nuanced, early changes

in neural interactions and disease processes in AD, detectable

through dynamic QPP analysis but overlooked by conventional

FC methods. However, insights gained from QPPs are inherently

limited to the recurring states, covering only parts of entire scan.

Additionally, an arbitrary selection of window size for analysis can

yield varying outcomes, potentially missing dynamics that occur

outside or across the chosen windows.

Co-activation patterns (CAPs) have been proposed as an

alternative framework for investigating the brain’s dynamic states.

CAPs are based on point process models (Tagliazucchi et al.,

2012) and use clustering (Liu and Duyn, 2013) to divide all time

frames within a scan, based on spatial similarity of their voxel-level

BOLD signals, into a few (typically 6–10) functional coactivation

states. They offer several advantages over QPPs, including the

ability to capture and quantify inter-CAP transitions and higher

statistical power due to single-frame resolution. Utilizing CAPs

as an analytical tool has shown promise in classifying and

differentiating properties associated with various physiological and

pathological conditions (Liu et al., 2018; Gutierrez-Barragan et al.,

2019, 2022; Adhikari et al., 2020, 2023; Cifre et al., 2021; Li

et al., 2021; Lee et al., 2023; Vasilkovska et al., 2023; An et al.,

2024). Recent studies employing CAP analysis in mouse models

of neurodegenerative disorders (Gutierrez-Barragan et al., 2022;

Adhikari et al., 2023) have demonstrated their predictive capacity
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in distinguishing model mice from the wildtype at different stages

of the disease.

In this work, we performed a resting-state CAP analysis on

our previously obtained longitudinal dataset in the TgF344-AD rat

model of AD at the ages of 4 and 6 months, corresponding to the

pre- and early-plaque stages of disease progression (van den Berg

et al., 2022). Our first aim was to investigate the genotype and

age effects on the spatial and temporal properties of CAPs. Then

we assessed the capability of CAP metrics to accurately identify

the genotypes, by investigating their classification capabilities

with specific interest for the pre-plaque stage. Finally, and most

importantly, we characterized inter-CAP transitions, to investigate

if and how the dynamic organization of intrinsic brain functional

networks states, undetectable by earlier methods, is altered at these

early stages in this model of AD.

Materials and methods

The data utilized in this study were initially obtained and

published in a previous manuscript (van den Berg et al., 2022).

Acquisition and rsfMRI pre-processing procedures are reiterated

here for completeness.

Animals and study design

All TgF344-AD and F344 rats used for this study were bred

in-house. Heterozygous TgF344-AD rats were obtained from the

RRRC (RRID: RGD_10401208) and were crossed with F344 rats

from Charles River, Italy. Only male offspring were included in this

study. A total of 15 male TgF344-AD (TG) rats and 11 wildtype

(WT) littermates underwent rsfMRI scans at 4 (4M) and 6 (6M)

months of age. For the current analysis, we only included the

animals with data at both ages (TG: n = 13, WT: n = 11). Animals

were group housed under controlled conditions, with a 12-h

light/dark cycle (lights on at 7 a.m.) and a temperature maintained

at 20–24◦C with 40%−60% humidity. They had access to standard

food and water ad libitum. All procedures were performed in

strict accordance with the guidelines approved by the European

Ethics Committee (decree 2010/63/EU) and were approved by the

Committee on Animal Care and Use at the University of Antwerp,

Belgium (approval number: 2019-06).

In vivo MRI procedures

The rats were anesthetized using isoflurane, with 5%

concentration for induction and 2% during handling. They were

intubated endotracheally and mechanically ventilated at a rate

of 70 breaths per minute. The head was secured with ear bars,

and a cannula was inserted into the tail vein for intravenous

administration of medetomidine and pancuroniumbromide.

Initial bolus injection of medetomidine (0.05 mg/kg, Domitor R©,

Pfizer, Germany) and pancuroniumbromide (0.5 mg/kg, VWR,

Belgium) was followed by a continuous infusion of medetomidine

(0.1 mg/kg/h) and pancuroniumbromide (0.5 mg/kg/h) starting

15min after the bolus injection. The concentration of isoflurane

was gradually reduced to 0.4%. Throughout the procedure, the

animals’ physiological parameters were closely monitored. Body

temperature was maintained at 37 ± 0.5◦C using a feedback-

controlled warm air circuitry system (MR-compatible Small

Animal Heating System, SA Instruments, Inc., USA). Breathing

rate was recorded using a pressure-sensitive pad (MR-compatible

Small Animal Monitoring and Gating system, SA Instruments,

Inc., USA) and heart rate and blood oxygenation were monitored

using a pulse oximeter placed on the hind paw (MR-compatible

Small Animal Monitoring and Gating System, SA Instruments,

Inc., USA).

MRI acquisition

Data were obtained using a 9.4 T Biospec MRI system (Bruker

BioSpin, Germany) and a 2× 2 array receiver head radiofrequency

coil, using Paravision 6 software. T2-weighted TurboRARE images

were acquired in three directions to ensure consistent slice

positioning. Magnetic field inhomogeneity was corrected with local

shimming within an ellipsoid volume of interest that covered

the brain.

rsfMRI data were collected using a single-shot gradient echo

EPI-sequence with the following parameters: repetition time (TR)

600ms, echo time (TE) 18ms, field of view (FOV; 30 × 30) mm²,

matrix size (96 × 96), 12 coronal slices of 0.9mm thickness with

a 0.1mm gap, 1,000 repetitions. rsfMRI scans started 35min after

initial bolus administration and lasted 10 min.

After completion of the scan, infusion of medetomidine and

pancuroniumbromide anesthesia was stopped, and the isoflurane

level was increased to 2%. T2-weighted 3D images were then

acquired using a 3D RARE sequence [TR 2,500ms, effective TE

44ms, F OV (30 × 30 × 22) mm3, matrix size of (256 × 256

× 128), RARE-factor 16] for registration purposes. At the end of

the session, the animals received a subcutaneous injection of 0.1

mg/kg atipamezole (Antisedan R©, Pfizer, Germany) to counteract

the effects of medetomidine anesthesia. Animals were placed on

a second ventilator and heating pad to facilitate recovery. Except

two 4-month-old TgF344-AD rats who did not recover due to

premature extubation, all animals recovered within 1 h after the

scan session.

Pre-processing

Pre-processing of the data including debiasing, realignment,

co-registration, normalization, and smoothing was performed

using SPM12 software (Statistical Parametric Mapping). First,

debiasing was applied to the 3D RARE scans to eliminate intensity

gradients caused by the RF coil. A study-specific 3D template

was created from a subset of debiased 3D RARE scans using

Advanced Normalization Tools (ANTs). The rsfMRI images were

then realigned to the first image using a six-parameter rigid body

spatial transformation estimated using a least-square approach.

Then, the rsfMRI images were co-registered to the corresponding

anatomical 3D scan of the same session using a global 12-

parameter affine transformation with mutual information as the
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similarity metric. The anatomical 3D scan was normalized to

the study-specific 3D template using a global 12-parameter affine

transformation followed by a non-linear deformation protocol.

This combined transformation was applied to realign all echo-

planar imaging (EPI) images and normalize them to the 3D RARE

template. Additionally, ventricles were masked out of the data, and

in-plane smoothing was performed using a Gaussian kernel with a

full width at half maximum of twice the voxel size.

We used custom in-house MATLAB scripts for filtering,

detrending, signal regression and z-scoring. To avoid transient

effects, six time frames at the start and at the end of the scan were

removed before the filtering process. The images then underwent

voxel-wise filtering with a 0.01–0.2Hz Butterworth band-pass filter,

followed by another cut of four time frames at the start and end of

the scan to minimize boundary effects of filtering. After quadratic

detrending, the signal from white matter and ventricles [obtained

using the NearLab Fischer-344 rat brain atlas (Goerzen et al., 2020)

normalized to the template] was then regressed out from each

voxel’s BOLD signal timetrace, which was subsequently normalized

to have a zero mean and unit variance.

CAP extraction

To analyse temporal fluctuations of neural activity, we

employed an approach by Gutierrez-Barragan et al. (2019)

(Figure 1A). Pre-processed rsfMRI data of all subjects (both WT

and TG animals) at both ages (4M and 6M) were masked

using an atlas-based (Goerzen et al., 2020) whole brain mask

excluding ventricles and concatenated into a single combined

image-series. The image series was transformed into N m-

dimensional vectors with N the total number of frames (across

all subjects and ages) and m the total number of voxels within

the whole-brain mask. We then applied a threshold so that, for

each frame, z-scored BOLD signals of voxels within the top

10th and bottom 5th percentiles were kept while signals for all

other voxels were set to zero. These thresholds were approximate

representatives of the proportion of activated and deactivated

voxels and identical to the approach taken by Gutierrez-Barragan

et al. (2019). Prior studies have indicated that this approach

expedites the clustering procedure without qualitatively affecting

the outcome of CAP clustering (Liu andDuyn, 2013; Liu et al., 2013;

Karahanoglu and Van De Ville, 2015). Gutierrez-Barragan et al.

(2019) showed that omitting thresholding in frame-wise clustering

resulted in only a minor change (<1.64%) in the assignment

of time-frames to specific CAPs, and the CAPs identified

using this method were indistinguishable (Pearson’s correlation

>0.98) from those obtained with intensity thresholding. All time

frames were then clustered according to spatial similarity, using

K-means++ clustering algorithm. Specifically, the correlation

distance (1 – Pearson’s correlation) between every pair of m-

dimensional vectors was used to determine the spatial dissimilarity

of the activation pattern of each frame with that of every

other frame.

The K-means++ algorithm allocates the vectors into

K clusters, minimizing the sum of within-cluster distance

D =
∑K

k=1

∑

j∈k d
2(zj, ck). K represents the number of clusters,

and d
(

zj, ck
)

refers to the correlation distance between the

centroid ck of the kth cluster and zj, the z-scored BOLD

signals of all voxels at the jth time frame assigned to that

cluster. To ensure an optimal selection of initial cluster

centroids, the K-means++ algorithm favors distant centroids

to be selected as initial seeds. We systematically explored a

range of 2–30 “time frame” clusters, calculating the amount

of across-subject variance explained in each case using the

following approach:

• Within-cluster variance, Vw = D
N , with N being the total

number of time frames.

• Between cluster variance, VB =
1
N

∑K
k=1 nkd

2 (ck, c) ; c =
∑K

k=1
nk
N ck. The sum of squared

correlation distances between the global centroid, c, and each

cluster centroid, ck, weighted by the number of frames in

each cluster.

• Explained variance = VB
Vw+VB

. This is the ratio of between-

cluster variance to the sum of between-cluster variance and

within-cluster variance.

We then generated a plot showing the explained variance as

a function of the number of clusters, ranging from 2 to 30. We

identified the optimal number of clusters as the point at which

the variance reached a saturation level, commonly known as the

elbow point. Additionally, for each partition with k clusters, we

calculated the fractional gain in explained variance compared to

the partition with k-1 clusters. To ensure the validity of the elbow

point, we confirmed that the fractional gain in explained variance

for partitions with higher numbers of clusters remained below

0.5%. For each cluster, the original, whole brain, z-scored BOLD

signals (without thresholding used for K-means clustering and

calculation of explained variance) were averaged voxel-wise across

all cluster time frames, resulting in combined cohort-level CAPs.

Similarly, we performed averaging across the genotype-age-specific

time frames within each cluster to obtain the CAPs for each

subgroup (WT 4M, WT 6M, TG 4M, TG 6M).

CAP analysis

We conducted a two-tailed, one-sample T-test (Bonferroni

corrected, p< 0.01) to identify significantly activated or deactivated

voxels, for each CAP, using its occurrences in the combined image-

series and its respective age-specific WT or TG sections. One-

sample T-statistics for significant voxels were visualized as a brain-

wide map for each CAP.

Next, we calculated the following measures of spatial

(Figure 1B) and temporal (Figure 1C) properties of each CAP:

• Voxel-level activations: the mean activation observed in

all occurrences of a CAP within the genotype-age-group-

level image-series.

• Occurrence percentage: the percentage of time frames within

a subject’s image-series that corresponded to a specific CAP.

• Duration: the average number of consecutive frames

representing a CAP across all its occurrences within a subject.
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FIGURE 1

CAP analysis overview. Schematic representation of (A) CAP extraction and analysis of (B) spatial and (C) temporal properties of the CAPs. Created

with Biorender.

Statistical comparisons for spatial and
temporal properties

To assess effects of age and genotype on voxel-wise spatial

activation within each CAP, we used two-way ANOVA (age,

genotype, age∗genotype). Where the interaction effect between age

and genotype did not reach statistical significance (p > 0.05), it

was excluded prior to assessing main effects of age and genotype.

For voxels that demonstrated significant interaction effect, post-

hoc analyses (t-test) were performed, followed by corrections

for multiple comparisons using Benjamini–Hochberg method to

control for the false discovery rate (FDR). Additionally, an in-plane

10-voxel threshold cluster correction was applied to identify voxels

showing significant differences in their spatial activations.

Similarly, the effects of age, genotype, and their interaction

on the temporal characteristics of CAPs were analyzed using

repeated measures two-way ANOVA. In situations where no

significant interaction effect was observed (p> 0.05), it was omitted

from subsequent main effect analysis. The post hoc comparisons

for occurrence, and duration underwent correction for multiple

comparisons, using the Benjamini–Hochberg method to control

the FDR.

Classification

We used a multinomial logistic regression (MLR) model with

regularization to categorize the subjects into their four distinct

genotype-age-groups (WT 4M, WT 6M, TG 4M, TG 6M) by

analyzing both temporal (occurrence and duration) and spatial

features (z-scored BOLD signal intensities of voxels, found to be

significant in at least one of the four groups p< 0.01, one-sample T-

test, Bonferroni-corrected). The classifier’s training phase included

80% of the subjects, randomly selected in age and genotype

stratified manner, to ensure balanced class representation. The

remaining 20% of subjects were used as a validation set to calculate

prediction accuracy. The splitting of the cohort into training and

validation sets was iterated 50 times to yield a distribution of

classification accuracy scores.

To establish a baseline for chance-level accuracy, we

randomized the class labels within the same training-

validation sets split for each of the 50 iterations and obtained

the chance-level accuracy values. The median accuracy

achieved through our classification was then statistically

compared against this chance-level baseline via the Wilcoxon

sign rank test, confirming whether our model’s predictions
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were significantly beyond what could be expected by

random guessing.

To avoid a bias in the classifier where information of

the validation group would cause more accurate prediction

than otherwise possible, we adjusted the CAP extraction

process to only include data from the training set when

determining genotype-age-group-level CAPs. These subgroup-

specific CAPs were then used as a reference to identify

FIGURE 2

Selection of optimal CAP partition and visualization of cohort-level CAPs. (A) Across-subject variance explained as a function of number of clusters in

the partition of the combined image-series. Magenta dashed line indicates the elbow point beyond which the explained variance is found to saturate

in each case. We found six clusters were su�cient to explain ∼50% of variance. (B) Fractional gain in the explained variance with k clusters vs. k-1

clusters. The elbow point is the first k which has a fractional gain lower than 0.5% (shown by dashed line). (C) Cohort-level (across both genotypic

groups and ages) one-sample T-statistic maps of the CAPs. Voxels with positive T-values (yellow to red) indicate a significant (p < 0.01; Bonferroni

corrected) activation, i.e., higher BOLD signal averaged across the CAP-timeframes as compared to the BOLD signal averaged across all time frames.

Voxels with negative T-values (cyan to blue) indicate significant deactivation, i.e., lower BOLD signal averaged across the CAP-timeframes as

compared to the BOLD signal averaged across all time frames. CPu, caudate putamen; FrA, frontal association cortex; BFB, basal forebrain; M1,

primary motor cortex; S1, secondary motor cortex; S1bf, barrel cortex; V1, primary visual cortex; Cg, cingulate cortex.
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and calculate individual-specific CAP attributes within each

subject’s scans.

By pooling the test-set results across all 50 iterations, we

quantified the proportion of correctly classified subjects per class

and those misclassified as one of the other three categories. The

outcomes of this classification were compiled in a confusionmatrix,

where the prediction accuracy for each class is detailed on the

diagonal, and the likelihood for misclassification between classes

is presented in the off-diagonal cells. Furthermore, we verified

if classification would be improved when predicting genotypes

per age. Using the same methodology, we additionally performed

two-class classification of the genotypes at each age.

Inter-CAP transition probabilities

We calculated the inter-CAP transition probabilities at the

group-level at each age. We first calculated persistence probability

of each CAP by identifying the total number of self-transitions

(same CAP at t and t + 1) from all subjects within the genotype-

age-group and dividing them by the total number of transitions

(self and non-self) made by that CAP. The transition probability,

pij, of CAP i to CAP jwas calculated by dividing the total number of

transitions between CAP i to CAP j by the total number of non-self-

transitions (by excluding persistent or self-transitions) by CAP i to

all other CAPs. The significance of transition probability between

a CAP pair was tested by comparing it with a distribution of

surrogate transitions probabilities for that pair. Surrogate transition

probabilities were calculated using 10,000 surrogate sequences of

CAPs in each subject obtained by randomly permuting the CAP

identities of time frames from that subject. The p-values for each

CAP-pair were calculated by permutation testing, as the ratio of

number of surrogates with transition probability greater than the

observed value and the number of surrogates. Subsequently, p-

values were FDR-corrected for all CAP pairs. We also calculated

the difference in transition probability pij and pji in each genotype-

age-group and assessed if the difference is statistically significant

by comparing with a distribution of surrogate differences. The

significance of this difference was tested for those CAP pairs

which showed significant transition probability in at least one

direction and all the p-values were FDR-corrected for the number

of null hypotheses tested. Finally at each age, we calculated the

inter-genotypic difference between transition probabilities for CAP

pairs that were significant in at least one group, as well as

between persistent probabilities for CAPs. Each such difference was

statistically compared with a distribution of surrogate differences

in a permutation test to assess its significance and the subsequent

p-values were corrected for multiple comparisons using FDR.

Results

CAP analysis reveals six brain states

We initially determined the optimal number of CAPs.

Figure 2A illustrates the variance explained across subjects

through partitions, with an increasing number of clusters, of the

concatenated image-series from all subjects (11WT, 13 TG) at both

ages. We identified six as the optimal number of clusters, with the

explained variance showing a clear elbow point at 6 (Figure 2A) and

a fractional gain in variance <0.5% (Figure 2B). We then generated

CAPs by computing voxel-wise averages of z-scored BOLD signals

(without threshold used for K-means clustering and subsequent

calculation of explained variance) across all time frames sharing

identical cluster membership (Figure 2C).

CAPs are characterized by hubs of
(in)activation spanning multiple known
RSNs

The six identified CAPs were sorted into distinct CAP-anti CAP

pairs, ordered first by occurrence per CAP then rearranged to form

pairs sorted from strongest to weakest Pearson anti-correlation

(Figure 2C). The CAPs were named based on prominent features

in their spatial representations.

The LCN-Barrel CAP and DMLN CAP exhibited a spatial

pattern very similar to the LCN and DMLN CAPs, described

previously in a Huntington’s disease mice study (Adhikari et al.,

2023), respectively. In the LCN-Barrel CAP, co-activation of lateral

cortical network (LCN) regions such as the somatosensory, motor,

insular cortices, and a main hub of activation in the barrel

cortex was exhibited with simultaneous co-deactivation of default

mode-like network (DMLN) regions such as cingulate, visual,

retrosplenial and temporal association cortices. The DMLN CAP

demonstrated an anti-correlated pattern, where DMLN regions

were co-activated and LCN regions were co-deactivated.

In anti-correlated CAPs CPu and DMLN-BFB, co-activation

and co-deactivation of the caudate putamen was paired with

widespread cortical co-deactivation and co-activation, respectively.

TheCPuCAP exhibited a distinct and highly localized co-activation

across the entire caudate putamen, while the DMLN-BFB CAP

was mainly characterized by strong co-activation in the frontal

association cortex and the BFB. In the DMLN-BFB CAP, the

primary somatosensory cortex as well as the CPu also showed

pronounced co-deactivation.

The deacLCN and LCN CAP formed an anti-correlated

pair mainly characterized by motor and primary somatosensory

regions. The deacLCN CAP exhibited localized co-deactivation

in these regions, paired with widespread co-activation in central

regions. In the LCN CAP, motor and primary somatosensory

cortex formed hubs of highly localized strong co-activation, with

concurrent widespread (sub)cortical de-activation.

CAP activations show localized
inter-genotypic di�erences mainly at 4
months

Next, we assessed the effects of genotype and/or age on voxel-

level spatial activations in each of the six CAPs, using two-way

ANOVA (age, genotype, age∗genotype). Figures 3, 4 show the six

CAPs in each genotypic group and the post-hoc comparisons of

spatial activations between the two genotypes at 4M (Figure 3) and

6M (Figure 4) respectively.
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FIGURE 3

Genotypic group-level CAPs and post-hoc inter-group comparisons at the pre-plaque stage (4M). For each CAP, the (top panel) shows significantly

activated and deactivated voxels represented as one-sample T-maps for each genotype. Voxels with positive T-values (yellow to red) indicate a

significantly greater average activation than zero, whereas voxels with negative T-values (cyan to blue) indicate significantly greater deactivation than

zero (p < 0.01; Bonferroni corrected). The (lower panels) (WT-TG) display the post-hoc comparisons (after two-way ANOVA) of spatial activations

between the two genotypes of voxels indicating a significant (FDR corrected, p < 0.05) di�erence in the (de)activation between the WT and TG CAPs.

These post-hoc comparisons are made for voxels showing significant interaction e�ect among the voxels that show significant activation or

deactivation in at least one group across all CAPs. The color bars, ranging from red to yellow and blue to green, represent voxels that are respectively

co-activated and co-deactivated within the WT group. Consequently, positive T-statistic values (in yellow and green) correspond to a significantly

lower magnitude of activation in the TG group in contrast to the WT group, while negative T-statistic values (in red and blue) indicate a higher

magnitude of activation in the TG group compared to the WT group. TeA, temporal association cortex; BFB, basal forebrain; S1, primary

somatosensory cortex; S2, secondary somatosensory cortex; V2, secondary visual cortex; Cg, cingulate cortex; Au, auditory cortex.

In the 4M LCN-Barrel CAP, the difference maps indicated

a significantly lowered co-activation of central cortical regions

(cingulate, primary and secondary motor, primary somatosensory

cortices) in TG animals compared with WT animals. Moreover,

TG animals exhibited highly localized hyperactivation in secondary

somatosensory and auditory regions. In the DMLN CAP, the

TGs had a lowered co-activation in the frontal and temporal

association cortices, a decreased co-deactivation of motor cortices

and a localized hyperactivation of the cingulate cortex. The

deacLCN CAP in TG animals showed hyperactivation in the

temporal association cortex and secondary visual cortex, along

with hyperactivation of the cingulate cortex (as seen in the DMLN

CAP). Hyperactivation of the temporal association cortex in TGs

could also be seen in the DMLN-BFB CAP, along with reduced

co-activation of BFB regions.

At 6M, most of the differences in spatial activation present

at 4M were diminished (Figure 4 ∗ MERGEFORMAT). Notably,

the pronounced lowered co-activation in TG animals across the

BFB at 4M in the DMLN-BFB CAP was no longer observed at

6M, indicating an early transient effect. In the DMLN CAP, we

observed localized hyperactivations in TG animals in the temporal

association and entorhinal cortices.

Temporal properties change in the DMLN

CAP

To identify changes in the dynamics of brain states in disease

vs. control animals, we computed CAP occurrence percentage
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FIGURE 4

Group-level CAPs and comparisons at the early-plaque stage (6M). For each CAP, the (top panel) shows significantly activated and deactivated voxels

represented as one-sample T-maps for each genotype. Voxels with positive T-values (yellow to red) indicate a significantly greater average activation

than zero, whereas voxels with negative T-values (cyan to blue) indicate significantly greater deactivation than zero (p < 0.01; Bonferroni corrected).

The (lower panels) (WT-TG) display the post-hoc comparisons (after two-way ANOVA) of spatial activations between the two genotypes of voxels

indicating a significant (FDR corrected, p < 0.05) di�erence in the (de)activation between the WT and TG CAPs. These post-hoc comparisons are

made for voxels showing significant interaction e�ect among the voxels that show significant activation or deactivation in at least one group across

all CAPs. The color bars, ranging from red to yellow and blue to green, represent voxels that are respectively co-activated and co-deactivated within

the WT group. Consequently, positive T-statistic values (in yellow and green) correspond to a significantly lower magnitude of activation in the TG

group in contrast to the WT group, while negative T-statistic values (in red and blue) indicate a higher magnitude of activation in the TG group

compared to the WT group. TeA, temporal association cortex; Ent, entorhinal cortex.

and duration across both groups at both ages (Figure 5). The

occurrence percentage and duration of most CAPs was similar

across groups and ages (Figure 5A). The mean duration of the

DMLN CAP significantly increased from 4M to 6M across both

groups (Figure 5B). Interestingly, the DMLN CAP exhibited a

group-dependent age effect in its occurrence percentage. The

occurrence percentage of the DMLN CAP significantly increased

only in the WT animals from 4M to 6M, but not in the TG animals

that resulted in significant inter-genotypic difference at only 6M.

Classification reaches
higher-than-chance-level accuracy using
CAP spatial features only

To assess the potential of using CAPs as a diagnostic biomarker,

we explored the ability of CAPs to differentiate among the

four combinations of genotype-age groups by using a predictive

classifier. We utilized properties from the training subjects’ CAPs,

derived from the complete image-series, as the classifier’s training

features. Figure 6A displays the average classification accuracy

when using temporal and spatial properties of CAPs, compared

with the mean accuracy expected by random chance. In 4-

class classification, temporal features (occurrence percentage and

durations) of CAPs did not surpass random-chance accuracy,

while classification using spatial features yielded significantly

increased accuracy compared to the chance level (p = 3.98 ×

10−7). The confusion matrix (Figure 6D) represents the classifier’s

performance in predicting the correct labels for each genotype-

age-group. With 4-class classification, the TG 4M group was

most accurately predicted among the different subgroups, with an

accuracy of 54%. Misclassification mostly occurred within the age

group, between the genotypes. At 6M, the largest proportion of TG

animals was accurately predicted (45%), withmostmisclassification

occurring within the genotype but across age (25% misclassified

as TG 4M). We additionally used a 2-class classification model

per age where only genotypes were being predicted. Two-class

classification using spatial features was significantly more accurate
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FIGURE 5

Temporal properties per age and genotype of all CAPs. Scatterplots of subject values per CAP, with the middle line indicating the mean and error bars

indicating the SD. (A) Group-level CAP duration. Solid unbracketed line indicates age e�ect in the DMLN CAP (two-way RM ANOVA). (B) Group-level

CAP occurrence percentage. Solid bracketed lines indicate significant multiple comparisons test (post-hoc two-way RM ANOVA, FDR corrected).

*p < 0.05; **p < 0.01.

than the chance level at 4M (p = 0.0002; Figure 6B) but not at 6M

(Figure 6C). At both ages, classification using temporal features did

not surpass random chance levels. Highest prediction accuracy was

achieved for the TG 4M subgroup, indicating its spatial properties

were the most distinct from the other groups (Figure 6E).While the

TG group continued to be predicted reasonably well at 6M, theWT

group was correctly predicted only 39% of the times (Figure 6F).

Transition probabilities reveal subtle
changes in network-state dynamics

Next, we investigated whether we could identify genotype-

dependent changes in inter-CAP transitions, to gain

insights into early changes in the dynamic organization of

intrinsic brain activity. To illustrate the pathways of CAP

transitions at both 4M and 6M for WT and TG groups,

we generated and graphically portrayed the transition

probability matrices in each genotypic group at each age

(Figure 7).

We initially determined persistence probabilities (Figures 7A,

B, D, E; top row), to examine the likelihood of CAPs transitioning

into themselves, i.e., reoccurring in consecutive frames. A

significant percentage of all transitions in all CAPs was persistent

(∼85%), with each of the persistent transitions occurring

significantly higher than the chance level. We observed mostly

consistent persistence probabilities across the genotype-age-

groups. The persistence probability of the DMLN CAP does

increase from 4M to 6M in the WTs, but not in the TGs, tying

in with the previously described differences in occurrence and

duration of that CAP. Next, the transition probabilities from

each CAP to other CAPs were calculated by considering only its
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FIGURE 6

Classification of age and genotype groups using CAP features. (A–C) Accuracy of classification using temporal and spatial features in a 4-class model

[(A); WT 4M, TG 4M, WT 6M, TG 6M] or 2-class model per age [(B, C); WT, TG]. Data is in blue, chance-level accuracy in gray (mean ± SEM). Red

asterisk indicates significantly higher mean accuracy compared to the chance level (FDR[[Inline Image]] corrected, p < 0.05. (D–F) Confusion

matrices representing performance of the classification model when using spatial features. Each value in the matrix indicates the proportion of test

subjects that belong the group along the rows (true labels) and were predicted as the group on the columns (predicted labels), with the diagonal

elements being correct predictions.

non-persistent transitions, and visually represented in matrices

(Figures 7A, B, D, E; matrices, off-diagonal).

At 4M, both genotypes exhibited several pairs of CAPs with

significant transition probabilities (Figures 7A, B, black asterisks

in matrices). Out of the 30 potential transition pathways, 11

were significantly more frequent than expected by the chance

level in both genotypes (tested against distribution of surrogate

transition probabilities per CAP-pair in permutation test, p < 0.05,

FDR corrected). Notably, transitions from the DMLN-BFB and

deacLCN CAPs to the DMLN CAP occurred with significantly

higher probability than chance (p < 0.05, FDR corrected) in both

genotypes. In the WT animals, the DMLN CAP predominantly

transitioned to the DMLN-BFB CAP, with this being the only

significant outgoing transition (Figure 7A). In contrast, the TG

animals displayed an alteration, with the primary significant

outgoing transition from the DMLN CAP directed toward the

LCN CAP (Figure 7B). We statistically compared transition

probabilities, to uncover potential disease-induced changes in

network dynamics. Transition probability from the DMLN-BFB

CAP into the deacLCN CAP was significantly higher in TGs, and

transitions from the DMLN CAP into the DMLN-BFB CAP were

significantly less common than in the WTs (Figure 7C, p < 0.05,

FDR corrected).

At 6M, transitions into the DMLN CAP remained

significant from DMLN-BFB and deacLCN CAPs across both

genotypes (Figures 7D, E, black asterisks in matrices). In the

TG animals, significance of transitions remained largely the

same as at 4M, except for the previously TG-specific significant

transition of the DMLN CAP into the LCN CAP which was

no longer significant. While transitions into the DMLN CAP

did show the same consistent origin from DMLN-BFB and

deacLCN CAP across genotypes and ages, in the TGs at 6M,

DMLN CAP to CPu CAP is the only significant transition,

compared to the more varied outgoing transitions from the

DMLN CAP in the WTs. When directly comparing transition

probabilities between the genotypes by permutation testing, no

differences were statistically significant (p > 0.05; FDR corrected,

Figure 7F).
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FIGURE 7

Probability matrices and schematic representations of transitions between CAPs. (A, B, D, E) Top row represents probabilities of persistent (self)

transitions. Below that, inter-cap transition probabilities are represented in matrices. Colors indicate probability value, asterisk indicates transitions

occurring significantly more frequently than the chance level, red circle indicates significantly higher probability of the transition in that direction

compared to the opposite direction. Bottom schematic qualitatively represents significant transitions only. Each arrowhead corresponds to a

significant transition in the probability matrix (asterisk), with the same red circle representation for directional preference. (C, F) Di�erence matrices

between transition probabilities at 4M and 6M, respectively. Red colors indicate reduced transition probability in TG animals, while blue colors

indicate increased transition probabilities. Asterisk indicates significant di�erence (p < 0.05, 2s T-test, FDR corrected). Schematic representation

below shows significant di�erences only with red arrow indicating higher probability in WT while blue showing higher probability in TG.
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Directionality preference of transitions
indicates genotypic di�erence at 6 months

We also compared the probability of each transition pij
with the other direction pji in each genotype-age-group, and

tested the difference for significance, providing an indication of

directional preference when transitioning between states. Through

this analysis, we observed an additional distinct transition pattern

at both ages, with a pronounced directionality preference for

transitions originating from the DMLN-BFB CAP in the TG

animals that was absent in WTs (Figures 7A, B, D, E; red circles on

DMLN-BFB rows/arrows).

Overall, there was an increased directionality preference

in the TG animals, with seven (TG) vs. four (WT) pairs

showing directional preference (Figures 7A, B, red circles) at

4M. Directional preference for transitions deacLCN→ CPu,

CPu→ LCN-Barrel, LCN-Barrel→ DMLN-BFB and LCN-Barrel→

deacLCN remained present across both genotypes, but the TG

animals additionally showed increased directionality preference in

transitions DMLN-BFB→ deacLCN, DMLN-BFB→ DMLN and

DMLN→ LCN [tested against distribution of surrogate transition

probability differences pij – pji per CAP pair (I, j), p < 0.05,

FDR corrected].

At 6M (Figures 7D, E), a specific directional transition from the

DMLN into the CPu CAP was now apparent in both genotypes.

Transitions in WTs now occurred mostly bidirectional with a

nonsignificant directionality preference, with the sole exception of

DMLN→ CPu transition. In contrast, the transitions in TG animals

still exhibited a directionality preference for seven pairs of CAPs,

five of which were identical to those at 4M.

Discussion

In this study, we used resting-state CAPs to longitudinally

examine properties of spontaneous whole-brain activity states in

the TgF344-AD rat model of AD at the pre- and early-plaque

stages of disease progression. We found six CAPs were the optimal

number of states in this dataset, distinctly organized into CAP-

anti-CAP pairs. DMLN activation was found in two of the CAPs,

with one of them showing simultaneous BFB activation. In this

DMLN-BFB CAP, BFB activation was reduced in the TG group

only at the pre-plaque stage. Inter-genotypic differences in spatial

activations of CAPs were diminished at the early-plaque stage.

Analysis of CAP temporal properties revealed a reduction in the

occurrence percentage of the DMLN CAP in the TG animals at the

early-plaque stage. Cross-validated four-class classification of the

animals into genotype-age-groups using spatial features of CAPs

displayed significantly higher accuracy than chance. However,

larger confusion between genotypes was found at the early-plaque

stage which was confirmed when two genotypic groups were

classified at each age; accuracy was significantly higher than the

chance level at only the pre-plaque stage. Through characterization

of network state transitions, we identified genotypic differences in

transition probabilities between two CAP pairs at the pre-plaque

stage. TG animals showed increased probability for DMLN→

DMLN-BFB transitions, and reduced probability for DMLN-

BFB→ deacLCN transitions. Interestingly, while several inter-CAP

transitions at the pre-plaque stage exhibited directional preference

in both genotypes, at the early-plaque stage, this directionality was

observed only in the TG animals. In WT animals at the early-

plaque stage, inter-CAP transitions were equally probable in both

directions in most cases.

Our results, similar to earlier findings using CAP analysis in

rodents (Gutierrez-Barragan et al., 2022; Adhikari et al., 2023),

indicate a partition of six clusters as an optimal number to explain

variance between the clusters, with diminishing returns using larger

cluster numbers. These six clusters are distinctly organized into

CAP-anti-CAP pairs. Across multiple CAPs, the DMLN and LCN

co-activation patterns emerge as recognizable networks, previously

described in the context of AD (Ibrahim et al., 2021; Liang

et al., 2021; van den Berg et al., 2022). These networks are the

respective rodent analogs of the DMN and TPN in humans. The

DMN especially, involved in memory consolidation tasks, is the

most prominent resting-state network, with AD patients typically

exhibiting disrupted within-DMN connectivity (Grieder et al.,

2018).

The DMLN CAP exhibits strong co-deactivation throughout

cortical LCN regions (somatosensory, motor, and auditory cortex),

thus further characterizing it as a brain state resembling DMLN

activity. Interestingly, it anticorrelates most strongly with the LCN-

Barrel CAP, rather than the main LCN CAP itself. In the DMLN-

BFB CAP, strong co-deactivation is strictly localized to the caudate

putamen, extending slightly into the primary somatosensory

cortex. It’s anti-correlated counterpart, CPu CAP, demonstrates

highly localized co-activation in the caudate putamen only, with

widespread cortical co-deactivation. Interestingly, the DMLN-BFB

CAP shows the strongest co-activation in orbital and frontal

association cortex together with BFB nuclei, while theDMLN CAP’s

co-activation is more centered around the cingulate and prelimbic

cortex. The separated DMLN-like CAPs we observe (DMLN-BFB

and DMLN) are an example of how the single-frame resolution of

CAPs provides enhanced statistical power, enabling a deeper and

more granular understanding of the intricate and transient nature

of brain connectivity. Another study comparing CAPs in awake

and anesthetised mice (Gutierrez-Barragan et al., 2022) also found

CAPs resembling DMN and LCN. Additionally, in their study,

two CAPs showed high basal forebrain co-activation, one with

hypothalamus and the other with auditory cortex, visual cortex, and

amygdala. They also showed a CAP with high CPu co-activation,

which was not isolated but co-activated mainly with cingulate,

retrosplenial and prefrontal cortices. Their findings were consistent

using either halothane or isoflurane-medetomidine anesthesia.

One of the main outcomes of our spatial analysis of CAPs is

the reduced co-activation in the BFB in TG animals at the pre-

plaque stage, situated mainly in the DMLN-BFB CAP, confirming

our earlier findings using QPPs (Geula et al., 2021). Basal forebrain

cholinergic neurons (BFCN) experience early and substantial

degeneration in AD, with the major neurodegenerative correlate

being accumulation of pTau in neurofibrillary tangles (Geula

et al., 2021). Consequently, BFCN degeneration is regarded as

one of the hallmarks of AD (Shekari and Fahnestock, 2021), with

evidence of decreased BFB volume before Aβ cortical spreading
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(Hall et al., 2008; Chen and Mobley, 2019; Fernandez-Cabello

et al., 2020). Given its implicated roles in modulation of cognition

(through projections from the diagonal band of Broca, substantia

innominata, and the nucleus basalis of Meynert to the cortex)

(Li et al., 2015; Turchi et al., 2018; Espinosa et al., 2019) and

its modulating function on brain activity through control on the

prefrontal cortex (Li et al., 2015; Turchi et al., 2018; Espinosa et al.,

2019), disruptions in BFB signaling caused by AD can lead to early

disturbances in the brain’s network activities.

The differences in pre-plaque BFB co-activations we observe

in the current study are like what was earlier described with

quasi-periodic patterns (QPPs) in the same dataset (van den Berg

et al., 2022). In that study, two short QPPs, called the DMLN

and LCN QPPs consisting of coactivation of DMLN and LCN

regions respectively, were found to be prominent. Co-activation

of the BFB and the DMLN and the level of BFB activation was

found be reduced at the pre-plaque stage in the TG animals. This

reduction was not observed in the DMLN QPPs at the early-

plaque stage. In the present study, while the DMLN and DMLN-

BFB CAPs exhibit co-activation in similar hub regions involved in

the DMLN (i.e., cingulate gyrus, retrosplenial cortex, orbitofrontal

cortex, infralimbic cortex, visual cortex, and auditory cortex), the

BFB activation was selective in the DMLN-BFB CAP (Figure 2C).

Hence, the observed reduction of BFB co-activation in TG animals

notably occurred mainly in the specific DMLN-BFB CAP, but not

in the DMLN CAP, which is overall most closely resembling the

DMLN (Figures 3, 4 ∗ MERGEFORMAT). In line with the earlier

findings, these differences are pronounced during the pre-plaque

stage, and mostly diminished at the early-plaque stage. QPPs are

formed by averaging across recurring segments of scans of specific

window size. As CAPs cover every frame, the overlap between QPP

segments/occurrence and CAP occurrences can be calculated. We

speculate that the previously described DMLN QPP involves brain

states corresponding to both DMLN-BFB and DMLN CAPs, where

the overlap of DMLN QPP segments with DMLN-BFB CAP would

be significantly higher than that with DMLN CAP, especially at the

pre-plaque stage.

In the LCN-Barrel CAP, anti-correlated to DMLN CAP and

strongly resembling the LCN, we observed highly localized

hyperactivations in somatosensory, auditory, and visual cortex

regions in the TG animals. These are indicative of increased

activation in the LCN, again corroborating previous findings (van

den Berg et al., 2022). Like the other spatial differences, genotypic

differences were most pronounced at the pre-plaque stage and

diminished at the early-plaque stage.

Temporal properties of CAPs showed few differences between

the genotypes, apart from theDMLN CAP.While mean duration of

the DMLN CAP increased from the pre- to the early-plaque stage

across both genotypes (Figure 5A), the occurrence percentage of

the CAP increased only in the WTs, but not in the TG animals

(Figure 5B). This suggests a healthy aging effect on the occurrence

of the DMLN CAP which is disrupted in the AD animals. In the

zQ175 DN mouse model of Huntington’s disease, recent work

employing a similar methodology (Adhikari et al., 2023) showed

reduced durations of two anticorrelated CAPs, characterized by

simultaneous co-activation of DMLN and co-deactivation of LCN

and vice-versa, compared to the wild-type mice. In this work,

multiple timepoints were investigated with only the final (10M)

timepoint indicating significant differences in temporal metrics. In

this light, we speculate that temporal metrics of the CAPs will be

subject to stronger genotypic effects of AD at later ages, potentially

involving other CAPs. Support for this hypothesis can be found in

another study (Ma et al., 2020), where CAPs were studied in healthy

elderly participants, patients with mild cognitive injury (MCI), and

AD patients, showing that average dwell time in the DMN-like CAP

showed a decreasing trend in AD.

Upon finding genotypic differences in both spatial and

temporal metrics of the CAPs, we aimed to investigate their

predictive power in identifying the genotypic status of the animals.

In line with the earlier findings using this approach in Huntington’s

disease mice (Adhikari et al., 2023), temporal properties of the

CAPs did not perform classification better than chance in the

current study. In contrast, classification using the spatial properties

resulted in a significantly more accurate prediction of the genotype

compared to the chance level. Interestingly, when stratifying the

classifier per age, we found that accuracy of prediction reaches

65% using spatial features of the CAPs at the pre-plaque stage,

but no significant improvement over the chance level at the early-

plaque stage. Since earlier research using CAP analysis in AD mice

at late-stage of AD development (18M) demonstrated near-perfect

classification accuracy using CAP spatial features (Adhikari et al.,

2020), we speculate that also in the TgF344-AD rat model, accuracy

will further increase at later ages. We suspect accuracy of 4-class

classification is lowered due to our timepoints being close (4M

and 6M), combined with the earlier observation that genotypic

spatial differences were less pronounced at the early-plaque than

at pre-plaque stage.

One of the key advantages of CAP analysis over other dynamic

FC methods is the additional dimension to characterization of

the dynamics, by not only revealing transient brain states and

investigating their spatial and temporal properties, but by also

characterizing and quantifying the transitions between them. One

finding of our CAP transition analysis is the consistent role of

the DMLN CAP as distinct attractor for both the DMLN-BFB

and deacLCN CAPs, across both genotypes and at both ages.

These transitions do not only show significant probabilities; other

transitions into the DMLN CAP have near-zero probabilities in

each of the subgroups. Interpretation of this finding is two-fold.

First, tying in with the earlier characterization of the DMLN-

like CAPs (DMLN and DMLN-BFB), involvement of the BFB

with the DMLN seems to be tied to a specific brain state that is

separate from pure DMLN activity alone, but both states have a

high affinity toward each other. Second, pure DMLN activation

state rarely occurs directly out of LCN activity, but rather through

more intermediate states; either the pronounced deactivation of the

LCN (deacLCN) or the DMLN state with high involvement of the

BFB (DMLN-BFB).

At the pre-plaque stage, the transition from DMLN to DMLN-

BFB occurs significantly in the WTs (Figure 7A) but not in the

TG animals (Figure 7B), in which its probability is significantly

lower (Figure 7C). Moreover, while DMLN→ DMLN-BFB is the

only significant outgoing transition from the DMLN in pre-plaque

WTs, the main outgoing transition from DMLN in TGs is directly

to the LCN. This builds on observations of altered DMLN FC in
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AD patients (Greicius et al., 2004; Wang et al., 2013) and reduced

segregation between DMN and TPN (Belloy et al., 2018b), with

the current CAP analysis indicating an AD-induced shift in the

flow of brain states involving the DMLN already at the pre-plaque

stage. Additionally, we observe an increased probability of the

DMLN-BFB→ deacLCN transition in the TG animals.

At the early-plaque stage, transition probabilities are no longer

different between the genotypes. Here, however, we observe a

striking difference in the directionality preference of transitions.

In the WT animals, besides the DMLN→ CPu transition (1/11),

none of the significant transitions exhibit directionality preferences.

The TG animals exhibit directionality preference in seven out of

their 11 significant transitions. This suggests an altered rigidity

of brain state flows, where TG animals seemingly exhibit more

rigid transition patterns compared to the more flexible flow of

brain states in the WTs. A modeling study, based on activity flow

over altered intrinsic functional connections in AD, has previously

reliably predicted task activations and related dysfunction in

individuals at risk for AD (Mill et al., 2020). They proposed a

mechanism where alterations in FC associated with AD would

disrupt the flow of activations between regions, in turn leading to

aberrant task activations. Our findings support the hypothesis that

the resting-state flow of activations is altered, already at the very

early stages of AD.

Comparing the current work to a previous study investigating

persistence and transition probabilities in awake and anesthetised

mice (Gutierrez-Barragan et al., 2022), we observe a few differences

with our findings, which we can partly explain by the higher

percentage of persistent transitions we detect. We observe that

about 85% of our transitions are persistent, reflected in the

longer durations of our CAPs while Gutierrez-Barragan et al.

(2022) find that about 60% of transitions are persistent. They

also find a much larger variability in the values for persistence

probabilities across CAPs compared to our study. Like our earlier

findings and those of other groups (Anckaerts et al., 2019; Tudela

et al., 2019; van den Berg et al., 2022), most of the spatial and

temporal differences we can detect are mostly present at the pre-

plaque stage but diminished in the early-plaque stage. This overall

trend remains true for the transition probabilities; however, we

can further nuance this finding with the observed alterations in

directionality preference at the early-plaque stage. This nuanced

characterization of brain connectivity dynamics, inherent to CAP

transition analysis, elucidates new insights into early alterations of

intrinsic brain connectivity in AD.

Our study, while providing interesting insights, has several

limitations. Our analysis was confined to male subjects only, which

may limit the generalisability of our findings across genders. We

used males only to limit variability and the number of animals

required, however, sex differences in disease progression have been

shown in humans (Webber et al., 2005) and AD models (Mielke,

2018), alongwith differences in pathological severity and behavioral

deficits (Chaudry et al., 2022). We scanned under isoflurane and

medetomidine anesthesia, which is known to reduce FC in in

subcortical areas. Previous research indicates that FC under this

anesthesia protocol closely resembles the awake state (Paasonen

et al., 2018) and results in the most specific FC data compared

to other protocols (Grandjean et al., 2023). However, a recent

study comparing CAPs in awake and anesthetised mice brains

has revealed significant alterations in topography of coactivations,

their occurrences and temporal trajectories (Gutierrez-Barragan

et al., 2022). Co-activation of the BFB specifically was shown to

be present in the anesthetized state, but less strong compared

with the awake state. Another study investigating the effects

of anasthesia in mice indicated differences both in static and

dynamic FC (Tsurugizawa and Yoshimaru, 2021). Additionally,

while our findings provide important insights into early-stage AD,

the absence of direct behavioral outcomemeasures limits our ability

to connect these neural changes to specific cognitive or behavioral

symptoms. Finally, the use of BOLD signal as indirect measure

of neural activity does not capture the entire scope and interplay

of neural and hemodynamic alterations in AD. These limitations

underscore the need for ongoing studies to further elucidate the

complex relationship between hemodynamic, neural changes, and

behavioral outcomes in AD pathology.

In conclusion, our study utilizing resting-state CAPs in the

TgF344-AD rat model offers novel insights into altered brain

functional dynamics at the early stages of Alzheimer’s disease

(AD). We have validated key differences in the activation patterns

and transitions of brain networks, particularly the DMLN and its

interaction with the BFB, which are indicative of early disruptions

in network dynamics associated with AD. Our findings confirm

that these disruptions are most pronounced during the pre-plaque

stage and tend to diminish as the disease progresses to the early-

plaque stage. The DMLN-BFB and DMLN CAPs provide a deeper

understanding of the interplay between different brain regions

and their role in disease progression. Furthermore, our results

underscore the potential of CAP analysis in predicting genotypic

status based on spatial features, especially in early disease stages.

This study not only corroborates previous findings on altered

functional connectivity in AD but also advances our understanding

of the nuanced changes in brain state transitions, offering a more

detailed picture of the neurodegenerative process at the onset of

plaque formation. Our approach, therefore, holds promise for early

detection and better understanding of functional impact of the

pathophysiology of AD, that may be relevant to assess the effects

of potential therapeutic/disease-modifying interventions.
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