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The visual scrutinization process for detecting epileptic seizures (ictal patterns) 
is time-consuming and prone to manual errors, which can have serious 
consequences, including drug abuse and life-threatening situations. To address 
these challenges, expert systems for automated detection of ictal patterns have 
been developed, yet feature engineering remains problematic due to variability 
within and between subjects. Single-objective optimization approaches yield 
less reliable results. This study proposes a novel expert system using the non-
dominated sorting genetic algorithm (NSGA)-II to detect ictal patterns in 
brain signals. Employing an evolutionary multi-objective optimization (EMO) 
approach, the classifier minimizes both the number of features and the error 
rate simultaneously. Input features include statistical features derived from 
phase space transformations, singular values, and energy values of time–
frequency domain wavelet packet transform coefficients. Through evolutionary 
transfer optimization (ETO), the optimal feature set is determined from training 
datasets and passed through a generalized regression neural network (GRNN) 
model for pattern detection of testing datasets. The results demonstrate high 
accuracy with minimal computation time (<0.5  s), and EMO reduces the feature 
set matrix by more than half, suggesting reliability for clinical applications. In 
conclusion, the proposed model offers promising advancements in automating 
ictal pattern recognition in EEG data, with potential implications for improving 
epilepsy diagnosis and treatment. Further research is warranted to validate its 
performance across diverse datasets and investigate potential limitations.
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1 Introduction

1.1 Background

Epilepsy, a neurogenic disorder characterized by abrupt and 
transient disturbances in the body, manifests through sudden electrical 
bursts within the brain. These recurrent electrical discharges are 
commonly referred to as “epileptic seizures” or “ictal events” and more 
colloquially as “fits.” According to the survey, more than 50 million 
people worldwide are affected by epilepsy, representing approximately 
2% of the global population (Moshé et  al., 2015; World Health 
Organization, 2024). Consequently, the diagnosis of epilepsy is one of 
the utmost concerns. The most prevalent and reliable method for 
diagnosing epilepsy to date is recording the brain signals, primarily 
electroencephalography (EEG). Electrocorticography (ECoG) is also 
important and is particularly used for surgical intervention. Brain 
signals are primarily visually inspected by trained neuro-clinicians or 
neurophysiologists (Banerjee et al., 2009; Duque-muñoz et al., 2014). 
However, even standard EEG recordings for diagnosing epilepsy can last 
between 30 min to 6 h, rendering the visual scrutinization process very 
time-consuming. EEG data are often contaminated by motion artifacts, 
background noise, and interfering patterns from other neurological 
disorders. In developing countries, where the availability of 
neurophysiologists is low, diagnosing epilepsy using EEG becomes even 
more challenging and prone to manual errors (Banerjee et al., 2009). 
This situation makes the diagnosis of epilepsy using EEG very difficult 
and increases the likelihood of manual errors (Schuyler et al., 2007; 
Gandhi et al., 2010, 2012). Misdiagnosis of epilepsy often leads to the 
administration of improper drugs, which can prove to be life-threatening 
for patients. Hence, there is a dire need to develop an accurate, 
computationally fast, and robust tool for the diagnosis of epilepsy.

1.2 State-of-the-art

Significant research efforts have been dedicated to developing 
expert systems for the automated detection of ictal patterns or epileptic 
seizures in EEG. This section discusses some of the key findings 
reported in this area. Early breakthrough studies, such as those by 
Gotman (1999), relied on mimetic techniques that utilized descriptions 
provided by experienced neurophysiologists, including attributes such 
as crest, sharpness measures, time durations, inclinations, and more. 
However, this method proved to be inaccurate due to the heterogeneity 
among ictal patterns. Subsequent automated diagnosis methods for 
epilepsy involved the application of various frequency-domain 

techniques, such as the fast-Fourier transform (Polat and Güneş, 
2007), and time-domain techniques, such as the empirical mode 
decomposition (Sharma and Pachori, 2015). Approaches based on 
FFT failed to capture the correct onset of ictal events due to their 
assumption of EEG as stationary despite its original non-stationary 
nature. The introduction of time–frequency domain techniques such 
as the short-time Fourier transform (Tzallas et al., 2009), especially 
wavelets (Gandhi et al., 2011; Swami et al., 2014; Faust et al., 2015; 
Edakawa et al., 2016; Swami et al., 2016a), aided in the development 
of many automated seizure detection models (Acharya et al., 2013).

Researchers have explored a wide variety of features for 
characterizing ictal patterns in EEG, including combinations of lower- 
and higher-order statistical parameters such as standard deviation 
(Gajic et al., 2015), kurtosis (Acharya et al., 2013), chaotic parameters 
such as correlation dimension and Lyapunov exponents (Tzallas et al., 
2009; Acharya et al., 2013), Shannon entropy (Gandhi et al., 2011; 
Swami et al., 2017), energy (Swami et al., 2014, 2016a), and many 
more. Earlier, there was a general assumption that increasing the 
number of feature sets would improve the machine learning (ML) 
model’s accuracy. However, ample evidence suggests that increasing 
the dimensionality of the feature matrix could increase the 
computational cost of the expert system, while some features may 
even decrease the accuracy of the ML model. Hence, feature 
engineering for epilepsy diagnosis can present a paradox. 
Consequently, many researchers opt to exclusively utilize deep 
learning (DL)-based methods. While these methods perform 
optimally when trained with sufficiently large annotated/synthetic 
datasets (Pascual et al., 2020; Srinivasan et al., 2023; Dash et al., 2024), 
practical applications often encounter scarcity of such datasets and/or 
face challenges with the “black box” nature of the model. This opacity 
seldom instills confidence in clinicians to adopt new computer-aided 
diagnosis (CAD) systems. Therefore, identifying the underlying issues 
hindering the adoption of CAD in clinical settings is paramount.

1.3 Identification of problem statement and 
novelty

Some seminal research efforts on optimal feature selection have 
yielded noteworthy results (Gandhi et  al., 2012). However, the 
majority of research endeavors focusing on feature optimization and 
selection have centered around a single objective function (Acharya 
et al., 2013; Dhiman and Saini, 2014; Dash et al., 2024), primarily 
aimed at enhancing the accuracy of expert systems. This often results 
in the development of models with either exceedingly slow 
computation times and high accuracy or rapid models with lower 
accuracy. Feature selection methods could provide a faster alternative 
(Nara et al., 2016; Krishnan et al., 2024); however, those methods 
usually do not solve multiple objectives. Additionally, the scalability 
issues of these models are frequently overlooked and often lead to the 
selection of a maximum number of features. This is an important issue 
for realizing practicability in clinical settings (Swami et  al., 2018; 
Tirumani et  al., 2018). A compromise between sensitivity and 
specificity rates has often been observed (Mormann et  al., 2007; 
Swami et  al., 2016a), rendering the replication and practical 
application of results in clinical settings challenging. The scarcity of 
extensive, annotated datasets further exacerbates these challenges. 
This research seeks to bridge the gaps between these extremes.

Abbreviations: EEG, Electroencephalography; ECoG, Electrocorticography; ETO, 

Evolutionary Transfer Optimization; EMO, Evolutionary Multi-objective 

Optimization; MAMF, Maximizing Accuracy while Minimizing Features; AI, Artificial 

Intelligence; ML, Machine Learning; DL, Deep Learning; NSGA, Non-dominated 

Sorting Genetic Algorithm; NDS, Non-Dominated Sorting; UoB, University of 

Bonn; NSC, Neurology & Sleep Centre; SRGH, Sri Ganga Ram Hospital; BCI, 

Brain-Computer Interface; MRA, Multi-Resolution Analysis; WPT, Wavelet Packet 

Transform; PSR, Phase Space Representation; SVD, Singular Value Decomposition; 

GRNN, Generalized Regression Neural Network; CA, Classification Accuracy; SN, 

Sensitivity; SP, Specificity; CT, Computation Time; MCC, Mathew’s Correlation 

Coefficient.
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Moreover, much of the literature in epilepsy research lacks a clear 
delineation of the procedure for constructing optimization functions, 
hindering future replicable research. The present study aims to 
demonstrate the application of evolutionary transfer optimization 
(ETO) (Tan et al., 2021) through an evolutionary multi-objective 
optimization (EMO) approach. The transfer optimization 
methodology is employed to train specific datasets, with testing 
datasets consisting entirely of out-of-sample signals. In this context, 
the EMO method employed is the non-dominant sorting genetic 
algorithm (NSGA)-II, aimed at simultaneously minimizing the 
number of feature sets and error rates. The knowledge transfer is 
directed toward minimizing classification error rates while 
maximizing accuracy and minimizing features, aligning with the 
concept of Maximizing Accuracy while Minimizing Features 
(MAMF). This concept can also be  applied to address a broad 
spectrum of not only neurological but also various real-
life challenges.

1.4 Brief about the next sections

The following section of this article outlines the materials and 
methods employed. It comprehensively details the datasets utilized in 
this study and endeavors to present a procedural execution 
methodology for developing an expert system. Subsequently, the 
subsequent section of this article presents the results and discussion. 
Finally, the conclusions section summarizes the significant 
developments from this study and discusses its future scope.

2 Methods

2.1 Datasets

Datasets from three different repositories were used in this study. 
The first dataset is freely available in the epilepsy EEG repository of 
the University of Bonn (UoB) (Andrzejak et al., 2001). The datasets 
within this repository have become a common benchmark for 
validating expert systems for detecting epileptic seizures. The datasets 
considered from this database are named set C, set D, and set E. Each 
of these subsets consists of intracranial EEG, i.e., electrocorticography 
(ECoG) segments acquired with a sampling rate of 173.61 Hz from five 
epilepsy patients, with each segment comprising 4,097 samples lasting 
for a duration of 23.6 s. The signals in set C were acquired from the 
region around the hippocampus location opposite the hemisphere of 
the epileptogenic zone, while the signals in set D were acquired from 
the epileptogenic zone. Both sets C and D consisted of interictal 
(non-ictal) events, whereas only the signals in set E consisted of 
epileptic seizure (ictal) events.

The second dataset considered in this study is available from our 
repository (Swami et al., 2019). The signals in this repository were 
collected from 10 epilepsy patients using the Grass Telefactor Comet 
AS40 machine. The acquisition was conducted at the Neurology & 
Sleep Centre (NSC) by a trained clinician under the supervision of a 
neurophysiologist. During acquisition, gold-plated scalp EEG 
electrodes were positioned according to the international 10–20 
electrode placement system. The data collected at 200 Hz from all 
channels were segmented into signals lasting for a duration of 5.12 s, 

comprising 1,024 samples. The subsets named interictal and ictal 
events were considered in this study.

The third dataset considered in this study was collected from the 
database of Sri Ganga Ram Hospital (SGRH). The signals downloaded 
from this repository were collected from 20 epilepsy patients (Gandhi 
et  al., 2011, 2012; Swami et  al., 2016a). The sampling rate during 
acquisition was fixed at 400 Hz, and the Grass Telefactor Twin3 EEG 
machine was used for acquisition. The data from all channels were 
segmented into signals lasting for a duration of 10 s, comprising 4,000 
samples. The subsets with interictal and ictal stages were considered 
from this database.

Samples of EEG segments from each of the three repositories are 
shown in Figures 1–3.

2.2 Feature engineering

The process involves utilizing domain knowledge of the signals/
datasets to extract a relevant set of attributes, referred to as features, 
which can then be  fed into the ML classifier. The entire feature 
engineering procedure of this study is outlined as follows.

2.2.1 Multi-resolution analysis (MRA) using 
wavelet packet transform (WPT)

This involves selecting the most relevant wavelet transforms that 
could completely characterize the signal. The wavelet coefficients Wi 
with subspaces S Wi i⊥ , i Z∈  satisfying the multi-resolution analysis 
(MRA) conditions. Unlike discrete wavelet transform (DWT), the 
double-branched architecture of wavelet packet transform (WPT) 
provides a much smaller separation between the frequency bands and 
aids finer analysis. This technique has proven effective over DWT 
(Swami et al., 2017). The wavelet coefficients of the last decomposition 
level were stored for extracting features. For signal x n( ), an 
orthonormal basis of Wi can be given by Ψ n( ), which is controlled by 
time shift and dilation parameters. Based on our previous findings 
(Gandhi et al., 2011), “Coiflets” mother wavelet with a single scaling 
function was selected in this study. The MRA using WPT was adopted 
in this study. In this method, a signal x n( ) is passed through a series 
of quadrature mirror filters (Gandhi et al., 2012; Swami et al., 2015a, 
2017). During this recursive process, details and approximations are 
fed into the next filters. The double-branched architecture of WPT is 
shown in Figure 4. As an example, the input signal with a sampling 
rate Fs = 200  Hz is fed into the WPT architecture in Figure  4. 
Resampling all input signals to a uniform frequency guarantees that 
the feature extraction is conducted consistently across signals with 
identical spectral characteristics (Frølich et al., 2015). Thereby also 
ensuring knowledge transfer. After the signal is fed into the WPT 
architecture, the frequency band for the input signal range between 
0 2− ( ) Fs /  Hz. If we denote the wavelet coefficient by Wf

l  where, 
l  is the decomposition level and f  is the index of the frequency band, 
then the signals are decomposed/downsampled by 2 into the details 
W1

1 (i.e., approximation with frequency band between 0 4− ( ) Fs /  
Hz) and W

2

1 (i.e., detail with frequency band between 
F Fs s/ /4 2( ) − ( )  Hz after the first decomposition level). Similarly, 

after l   = 2, the preceding W1
1 is decomposed into W

1

2 (i.e., 
approximation with frequency band between 0 8− ( ) Fs /  Hz) and 
W2

2 (i.e., detail with frequency band between F Fs s/ /8 4( ) − ( )  Hz). 
In addition, the W

2

1 is decomposed into W
3

2 (i.e., approximation with 
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frequency band between F Fs s/ /4 3 8( ) − ( )   Hz) and W
4

2 (i.e., 
approximation with frequency band between 3 8 2F Fs s/ /( ) − ( )   
Hz). This process was recursively continued till seventh decomposition 
level, thus generating 2l = 128 wavelet coefficients. It is very important 
that the length of the signal is sufficient to capture the ictal or non-ictal 
pattern (Behara et al., 2016).

2.2.2 Features derived from phase space 
representations (PSRs)

The visualization of phase space representations (PSRs) is useful 
for studying the dynamics and state of biomedical signals such as EEG 
(Sharma and Pachori, 2015; Swami et  al., 2015b,c; Anuragi et  al., 
2022). The 3D PSRs are calculated by using equation (1).

 

Phase Space Representations

, , ,

PSR
V V V

m

m m m= …



+( ) +{ }τ τ2

 
(1)

where, V  represents EEG vectors of signal x n( ), τ  represents 
the time lag, m M= … −1 2 2, , , τ , with total number of data points 
M . EEG signals are from elliptical paths, which are more 

irregularly shaped for ictal patterns (Swami et  al., 2016b). The 
irregularities in the elliptical paths were quantified by evaluating 
Euclidean distances between the delayed vectors using 
equation (2).

 
Euclidean distances ED V V Vm m m m= + +( )+ +

2
1
2

2
2

 
(2)

To highlight the differences between the Euclidean distances of 
the non-ictal versus ictal patterns in EEG signals, statistical features 
such as standard deviation SDpq or F1 (given by equation 3) and range 
(i.e., the difference between the maximum and minimum values) 
RNpq or F2 were calculated. Here, p is the number of segmented EEG 
signals and q is the number of wavelet coefficients (fixed to 128).

FIGURE 1

Example of signals from University of Bonn (UoB) datasets.

FIGURE 2

Example of signals from Neurology & Sleep Centre (NSC) datasets.
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Standard deviation values SD
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(3)

The SDpq and RNpq are computed from all the 128 coefficients 
and considered as features for classification tasks.

2.2.3 Singular value decomposition (SVD) features 
or F3

The singular value decomposition (SVD) is a tool for decomposing 
a matrix into its Eigenvalues, which is suitable for a non-square 
matrix. Hence, it is a useful measure for extracting the algebraic 
properties from large data such as EEG to study its dynamics. The 
SVD covariance matrix C is given by equation (4).

 SVD USVT=  (4)

Where singular values S diag N= … … σ σ σ σ1 2 3 0 0, , , , , ,  consists 
of a diagonal matrix with singular values σ σ σ σ1 2 3, ,, ,… N , while, 
U u u u u Ri

i i= … ∈
×

1 2 3, , , ,  and V v v v v Rj
j j= … ∈
×

1 2 3, , , ,  represent 
unitary matrices. The singular values were calculated for each 
coefficient of the last decomposition level, and the final matrix is 
denoted by SVDpq . Hence, 128 singular values are considered 
for classification.

2.2.4 Energy features or F4
The abrupt neuronal discharges during the episodes of epileptic 

seizures consume high energy levels of the brain. This creates a 
misbalance between the energy levels within the brain. Hence, the 
evaluation of energy (EN) features directly from the wavelet 
coefficients allows us to quantify the difference between the energy 
levels during non-ictal and ictal events (Swami et al., 2016a). In this 
study, EN features are computed from all 128 coefficients and 
denoted as ENpq.

Finally, the complete feature matrix was formed by the horizontal 
concatenation of all the 512 (128 coefficients × 4) features given by 
equation (5).

 F SD RN SVD EN F F F Fpq pq pq pq pq=   = [ ]1 2 3 4  (5)

Where p is the index for EEG segments, q is the index for features, 
and it equals 1, 2, 3, …, 512. For the selection of the optimum number 
of features, the entire feature matrix Fpq was provided as input to the 
evolutionary multi-objective optimization model.

2.3 Evolutionary multi-objective 
optimization (EMO) using non-dominated 
sorting genetic algorithm (NSGA)-II

The GA is an evolutionary computing algorithm that is based on 
biological evolution. In multi-objective GA, more than one objective 
is optimized simultaneously to achieve the best-compromised solution 

FIGURE 4

Double-branched architecture of wavelet packet transform (WPT).

FIGURE 3

Example of signals from Sri Ganga Ram Hospital (SRGH) datasets.
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(Deb, 2001; Smith, 2002). In this study, we have used the NSGA-II 
method for minimization of the number of required features and the 
error rate simultaneously. The steps involved in NSGA-II for 
minimizing the required objective functions are as follows:

 i Initialized random population pop for Fpq .
 ii Evaluated objective functions Oi. The first objective function 

O1 considered in this study is the minimum number of features 
required for the classification of non-ictal and ictal patterns. 
This is set randomly.

 iii The second objective function O2 considered is the mean error 
rate Er  after 10 iterations of randomized sub-sampling cross-
validation. The calculation of Er  and the randomized 
sub-sampling procedure are illustrated as follows:

 a Error rate Er( ): In this study, the Er  corresponds to the 
classification error for the segregation of non-ictal and ictal 
patterns. It is given by Fawcett (2006).

 Er CA= −100  (6)

Here, CA is the mean classification accuracy calculated using 
equation (7).

 CA TN TP FP FN TN TP= +( ) + + +( )  ×/ %100  (7)

Where TP represents true positive values,
TN represents true negative values,
FP represents false positive values, and
FN  represents false negative values.

 b Cross-validation by randomized sub-sampling: It is a statistical 
cross-validation procedure in which the original input data are 
randomly subdivided into training and testing sets. This 
process was iterated 10 times, and an equal number of training 

and testing sets were formed. During each iteration, the CA of 
the model was evaluated. Here, a generalized regression neural 
network (GRNN) (illustrated in the next section) was 
employed for classification. Finally, the mean CA (in %) was 
subtracted from 100 to evaluate the measure of mean Er  (in 
%), which formed the second objective of this study.

 iv Applied non-dominated sorting (NDS) to sort the pop. Each 
chromosome pop pop pop popn1 2 3, , ,…( ).  in the population was 
assigned rank along with its crowding distance. The crowding 
distance is the Euclidean distance between each individual in 
the front based on objectives.

 v Performed selection based on the crowded comparison 
operator <( )n .

 vi Generated offspring population popc  using cross-over and 
mutation operations (Heris, 2015).

 vii Evaluated objective functions for popc. During this process, the 
offspring population popc are combined with the current pop.

 viii The NDS was again applied and the selection of the individuals 
for the next iteration was performed based on rank and the 
crowding distance assigned.

 ix The next iteration is filled subsequently by each Pareto front. If 
by adding all the elements from a Pareto front, population size 
exceeds p (i.e., number of signals), then individuals from that 
Pareto front are taken based on crowding distance in 
descending order till population size reaches p.

 x Steps iv–ix are repeated until the algorithm converges.
 xi Once the algorithm converges, the Pareto front is made based 

on the chromosome’s rank and crowding distance. The solution 
is achieved based on tournament selection.

The rank 1 Pareto front of the University of Bonn (UoB) datasets is 
depicted in Figures 5, 6. Figure 5 resulted from subjecting the NSGA-II 
method to 500 iterations with a population size of 10, while Figure 6 was 
generated using the same method but with a population size of 20. The 

FIGURE 5

Non-dominant Solutions for University of Bonn (UoB) datasets when subjected to 500 iterations (ITE) and 10 population size (POP).
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selected solution after step xi is highlighted in both Figures  5, 6. 
Similarly, the results of the rank 1 Pareto front for the Neurology & Sleep 
Centre (NSC) datasets are presented in Figures 7, 8. Additionally, the 
results for the Sri Ganga Ram Hospital (SGRH) datasets are shown in 
Figures 9, 10. Figures 7, 9 were obtained when the NSGA-II method 
underwent 500 iterations with a population size of 10, whereas Figures 8, 
10 were generated with a population size of 20 under the same method.

2.4 Generalized regression neural network 
(GRNN) based classification

In artificial intelligence (AI), the classifier usually maps the function 
of input feature space to output class space. This could be mathematically 

expressed as f R Ra b: → , where f  represents the function, a is the 
dimension of input feature space, and b is the dimension of output 
feature. In neural networks, this mapping is achieved by the simulation 
of artificial neural clusters, such as the human brain. The GRNN model 
predicts the output/target class by predicting the probability density 
functions of the input data. GRNN has a memory-based architecture, 
and the solution is converged to the regression surface by following an 
asymptotic curve (Specht, 1991; Tomand and Schober, 2001). The 
parallel and one-pass learning architecture of the GRNN model is a lot 
faster than the recurrent neural networks.

The typical architecture of GRNN could be divided into four layers 
(shown in Figure 11). The input layer is the first layer of the GRNN 
model, which distributes the input data X  among all the neurons after 
scaling. The second layer is the pattern or hidden layer. It applies the 

FIGURE 6

Non-dominant Solutions for University of Bonn (UoB) datasets when subjected to 500 iterations (ITE) and 20 population size (POP).

FIGURE 7

Non-dominant Solutions for Neurology & Sleep Centre (NSC) datasets when subjected to 500 iterations (ITE) and 10 population size (POP).
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radial basis function to the probability density estimates. The spread of 
the radial basis function follows a Gaussian-shaped curve and is directly 
dependent on the value of the smoothing parameter σ . The measured 
values are passed into the next layer’s neurons, which consists of the 
summation units (one in the denominator and the other in the 
numerator). The denominator unit sums input weights dwj  for all the 
samples from the pattern layer’s neurons. Similarly, the numerator unit 
sums the weights nwj  for all the samples with actual targets of the 
pattern layer’s neurons. The final values of the numerator and the 
denominator have been indicated by ε1 and ε2, respectively. The final 
layer of the GRNN model acts like an accumulator, which divides the ε1 
and ε2 inputs to predict the output value Z X



( ). This value could also 
be expressed by assuming function f X Y,( ) as the probability density 
of random variables X  and Y . The density estimation is f X Y



,( ) for 

samples Χi and Y i , where i is the indices of the samples. The final 
predicted targets Y



Χ( ) for p number of signals is given by equation (8).

 
Y X Y
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(8)

Where scaling function  δi i T i2 = −( ) −( )Χ Χ Χ Χ .

Based on equation (6), the outputs are similarly updated for 
Y ′ ( )Χ  values.

Performance parameters: The following parameters were considered 
for evaluating the performance of the expert system developed:

FIGURE 8

Non-dominant Solutions for Neurology & Sleep Centre (NSC) datasets when subjected to 500 iterations (ITE) and 20 population size (POP).

FIGURE 9

Non-dominant Solutions for Sri Ganga Ram Hospital (SRGH) datasets when subjected to 500 iterations (ITE) and 10 population size (POP).
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Classification Accuracy (CA): It is the measure of the expert 
system to correctly classify the signals in the testing set as given by 
equation (7).

Sensitivity (SN): It is the statistical measure of the expert system to 
correctly classify the ictal patterns in EEG. It is evaluated by equation (9).

 
SN TP

FN TP
=

+





×100%

 
(9)

Specificity (SP): It is the statistical measure of the expert system to 
correctly classify the non-ictal patterns in EEG. It is evaluated by 
equation (10).

 
SP TN

FP TN
=

+





×100%

 
(10)

Mathew’s Correlation Coefficient (MCC): It is a balanced 
statistical measure that considers both the sensitivity and specificity 
values of the expert system. It is calculated using equation (11) 
(Jurman et al., 2012). The value varies from -1 to 1. The closer the 
value of MCC toward 1, the better the prediction (Jurman et al., 2012).

 
MCC

TP TN FP FN

TP FP TP FN TN FP TN FN
=

×( ) − ×( ){ }
+( ) +( ) +( ) +( )  

(11)

Computation Time (CT): It is the measure of the total time 
elapsed for classifying the signals in the testing set. In this study, CT 
was measured in s.

3 Results and discussion

In this study, datasets from three different repositories were 
evaluated for the classification of interictal (non-ictal) versus ictal 
patterns. Each dataset was decomposed into WPT coefficients, and 

various types of features were extracted, resulting in a total of 512 
features. These features underwent EMO using the NSGA-II method. 
The unoptimized and optimized feature sets were then inputted into 
the GRNN ML classifier. Performance parameters, including CA, SN, 
SP, MCC, and CT, were extracted. Subsequently, a one-way analysis of 
variance (ANOVA) was conducted across the results of each dataset.

In each of Tables 1–3, OF1 represents the optimum features 
selected for the specific dataset when NSGA-II was subjected to 500 
iterations and a population size of 10. Similarly, OF2  denotes the 
optimum features selected for the specific dataset when NSGA-II was 
subjected to 500 iterations and a population size of 20.

FIGURE 10

Non-dominant Solutions for Sri Ganga Ram Hospital (SRGH) datasets when subjected to 500 iterations (ITE) and 20 population size (POP).

FIGURE 11

Typical architecture of generalized regression neural network 
(GRNN).
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Table 1 presents the classification results of the datasets collected from 
the UoB database. A highly significant (p < 0.001) CA of 97.67 ± 1.57% was 
achieved using OF1 features from the UoB datasets. When the features 
were reduced to 171, a significantly high (p < 0.001) SN of 96.64 ± 2.34% 
was observed for OF2 . Furthermore, the MCC values were also highly 
significant (p < 0.001), measuring 0.94 ± 0.02 with OF2 features.

The feature matrix OF2 of NSC datasets was significantly reduced 
to only 165 features, yet the optimally selected feature sets produced 
significant results across CA and SN (Table 2). However, the MCC 
measure of OF1 proved to be more significant (p < 0.01) with a value of 
0.99 ± 0.01.

In contrast, the results in Table 3 did not yield any significant 
outcomes. Nevertheless, the optimally selected features were reduced 
to 216 with an error rate of 0.71% for OF1 and 180 features with an 
error rate of 0.68% for OF1.

Overall, the results indicate that the optimized features 
demonstrated significant or comparable performance to the complete 
feature sets. It was observed that OF2 features across all combinations 
were maximally reduced, suggesting that an increase in population 
size with the same iterations further reduces the feature sets.

4 Conclusion and future scope

This study successfully demonstrated the classification of interictal 
versus ictal patterns across three different datasets, achieving the 
objectives proposed in the introduction section. The computation time 

during all tests was less than 0.5 s, showcasing the applicability of the 
proposed expert system for real-time clinical settings. To ensure 
transparency of the expert system, the proven biological relevance for 
choosing each of the features extracted in this study was discussed along 
with the main mathematical formula. This also aimed to develop 
clinicians’ trust and adaptation to AI tools for future assistance.

A significant novelty of this study is the successful and methodical 
demonstration of ETO (Tan et al., 2021) for epilepsy diagnosis. While 
most existing literature achieves similar accuracy using only publicly 
available datasets, this study incorporates results from both public 
and private repositories, ensuring the generalization of the expert 
system. The MAMF concept assures the scalability of the 
expert system.

In the future, increasing the number of multi-objective 
functions to “many” could enhance performance and, 
importantly, the generalizability of expert systems. For example, 
this could be achieved by using NSGA-III. Additional objectives 
to consider may include improving statistical performance 
(Mormann et al., 2007; Tiwari et al., 2016; Swami et al., 2019; 
Anuragi et  al., 2022) while further reducing the number of 
channels required for diagnosis. This could be  extended with 
deep learning (DL) methods (Tang et al., 2024) and/or localizing 
the foci of epileptic seizures, thus addressing long-standing 
inverse problems (Swami et  al., 2016c,d; Gandhi et  al., 2024). 
This study was conducted using three datasets (as described in 
section 3.1); however, the total number of participants across all 
three datasets was 35 and the brain signals as annotated by 

TABLE 1 Classification results using University of Bonn (UoB) datasets.

Results using University of Bonn (UoB) datasets

Features O1 O2  (%)
CA (%) SN (%) SP (%) MCC CT (s)

F F F F1 2 3 4
512 5.67 94.33 ± 1.26 90.62 ± 5.75 96.91 ± 2.14 0.88 ± 0.03 0.028 ± 0.001

OF1 237 2.33 97.67 ± 1.57*** 96.03 ± 1.64 96.71 ± 2.04 0.92 ± 0.03 0.027 ± 0.001

OF2 171 2.60 97.40 ± 0.83 96.64 ± 2.34*** 97.66 ± 1.64 0.94 ± 0.02*** 0.028 ± 0.002

***means p < 0.001; **means p < 0.01; *means p < 0.05; ns means p-value is not significant.

TABLE 3 Classification results using Sri Ganga Ram Hospital (SGRH) datasets.

Results using Sri Ganga Ram Hospital (SGRH) datasets

Features O1 O2  (%)
CA (%) SN (%) SP (%) MCC CT (s)

F F F F1 2 3 4
512 1.56 98.43 ± 0.27 98.22 ± 1.25 98.65 ± 1.26 0.97 ± 0.08 0.072 ± 0.000

OF1 216 0.71 99.29 ± 0.02 98.75 ± 1.22 99.47 ± 0.82 0.98 ± 0.02 0.072 ± 0.001

OF2 180 0.68 99.32 ± 0.51 98.96 ± 0.99 99.10 ± 1.03 0.98 ± 0.02 0.072 ± 0.000

***means p < 0.001; **means p < 0.01; *means p < 0.05; ns means p-value is not significant.

TABLE 2 Classification results using Neurology & Sleep Centre (NSC) datasets.

Results using Neurology & Sleep Centre (NSC) datasets

Features O1 O2  (%)
CA (%) SN (%) SP (%) MCC CT (s)

F F F F1 2 3 4
512 1.36 98.64 ± 0.56 97.93 ± 0.76 99.40 ± 0.56 0.97 ± 0.01 0.475 ± 0.001

OF1 202 0.52 99.48 ± 0.31 99.24 ± 0.39 99.46 ± 0.52 0.99 ± 0.01** 0.475 ± 0.001

OF2 165 0.40 99.60 ± 0.28** 98.99 ± 0.52*** 99.55 ± 0.38 0.98 0.482 ± 0.006

***means p < 0.001; **means p < 0.01; *means p < 0.05; ns means p-value is not significant.
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clinicians and thereby classified using the proposed method were 
inter-ictal vs. ictal pattern recognition. Our group is also working 
on in-house annotation of signals collected from more 
participants and their real-time classification of pre-ictal 
patterns. This would be another class for the upgraded expert 
system. Furthermore, to increase the generalization and 
effectiveness of the model to detect different types of seizure 
patterns and non-epileptic clinical conditions manifesting 
seizure-like patterns, the future scope also includes annotation of 
such types of patterns and testing on continuous long-term brain 
signal recordings.
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