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Error-related potentials (ErrPs) are brain signals known to be generated as a

reaction to erroneous events. Several works have shown that not only self-

made errors but also mistakes generated by external agents can elicit such

event-related potentials. The possibility of reliably measuring ErrPs through non-

invasive techniques has increased the interest in the brain-computer interface

(BCI) community in using such signals to improve performance, for example,

by performing error correction. Extensive calibration sessions are typically

necessary to gather su�cient trials for training subject-specific ErrP classifiers.

This procedure is not only time-consuming but also boresome for participants.

In this paper, we explore the e�ectiveness of ErrPs in closed-loop systems,

emphasizing their dependency on precise single-trial classification. To guarantee

the presence of an ErrPs signal in the data we employ and to ensure that

the parameters defining ErrPs are systematically varied, we utilize the open-

source toolbox SEREEGA for data simulation. We generated training instances

and evaluated the performance of the generic classifier on both simulated

and real-world datasets, proposing a promising alternative to conventional

calibration techniques. Results show that a generic support vector machine

classifier reaches balanced accuracies of 72.9%, 62.7%, 71.0%, and 70.8% on

each validation dataset. While performing similarly to a leave-one-subject-out

approach for error class detection, the proposed classifier shows promising

generalization across di�erent datasets and subjects without further adaptation.

Moreover, by utilizing SEREEGA, we can systematically adjust parameters to

accommodate the variability in the ErrP, facilitating the systematic validation

of closed-loop setups. Furthermore, our objective is to develop a universal

ErrP classifier that captures the signal’s variability, enabling it to determine the

presence or absence of an ErrP in real EEG data.
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error-related potential (ErrP), adaptive brain-machine (computer) interface, generic

decoder, ErrP classifier, EEG, SEREEGA, simulation

1 Introduction

Brain-computer interfaces (BCIs) are systems developed to allow communication

between the brain and external devices. They are widely applied for the rehabilitation

or assistance of patients suffering from motor impairments caused, for example, by

an amputation, spinal cord injury, or stroke (Soekadar et al., 2015; Abiri et al., 2019;

Kumar et al., 2019). Due to its good temporal resolution, reduced cost, and usability,

electroencephalography (EEG) is currently the most popular technique used for recording

neural activity in the development of non-invasive BCIs (Kumar et al., 2019).
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Based on the recorded EEG data, different brain signals types

can be decoded and used to control an external device (e.g., a

prosthetic arm). The specification of the experimental paradigm

to use will define which mental task the BCI user is supposed

to perform and which kind of stimulus is to be presented by the

BCI to elicit the brain signals of interest. Common BCI paradigms

are based on event-related synchronization/desynchronization

(ERS/ERD), steady-state visual evoked potentials (SSVEPs), or

P300 potentials (Abiri et al., 2019). The decoding of brain activity is,

however, still a challenging task, and optimal performance is usually

not achieved.

To improve their BCIs, recent works have proposed using

a specific neural activity signal generated during performance

monitoring and referred to as error-related potentials (ErrPs)

(Xavier Fidêncio et al., 2022). ErrPs are the neural signature of error

processing in the brain, elicited not only by self-made errors but

also error made by an external system. Different BCI paradigms

can be used to elicit them (for a review, see Chavarriaga et al., 2014;

Kumar et al., 2019; Xavier Fidêncio et al., 2022), and these signals

can be used, for example, to correct a mistakemade by the interface.

Seven different types of ErrPs are usually reported in the BCI

literature. Self-made errors are called response ErrPs (Blankertz

et al., 2002; van Schie et al., 2004), feedback ErrPs inform about

the outcome of a choice (Miltner et al., 1997; Chavarriaga et al.,

2014) and target ErrPs reflect the response to unexpected changes in

the task (Diedrichsen, 2005). Most common in BCI are interaction

ErrPs (Ferrez and Millán, 2005, 2008b), evoked when the system

misinterprets the user’s intention, and observation ErrPs, which

are generated while the subject observes a system over which they

have no control making a mistake. Lastly, execution and outcome

ErrPs have also been reported, reflecting unexpected movements

(Diedrichsen, 2005; Spüler and Niethammer, 2015) or undesired

outcomes (Krigolson et al., 2008; Spüler and Niethammer, 2015;

Kreilinger et al., 2016), respectively. For a comprehensive review of

the taxonomy and protocols used for each error type, please refer to

Xavier Fidêncio et al. (2022).

A current limitation in applying ErrPs to improve BCIs involves

their accurate classification on a single-trial basis. The implication

is that experimental protocols need to include a calibration phase

to collect a representative number of error trials to train a subject-

specific ErrP classifier. Only after training can this ErrP classifier

be applied online to provide feedback to the BCI. These calibration

sessions are time-consuming, usually between 20 and 30 min, and

might be toomonotonous and tiring for the subject. Existing results

applying transfer learning and leave-one-subject-out approaches

suggest that a generic ErrP classifier can be used to remove or

at least reduce the calibration time for new subjects. However, a

decrease in performance is still present when compared to the

baseline classifier trained for each subject. Therefore, this work

contributes to the existing literature toward a generic subject-

independent ErrP classifier.

We show the proof-of-concept of a generic error-related

potential classifier training framework. As (Iturrate et al., 2011;

Schonleitner et al., 2019), we expect that a generic model trained

with more subjects would better transfer to a new dataset as

the model could learn more subject-independent features while

focusing less on subject-specific characteristics, which would

improve generalization performance. We further hypothesize that,

by using a simulated dataset that meaningfully represents real-

data variabilities and deviations, it is possible to create a generic

ErrP classifier that generalizes to unseen real individuals with high

performance. Using simulated data for training allows flexibility

on the number of trials and subjects without limitations that can

occur in experiments with real participants, such as tiredness and

lack of focus. Additionally, the applied toolbox allows systematic

parameter changes to account for variability in the ErrP generation,

enabling a systematic evaluation of the classification framework

before deployment and establishing boundary conditions for a

successful closed-loop application.

The rest of this work is as follows: Section 2 reviews studies

that have proposed generic ErrP classifier or other strategies to

reduce calibration time. In sequence, we present the proposed

generic classifier training framework and describe the datasets used

in this study in Section 3. Section 4 presents our results. Finally,

we conclude this work with a brief discussion and overview in

Section 5.

2 Related work

To the best of our knowledge, only a few works have evaluated a

generic ErrP classifier to reduce or eliminate the calibration phase.

Iturrate et al. (2011) first proposed reducing the calibration time by

using inter-subject information. By applying a leave-one-subject-

out strategy, a Linear Discriminant Analysis (LDA) was trained

with the data of three subjects and tested in the remaining one. The

data in the interval [0.2, 0.8] s extracted from eight fronto-central

channels was first normalized and decorrelated (using principal

component analysis), and the r2 coefficient was applied for feature

selection. The trained subject-independent classifier achieved an

average accuracy of 70% over all subjects. For comparison, a

baseline decoder was trained using the decimated data from

channels FCz and Cz only and achieved 76% classification accuracy.

Their study also analyzed an adaptive calibration approach starting

with an initial generic classifier and updating each class mean based

on the newly labeled data from the testing subject. This approach

was tested using the same features as the baseline decoder, and

they report that it can be useful for some part of the training, as

accuracies stagnated after more trials were added.

In their follow-up work, the same authors attempted to reduce

the calibration time by applying a transfer between different tasks

instead. They proposed a latency correction algorithm to remove

variations in ERP latency between two experiments, and results

show that it is possible to train an observation ErrP classifier

in the data from a previous experiment, reducing calibration

time and with accuracies around 81.01% (Iturrate et al., 2012).

However, correcting for the delay in the ERP latencies between

two experiments was required, as only the between-tasks transfer

always performed worse than a baseline classifier (Iturrate et al.,

2014). Iturrate et al. (2013) also shows that an inter-task transfer

significantly reduces the ErrP detection accuracy. They also applied

the supervised adaptation strategy as proposed by Iturrate et al.

(2011), and it improved the classifier transfer as more trials from
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the target class were used, but it did not outperform the baseline

classifier trained in the target data only.

Kim and Kirchner (2016) tested a classifier transfer between

different error types within the same subject to reduce calibration

time. They used observation ErrPs for decoder calibration and

interaction ErrPs for testing, which allowed the collection of

more training trials. After spatial-temporal filtering using xDAWN

(Rivet et al., 2009) and time-domain features extraction, a linear

Support VectorMachine (SVM) classifier was trained. The classifier

achieved a balanced accuracy of 79% across all subjects, but for

four (out of eight) subjects, the transferred classifier performed

worse than a subject-specific classifier. Performance was, however,

better than when applying a leave-one-subject-out strategy with

interaction ErrP data for training (75%).

Bhattacharyya et al. (2017) proposed an ensemble of an LDA,

a quadratic discriminant analysis (QDA), and a logistic regression

(LR) as a generic ErrP classifier. The features for the classifier

were based on the filtered, baseline-corrected, downsampled, and

normalized data from 35 selected channels and task-related features

(such as session and feedback number). The generic classifier

trained on the data of 16 subjects and tested on 10 independent

subjects achieved an accuracy of 73.97% and an f1-score of 83.53%.

A generic shrinkage LDA (rLDA) classifier for the

asynchronous ErrP detection was proposed by Lopes-Dias

et al. (2019, 2020). They recorded data from 15 subjects and

applied a leave-one-subject-out approach based on time-domain

features. They found no significant differences in the comparison

between the generic and a subject-specific rLDA in terms of true-

positive and true-negative rates (subject-specific: TPR = 70.0%,

TNR = 86.8% and generic: TPR = 72.6%, TNR = 87.9%).

They also observed that, while for some above-average subjects,

the generic classifier performed worse, for below-average ones,

classification performance was even higher than when using the

subject-specific classifier.

Lastly, Schonleitner et al. (2019) also proposed a generic

rLDA classifier trained on available data from other subjects. They

performed a comparative study between a generic model and its

adapted version using both supervised and unsupervised strategies

against the subject-specific decoders. The generic classifier was

obtained by averaging the parameters of 100 rLDA models

trained on a balanced dataset, obtained after downsampling the

majority class. Time-domain features given by signal mean in

ten partially overlapping windows were used for classification.

For their experimental data from 12 subjects, the subject-specific

classifier achieved a balanced accuracy of 88.3%, and the generic

classifier showed an inferior performance (72.7%). As expected,

their supervised adaptation shows that using labeled trials from

the unseen subject can significantly improve the generic classifier

accuracy and achieve results almost equivalent to the optimal

subject-specific decoder (84.3%). The problem with this approach

is the need for labeled ErrP trials of the new subject. On the

other hand, the unsupervised adaptation of the generic classifier

led to an overall worse result in their analysis (68.5%), only

working for some subjects. Further analyses indicated, however,

that unsupervised adaption can be beneficial if the initial general

model accuracy is above the mean accuracy found (>72.7%). This

reduced performance is also understandable, considering that the

label used for classifier adaptation was dependent on the current

adapted model accuracy, which is uncertain.

3 Materials and methods

The classification of ErrPs involves distinguishing between the

error and the correct conditions on a single-trial basis. We propose

a novel training framework based on simulated subjects as an

attempt to remove the calibration phase required to train an ErrP

classifier. Our hypothesis is that, as data simulation allows us the

flexibility to generate a large dataset for training with less effort

(more trials and subjects), if the effects of the error-related neural

activity can be realistically simulated, then a classifier trained in

this dataset should be able to capture the relevant features for this

classification task, such that for new unseen real-subject, it would

perform well, with no or little performance loss. Details on the

framework implemented are described in the following sections.

3.1 Simulated ErrP datasets

To demonstrate the feasibility of the proposed classifier training

approach, we simulated an interaction ErrP, considering that this

error type is common in BCI applications. The EEG data was

simulated using the open-source toolbox SEREEGA (Krol et al.,

2018, version 1.5.01), which allows the simulation of event-related

epochs with known ground truth. The EEG data simulation is based

on the forward problem of EEG: starting with a forward model, we

can define brain sources with different activation patterns, and by

projecting these activation patterns onto the scalp surface, the EEG

data is generated (for details, please refer to Krol et al., 2018). An

overview of the parameters used and the available options in the

toolbox can be seen in Figure 1.

In SEREEGA, it is necessary to simulate each experimental

condition separately. Therefore, to simulate ErrP data, the error and

correct conditions were generated individually. During human-

machine-interaction, the error condition exhibits the components:

P200-N250-P320-N450 (Ferrez and Millán, 2005, 2008b, 2009;

Omedes et al., 2015; Spüler and Niethammer, 2015). The correct

condition was simulated as a P270-N250-complex (Ferrez and

Millán, 2005; Omedes et al., 2015; Spüler and Niethammer, 2015).

The first step required is to select brain sources from a head

model. We used the New York Head Model (Huang et al., 2016)

lead field with 74.382 available sources. This lead field includes

default orientations and projection parameters that indicate how

an activation at a given source is projected onto each electrode.

The toolbox allows sources to be obtained based on exact MNI

coordinates, randomly or by indicating specific regions in the

brain. We selected the sources’ centers for each component based

on reported locations (Ferrez and Millán, 2008b; Omedes et al.,

2015; Spüler and Niethammer, 2015). The sources’ orientations

were defined empirically by inspection of the projection patterns

generated from randomly chosen orientations. The orientations

generating similar topography as reported by Ferrez and Millán

1 SEREEGA is available under: https://github.com/lrkrol/SEREEGA.
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FIGURE 1

Summary of the parameters used in the SEREEGA toolbox to generate the simulated ErrP dataset. (Left) The workflow and list of options the toolbox

o�ers, highlighting in bold the features used in this study. (Right) We summarize the parameter values used in this study.

(2008b, 2005, 2009) were selected, and a ±20% deviation was

randomly applied to produce variability across subjects.

The experimental conditions (error vs. correct) were simulated

as ERP classes. The error condition has evoked potentials centered

around 200, 250, 320, and 450 ms, with amplitudes of 20, −40, 50,

and −40 µV (at source level), and widths of 50, 50, 120, and 150

ms, after the findings from Ferrez and Millán (2008b) and Omedes

et al. (2015). For the correct condition, the negative peak is centered

at 450 ms, with amplitude−40 µV and width 150 ms. The positive

components consist of two peaks to simulate the slower, longer

effect visible in the grand average used as reference (inspired by the

P3b component from Krol et al. (2018). The peaks are centered at

270 and 350 ms, with widths of 200 and 250 ms and amplitudes of

20 and 10µV. Considering that only a few papers have reported the

correct condition grand average, and not all of them report these

ERP components, the probability of each peak being generated was

set randomly. For all other ERP components, the probability was

always set to 1, meaning the peak is generated in every trial.

To simulate variability across trials, for each subject, all

parameters (latency, width, and amplitude) were given a deviation

of 20% of their value, as done by Krol et al. (2018). Moreover, a

random latency shift of ±100 ms was applied to the entire ERP to

simulate shifts in the ERP latencies while keeping its overall shape.

Brown noise was also projected from 80 randomly selected sources,

at least 25 mm apart from each other, with an amplitude of 37.5 ±

0.5 µV to simulate background processes (Kobler et al., 2019).

In summary, the values for the trial-to-trial variability parameters

were kept consistent across subjects, but each trial was generated

independently. Therefore, the parameter values for each trial were

sampled within their respective ranges, considering the original

values and the variations defined by the parameters.

For all simulations, the data was projected onto the pre-defined

BioSemi montage with 64 channels. The sampling frequency was

set to 250 Hz, and epochs were 1.5-s long, including a pre-stimulus

period of 500 ms. In total, 1, 200 epochs were simulated per subject,

with an error rate of 20%, as is common in ErrP protocols. For

the training dataset, 15 subjects were simulated. An independent

validation dataset included 10 simulated subjects. To simulate

inter-subject variabilities, for each subject simulated, the source

locations were randomly sampled around the defined center in
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FIGURE 2

The experimental task used for the real-life data: the subject played the game by pressing either the “Alt” (for left) or “Altgr” (for right) keys on the

keyboard to control the snake’s direction to avoid collision with itself and collect as many points as possible. In each trial, if the subject pressed a key

to change the current movement direction of the snake, with a probability of 20%, the snake moved in the wrong direction (as depicted in Trial 2) to

elicit an ErrP.

a radius of 10 mm. Considering SEREEGA’s default behavior in

its current release, the simulation of a single dataset with several

trials is not equivalent to simulating multiple subjects. Therefore, to

achieve the mentioned spatial variabilities, we simulated multiple

subjects. Additionally, this approach also closely resemble real-

life datasets structures, in which data from several subjects are

included.

3.2 Real-life ErrP datasets

The trained classifier was also validated with real subject data.

We used the data we collected in two studies. The experiments

were not originally designed for this study, but as they contain ErrP

data, it is particularly suitable to use them. The studies involving

human participants were reviewed and approved by the Ethics

Committee of Medical Faculty of the Ruhr University Bochum. The

participants provided their written informed consent to participate

in the studies.

3.2.1 Experimental protocol
The first real-life dataset (dataset 1) used contains the data

collected in a study designed for interaction ErrP detection using

a simple task. The subjects played a modified snake game with

a keyboard (see Figure 2). Each subject was instructed to use

left- and right-hand index fingers to press two keys on the

keyboard (“Alt” and “Altgr,” respectively) in order to interact

with the game and control the snake’s movement. As in the

original version, the snake moves forward with a certain speed

(constant, in this study), it cannot move backward, and the goal

is to collect as many points as possible. The player has two

options to change the current movement direction: either to the

left or right (w.r.t. the current moving direction). In this task,

each trial is given by the keypress. To elicit ErrP, a fixed error

rate of 20% was used. The subjects played the game without

errors during a familiarization phase to avoid self-made errors in

the data. When subjects were confident about the key mapping,

they were allowed to play a few trials with an active error

rate to see what the real task would look like. Subjects were

instructed to observe whether the snakemoved in the direction they

wanted.

Ten healthy subjects (five male, age: 28.6 ± 6.0), all right-

handed with normal or corrected-to-normal vision participated in

this study. The data from two subjects had to be excluded due

to technical issues during recording. Additionally, the data from

one subject was excluded because they did not have proper sleep

the night before and reported being extremely tired and unfocused

during the recording. Therefore, the data of seven subjects (four

male, age: 26.6± 4.9) was analyzed in this study.

The second real-life dataset (dataset 2) includes the data

recorded while subjects played a modified version of the

snake game shown in Figure 2 adapted for motor imagery-

based control. The experimental protocol is described in the

Supplementary material. Interaction errors were artificially

introduced with a low rate of 5% to keep subjects motivated, since

the primary goal of this study was the collection of motor imagery

data, not ErrPs. The data from four subjects were not included in

this study. Details can be found in Appendix A. Therefore, in this

study we used the data from 13 healthy subjects (six male, age:
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25.6 ± 3.9), all right-handed, with normal or corrected-to-normal

vision to validate the generic classifier.

3.2.2 Data recording
EEG was recorded using two different systems to compare

their results in dataset 1. A dry Brain Products Xpress Twist EEG

system with 32 active electrodes (FP1, Fz, F3, F7, FT9, FC5, FC1,

C3, T7, FPz, CP5, CP1, Pz, P3, P7, O1, Oz, O2, P4, P8, FCz,

CP6, CP2, Cz, C4, T8, FT10, FC6, FC2, F4, F8, FP2) was used in

session 1. Data was recorded with a sampling rate of 1000 Hz, and

GND/REF electrodes were placed behind the ears. Session 2 used

a Neuroelectrics Enobio EEG system with 8 electrodes (FC1, FC2,

C3, Cz, C4, CP1, CP2, Pz), sampled at 500Hz and CMS/DRL placed

behind the right ear. Each subject participated in two recording

sessions performed on the same day, first wearing the dry and then

the wet EEG system, and 1200 trials were recorded per session.

The session order was chosen considering that after using the wet

EEG system the hair had to be rinsed. Exceptionally, subjects 4

and 7 needed their sessions to be recorded on different days. Details

about the experimental protocol for headset setup are described in

Supplementary material. In the dataset 2 recordings were done with

the wet EEG.

3.2.3 Data analysis
Data was preprocessed using EEGLAB (Delorme and Makeig,

2004), and the following steps were applied to each dataset, as

commonly used in the ErrP literature (Ehrlich and Cheng, 2016):

(1) Downsampling to 250 Hz. (2) Notch and band-pass filtering

using a zero-phase Hamming windowed sinc FIR filter with cutoff

frequencies of 1 and 20 Hz. (3) Automatic artifact channel rejection

and interpolation using the clean_rawdata and ICLabel (Pion-

Tonachini et al., 2019) plugins in EEGLAB, and (4) Re-referencing

to common average (CAR).

The data was further segmented around the movement onset of

the snake after a key press. This is the time when the user receives

feedback on whether it moved in the desired direction. Epochs were

extracted for the interval [−0.2, 0.6] s around the feedback onset.

Epochs containing automatic snake movements or collisions with

itself were excluded from further analyses. Table 1 summarizes the

events kept for each subject in each dataset.

3.3 Single-trial ErrP classification

For the single-trial ErrP classification, we applied commonly

used methods for feature extraction and classification as proof-

of-concept. As time-domain features are widely applied for

the classification of ErrPs, we computed the mean amplitude

in eight overlapping time slots as temporal features: [0, 100],

[100, 200], [150, 250], [200, 300], [250, 350], [300, 400], [350, 450],

[400, 500] ms w.r.t. the time-locking event. As the wet EEG system

used for the real-life dataset only has eight channels, the features

were calculated only for those.

The works reviewed in Section 2 have shown the feasibility of

using simple classifiers such as LDAs or SVMs for generic ErrP

detection. Therefore, an SVM classifier with a radial kernel was

applied as a proof-of-concept. Features were normalized over all

trials and used to train the classifier. Considering the unbalanced

nature of the ErrP classification, we used class weights as inversely

proportional to the class frequencies (Kim andKirchner, 2016). The

cost (i.e., regularization) and gamma parameters of the SVM were

optimized using Optuna (Akiba et al., 2019) and predetermined

values for the search: [10−6, 10−5, . . . , 106] and [10−5, 10−4, . . . ,

105], respectively. The balanced accuracy (arithmetic mean of true

positive and true negative rates) was used as a metric for classifier

performance evaluation and hyperparameter optimization. For

classifier evaluation, 10-fold cross-validation was applied. To

account for the class imbalance, the majority class was randomly

downsampled in the training samples. Testing was performed on

the imbalanced splits. Given the random sampling, the cross-

validation was repeated 10 times, and the results are reported as

the overall mean.

After training, the generic ErrP classifier was applied

to each validation dataset (simulated, dry, wet, and MI

+ ErrP), and no further parameter tuning was done.

The classifier performance is reported for each unseen

validation subject and compared to a subject-specific classifier

and a classifier trained using the leave-one-subject-out

approach. For dataset 2, as only very few error trials were

recorded for each subject, no subject-specific classifier was

trained.

4 Results

4.1 Neurophysiological analysis of the
real-life ErrPs

The overall grand average event-related potentials for the

correct and error conditions are shown in Figure 3 for the real-

life data recorded using the dry and wet EEG systems at channel

Cz. This channel was chosen following standard practice in the

error data analysis, considering that ErrPs show a fronto-central

distribution, with higher amplitudes expected at channels FCz

and Cz (Xavier Fidêncio et al., 2022). Baseline correction was

applied using the pre-stimulus interval [−0.2, 0] s, and the ErrPs

are given as the difference: error minus correct. For the dry

EEG, the ErrP ERP shows the following components: a positive

peak at 216 ms, a negative peak at 276 ms, a positive peak

at 252 ms, and a small negative peak at 508 ms. For the wet

EEG: positive peak at 192 ms, a negative peak at 252 ms, a

positive peak at 324 ms, and a small negative peak at 456 ms.

Significant differences between error and correct trials are present

in both cases. The observed ErrPs present waveform shape

consistent with other studies (Ferrez and Millán, 2005, 2008a,b,

2009).

As shown in Figures 3, 4, there are visible latency and amplitude

differences between the two ErrPs (dry vs. wet). A one-way within-

subjects ANOVA was performed to compare the ErrP measured

with the two EEG systems. We computed two separate ANOVAs

for peak amplitudes and latencies. For each subject, the most

prominent peaks in the following intervals were selected: positive

peaks at [50, 250] ms and [200, 400] ms and negative peaks at

[200, 400] ms and [400, 600] ms. We used the python library
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TABLE 1 Summary of the number of correct (c) and error (e) trials included in the real-life ErrP datasets for each of the subjects analyzed (n = 7 for

dataset 1 and n = 13 for dataset 2).

S01 S02 S04 S05 S06 S07 S10 Avg ± std

Dry
e 214 204 226 199 235 231 235 220.6± 13.8

c 962 965 961 977 951 940 948 957.7± 11.4

Wet
e 229 230 236 218 226 203 250 227.4± 13.5

c 957 941 956 952 957 865 929 936.7± 30.8

S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12 S13

MI + ErrP
e 35 32 32 44 13 30 29 21 29 24 21 39 22 28.5± 8.3

c 789 876 683 659 539 742 650 652 552 537 518 679 566 649.4± 108

pingouin (Vallat, 2018) and configured it to compute Mauchly’s

test of sphericity and correct p-values using Greenhouse-Geisser

when applicable, as also done by Iturrate et al. (2012) and Kim

and Kirchner (2016) while performing the same kind of ERP

comparison. Statistically significant differences were found only

for the P200 latency [F(1,6) = 14.008, p = 0.010], the N400

amplitude [F(1,6) = 40.030, p = 0.001] and both amplitude

[F(1,6) = 17.171, p = 0.006] and latency [F(1,6) = 174.519, p <

1e−4] of the P300 component. Whether these differences are

related to the EEG devices or the generated error-related activity

in each session would need to be further investigated, but this

falls out of the scope of this work. For the purpose of evaluating

the proposed generic classifier, both datasets can be applied.

Figure 3 also shows the interaction ErrP collected with a lower

error rate during the motor imagery-based control of the snake

game. The measured interaction ErrPs are consistent with related

works.

4.2 Neurophysiological analysis of the
simulated ErrPs

The overall grand averages for the simulated datasets are

shown in Figure 4. The observed ErrPs present waveform shape

consistent with the literature and reference results used for

simulation parameters choice, with positive peaks at 184 and

328 ms and negative peaks at 248 and 460 ms for the

simulated training dataset with similar values for the simulated

validation dataset. Figure 5 shows the ERPs for each condition

and subject for the simulated data used for training and

the real-life data measured with the dry EEG system for

comparison. It is possible to see the inter-subjects’ variabilities

in both datasets and expected similarities between simulated and

real data.

The topographic maps for the respective ErrPs shown in

Figure 5 highlight the expected frontal-central location of the error-

related activity in both datasets, especially for the positive peak

around 350 ms. For the negative peaks, the spatial location is more

clearly visible in the simulated data. However, a closer look reveals

that in both cases, as time passes, parietal areas becomemore active,

like around the last negativity at 450 ms, as expected (Ferrez and

Millán, 2008b).

4.3 Single-trial ErrP classification

For each validation dataset, the performance and comparison

between a subject-specific, a leave-one-subject-out, and the generic

ErrP classifier can be seen in Figure 6.

The subject-specific classifier was trained as a baseline for

comparison, and the parameters were also optimized using Optuna

(Akiba et al., 2019). The results obtained with a 10-times 10-fold

cross-validation are reported for the simulated validation and the

real-life datasets, respectively. The significance of the classification

results was evaluated using a cross-validated permutation test

(1,000 permutations), and all results reported are significantly

above chance level (p < 0.05). We also compared the accuracies

against results obtained with a classifier trained using a leave-one-

subject-out (loso) as described in the works listed in Section 2. In

this case, for each testing subject, the data from the other subjects

were used for training.

On average, the subject-specific classifier achieved a balanced

accuracy of 82.0% for the simulated data, 78.8% for the dry EEG

data, and 82.3% for the wet EEG data, and the generic classifier

shows balanced accuracies of 72.9%, 62.7%, and 71.0%, respectively.

These results are similar to what has been reported in the literature:

while applying a generic classifier for the ErrP detection seems

possible, it does not outperform a subject-specific classifier trained

with that subject’s data directly.

To test if the differences in the results are significant, we

performed a two-sidedWilcoxon signed rank test for both TPR and

TNR for each validation dataset. Results are shown in Figure 7 and

indicate that the classifier performances were significantly different,

except for the error class classification in the wet EEG data (p =

0.109). We also tested whether the generic classifier was worse than

the subject-specific using one-sided tests. Results indicate that the

generic classifier was significantly worse for all datasets and metrics

(sim: p = 0.014 for TNR, p < 0.001 for TPR; dry: p = 0.008 for

both TPR and TNR; wet: p = 0.016 for TNR), except again for the

error class in the wet EEG data (p = 0.055 for TPR).

The leave-one-subject-out classifier (loso) achieved balanced

accuracies of 69.6% for the simulated testing data, 71.2% for the

dry dataset, 72.6% for the wet dataset, and 77.9% for the MI +

ErrP experiment dataset. The generic classifier performs similar

to it in the simulated data for TPR (p = 0.062, one-sided test

for generic better than loso). This was expected, since both are
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FIGURE 3

Event-related potentials at electrode Cz were averaged over all subjects for each condition (error and correct). ErrPs are given as the di�erence

grand average (error minus correct) for each EEG type used for recording (dry and wet EEG systems) in real-life dataset 1. On the right, the ErrP from

the motor imagery and ErrP study (real-life dataset 2). On the bottom, the black background shows the time intervals with a significant di�erence

between error and correct trials (p < 0.05; corrected for multiple comparisons by false discovery rate (FDR) to avoid false positives). Results are

consistent with related works.

FIGURE 4

Event-related potentials at electrode Cz were averaged over all simulated subjects for each condition (error and correct). ErrPs are given as the

di�erence grand average (error minus correct). (Left) Simulated dataset used for generic ErrP classifier training (n = 15). (Center) Simulated dataset

used for classifier evaluation (n = 10). On the bottom the black background shows the time intervals with a significant di�erence between error and

correct trials (p < 0.05; corrected for multiple comparisons by false discovery rate (FDR) to avoid false positives). The simulated ErrP shows ERP

components as expected and according to the literature used as a reference for the simulation parameters. (Right) Comparison of ErrPs across

datasets (dry, wet, MI + ErrP, and simulated training data).

based on simulated data and on a leave-one-subject-out approach.

Surprisingly, the generic classifier performed significantly better for

TNR (p < 0.001, one-sided test). Our hypothesis is that using

more subjects for training contributed to the better generalization.

The comparison between the loso and the generic classifier on

the real-life data also shows similar performance for TPR for dry

(p = 0.656, one-sided test for generic worse than loso), wet (p =

0.891, one-sided test for generic worse than loso), and MI + ErrP

(p = 0.795, one-sided test for generic worse than loso) datasets.

This is a very relevant result, as it indicates that replacing real-

subject with simulated data for the generic classifier training is

possible for the error classification. On the other hand, the generic

classifier is significantly worse for TNR, also for both datasets (p =

0.008 for the dry, p = 0.023 for the wet, and p < 0.001 for the

MI + ErrP dataset). This lower performance for the correct trials

can be a direct result of the parameters used for the correct class

simulation. Defining these parameters were more difficult than for

the error class, since only few works report the ERP components

and respective possible source location. If more is known about the

signal generation, the simulation could be adapted accordingly and

classification results could be improved.

Overall, the single-trial classification results show that the

generic classifier performs significantly worse than the subject-

specific for all datasets tested. This result is in line with related

work described in Section 2, which systematically report that using

a generic classifier is possible, but it implies a reduced performance.
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FIGURE 5

Comparison of the event-related potentials at electrode Cz. (A, B) show each condition separately (error vs. correct) for each subject (blue lines) and

the overall average (black lines) for both simulated and dry datasets, respectively. (C, D) show the respective topographical distributions of the error

minus correct (ErrP) at the most prominent peaks. Note that all channels were used (64 for the simulated, and 32 for the dry EEG data).

On the other hand, when compared to a leave-one-subject-out

approach using the data from other subjects, the generic classifier

shows similar performance for the error detection. This highly

promising result validates our hypothesis that utilizing simulated

data can effectively decrease calibration time by substituting real

subjects typically employed for training the generic classifier.

Despite the visible high inter-subject variability in

performance, the generic classifier proposed shows some

promising generalization across different datasets and subjects,

considering that no further training or adaptation was applied.

Individual differences and their impact on classifier performance

and generalization need investigation. A deeper understanding

of the intra-subject variability and single-trial characteristics of

the ErrPs can also help to tailor generic classifiers with better

performance.

5 Discussion

This paper introduces a novel framework for training a generic

error-related potential (ErrP) classifier, focusing on the interaction

ErrPs crucial for Brain-Computer Interfaces (BCIs). The study

employs a Support Vector Machine (SVM) classifier for single-

trial classification, utilizing simulated EEG data generated with

SEREEGA and real-life data from a simplified snake game task. The

results indicate that the generic classifier performs effectively across

various datasets, although its performance, for now, is not as high

as that of subject-specific classifiers.

The simulation parameters were based on well-established

literature results regarding the so-called interaction ErrPs (Ferrez

and Millán, 2005, 2008b, 2009; Omedes et al., 2015; Spüler and

Niethammer, 2015). This ErrP type is particularly relevant for BCIs

because, as it is generated while the BCI user perceives a mistake

made by the interface while interacting with it, it can be used

to improve its performance, for example, by error correction or

to drive error-based learning. For the single-trial classification of

ErrPs, a Support Vector Machine (SVM) classifier based on time-

domain features was used as a proof-of-concept, as related work has

already shown the feasibility of using such methods for the error

classification.

The generic classifier was validated using unseen simulated and

real-life data and compared to a subject-specific classifier trained on

these datasets. Ten independent subjects not seen during training

were simulated for validation. Two real-life datasets were used to

validate the classifier performance. In both experiments, subjects

played a simplified version of the snake game. Dataset 1 contains

the data from ten subjects, recorded in two sessions using different

EEG devices for their comparison. Dataset 2 contains the data from
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FIGURE 6

Classification performance for the subject-specific, leave-one-subject-out, and generic classifiers obtained for each dataset used for validation:

simulated (left, red plot), dry EEG (middle, green plot), wet EEG (middle, blue plot), and MI + ERRP (right plot) datasets. As expected, the

subject-specific classifiers show the highest performance for all datasets. Note that for the MI + ErrP no subject-specific classifier was trained

because the error rate was only 5%. However, the generic classifier shows promising generalization across datasets and subjects. While it performs

worse than the subject-specific models, its accuracies are similar to the loso approach for the error detection. Note that the error class is the positive

class (TPR, true positive rate; TNR, true negative rate; bACC, balanced accuracy). All classification results are significantly above the chance level

(p < 0.05).

FIGURE 7

Performance comparison between generic, leave-one-subject-out (loso), and subject-specific classifiers in terms of TNR, TPR, and bACC (± STD).

Significant test results of a two-sided Wilcoxon signed rank test are shown for each dataset.

13 subjects collected while they played an adapted version of the

snake game for motor imagery-based control (MI + ErrP).

Results show that the generic classifier is able to reach balanced

accuracies of 72.9%, 62.7%, 71.0%, and 70.8% on the simulated data,

the data recorded with a dry EEG system, the data recorded with a

wet EEG system, and the MI + ErrP experiment data, respectively

(Figure 6). Despite the visible high inter-subject variability in

performance, the generic classifier proposed shows some promising

generalization across different datasets and subjects, considering

that no further training or adaptation was applied. Compared

to the subject-specific classifiers (balanced accuracies of 82.0%,

78.8%, and 82.3%, respectively), the proposed generic classifier
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performed significantly worse. This decrease in performance is in

line with findings from related works that have proposed generic

classifiers based on leave-one-subject-out approaches (see results

reviewed in Section 2). A leave-one-subject-out approach applied

to the validation datasets achieved balanced accuracies of 69.6%

for the simulated testing data, 71.2% for the dry dataset, 72.6%

for the wet dataset, and 77.9% for the MI + ErrP dataset. The

generic classifier performed similarly to it for error detection (TPR)

but significantly worse for the correct trials classification (TNR).

This lower performance for the correct class can be explained

by the parameters used for the correct class simulation, which

were more difficult to define since only a few works report the

ERP components and respective possible source locations. As

more about the signal generation becomes known, the simulation

could be adapted accordingly, and classification results will likely

improve. The advantage of the proposed framework is that the

simulated data frees all subjects from amonotonous and exhausting

calibration phase and provides a ready-to-use decoder. In addition,

SEREEGA enables the systematic change of simulation parameters

to account for variabilities in ErrP signal generation, including the

probability of whether a signal should be generated. On closed-

loop frameworks using ErrPs for improvement, this allows their

systematic validation and establishing boundaries for their usage.

However, even though using generic classifiers for ErrP detection

seems possible, they did not achieve optimal results. Some aspects

can be considered to improve the performance of a generic ErrP

classifier based on simulated data.

Firstly, a deeper understanding of the inter-subject variability

and single-trial characteristics of the ErrPs is of key importance

to developing classifiers with higher performance. ErrPs are

commonly reported in terms of the difference grand average (error

minus correct) over all trials and subjects, if grand averages are,

at all, reported (Xavier Fidêncio et al., 2022). While this approach

provides information about the ERP shape of the ErrP signal, it

masks the inter-trial and between-subjects variabilities, which is

relevant for their single-trial-basis classification. Even fewer studies

provide additional analysis, such as topographical scalp distribution

and source localization. Additionally, it is also not very common to

perform the frequency-domain analysis of the ErrP. This frequency

information could be explored in the future, not only for frequency-

based features for classification but also to adapt the simulation

parameters and include these modulations.

The analysis of the data measured with two different recording

devices (dry and wet EEG systems) showed some significant

differences in the observed ErrPs for the same subjects in terms of

peak latency and amplitude. Figure 8A shows the notch-filtered raw

data recorded for one subject with both headsets, as an example.

Following the methods described by Mathewson et al. (2017), we

calculated the grand average frequency spectra over all subjects. For

each subject, Fast Fourier Transform was applied to 575 randomly

selected no-error (i.e., correct) epochs at channel Cz and averaged

to compute the participant’s spectra (Figure 8B). Both spectra show

the expected 1/f-like decay. As observed byMathewson et al. (2017),

there is a broad-band power increase for the dry EEG system.

The amplitudes are consistently higher across all frequency bands

when compared to the wet system, which is an indicator of higher

overall EEG signal amplitudes captured by the dry electrodes.

This observed behavior can often suggest potentially more noise

in the data, possibly due to higher electrode impedance or less

optimal skin-electrode contact inherent to dry electrodes. These

observations can also explain the decreased classification accuracies

for the data recorded with the dry EEG, despite the observed higher

amplitudes and the use of time-domain features.

A second estimate of the noise in the data recorded with each

EEG system was computed with the root mean square (RMS) for a

200 ms-baseline period before the feedback onset. The RMS can be

used as an estimate of the single-trial noise in EEG data because it

measures the average absolute difference of the voltage around the

baseline (Mathewson et al., 2017). To estimate the distribution of

the RMS values, 10.000 permutations were applied such that RMS

values were calculated for 575 randomly sampled correct condition

epochs, averaged over electrodes, trials, and subjects, in this order.

Figure 8C shows the histogram of the grand average single-trial

RMS values computed. The mean and standard deviation of the

RMS of each distribution is plotted in Figure 8D. The results show

a clear difference between each RMS distribution. The dry EEG

system (meanrms = 8.3396; stdrms = 0.0659) shows larger single-

trial noise levels when compared to the wet EEG (meanrms =

3.0799; stdrms = 0.0105).

Figure 9 shows the ERP images for each subject and recording

system. For each subject, we subtracted the average over all correct

trials from each error trial for channel Cz. The data was smoothed

over five consecutive trials for random noise reduction while

keeping the single-trial dynamics of the error signal. The resulting

potentials were then color-coded and stacked to construct the final

ERP image. In this case, it shows trials in their original order of

appearance during task performance (bottom to top). Below each

image is the average ERP over the plotted trials.

The individual ERP traces in Figure 9 show that the ErrP waves

resemble the overall grand averages (see Figure 3) for most subjects.

For subject S06 (dry), the overall ErrP does not clearly show

the expected positive and negative components in the waveshape

compared to other subjects (note that the data have the same scale).

The recording with the wet EEG system for the same subject S06

shows lower amplitudes, but the ErrP shape looks more similar to

the others. Another exception is subject S01, for whom not even

with the wet EEG, a clear ErrP with the expected waveshape is

visible as, for example, for subjects S02, S05, and S07 (wet).

The ERP images provide an additional overview of the single

trials behind the observed average ERP for each subject. A first

look comparing dry and wet systems suggests that the dry EEG

seems more susceptible to noise, which masks the individual

ERP components on a single-trial basis and could also explain

the higher amplitudes in the average ERPs. It is also possible

to see that, for subjects S01 and S06 (both dry and wet), the

ERP components are not as clearly visible (per trial) as, for

example, for subjects S05 or S07. Overall, the positive peak

around 300 ms seems to be generated in every trial with high

amplitudes for most subjects (more clearly visible in the wet

data). On the other hand, we consider that the other peaks are

not as clear on a single-trial basis, showing the inter-subject and

trial variabilities while they underwent the same experimental

task. It seems possible that only some single trials contribute

to the high peaks observed in the average ERP, highlighting the
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FIGURE 8

Dry and wet EEG signal quality (dataset 1): (A) Raw EEG data (notch-filtered) recorded with each headset for one subject. Only the common channels

across systems are depicted, using the same scale and time interval with respect to the start of the recording. (B) Single-trial spectra for channel Cz

computed using Fast Fourier Transform on 575 correct trials averaged over trials and subjects. (C) Histogram of the grand average root mean square

(RMS) values during the 200 ms baseline before feedback onset, for 10.000 permutations of 575 randomly selected correct trials. Values are averaged

over electrodes, trials, and subjects, in this order. (D) Mean of the permuted distributions shown in C. Figures (B–D) were produced following the

methods described by Mathewson et al. (2017) to perform the comparison between dry and wet EEG devices.

relevance of further investigating the error-related on a single-trial

basis instead of relying only on the averages over all trials and

subjects.

These variabilities could also be responsible for the differences

in the classification accuracies of both datasets. When comparing

the subject-specific classifiers, the one-sided Wilcoxon signed-rank

test showed that the TPR (percentage of error trials correctly

classified) was significantly better (p = 0.039) for the classifier

trained using the wet EEG data compared to the dry EEG data. The

generic classifier also performed significantly better in the wet EEG

dataset, but only for the TNR [percentage of correct trials correctly

classified, p = 0.008, one-sided test for generic (wet) better than

generic (dry)].

The ErrP waveshape also seems to vary across error types

and even similar tasks in terms of latencies, amplitudes, and

components (Xavier Fidêncio et al., 2022). How the experimental

task, recording device, error rate, and feedback type, not tomention

subject-related aspects such as anatomy, motivation, attention,

and fatigue, affect the generated ErrP has to be better quantified.

The more we know about the generation and overall waveshape

characteristics of the ErrP signal, the more realistically it can be

simulated. Our expectation is still if the simulated data represents
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FIGURE 9

ERP images for each subject and recording EEG devices at channel Cz. For each subject, the average over all correct trials were subtracted from

each error trial. After smoothing over five trials, the data was color-coded and combined into one image. First trial is at the bottom and last trial is at

the top of each plot. For comparison, all plots have the same scale. The vertical black lines denote the time t = 0 ms (feedback onset).

the ErrP activity in a very realistic way, then a generic classifier

trained only in the simulated data should perform at least as well

as a classifier trained on the data of a pool of real-subjects.

Secondly, the simulation can be improved by including other

aspects of EEG recordings. As other works using the toolbox

SERREGA have already shown, it is possible to simulate the

subject’s habituation to the stimulus and fatigue (Krol et al., 2018),

electrode shifts (Pawlitzki et al., 2022), or electrode pops, drifts, and

noise (Kobler et al., 2019; Kumaravel et al., 2022; Sujatha Ravindran

and Contreras-Vidal, 2023). Common EEG artifacts such as eye

blink andmuscle activity could also be included using a headmodel

that also has ocular and muscular sources, such as the HArtMuT

(Harmening et al., 2022). It is also possible to mix signal and

noise at different signal-to-noise ratios (SNR). How the generic

classifier accuracy is affected based on the chosen SNR will also be

systematically investigated in future works.

One could also argue whether a simple SVM classifier is the

best option as a generic classifier. Alongside LDA, this model is

widely used for ErrPs classification (Yasemin et al., 2023) and serves

as a good baseline for a proof-of-concept study. Recent works

have focused on the application of more complex classification

models for ErrP detection, mostly based on convolutional neural

networks (Behncke et al., 2018; Swamy Bellary and Conrad, 2019;

Gao et al., 2020). Interesting, however, is that little improvement is

reported. For us, this is also an indicator that the ErrP classification

accuracy is not only dependent on the machine learning technique

used. We believe that the conditions under which the error signals

are generated need to be better understood to guide the precise

specification of preprocessing and classification pipelines. We ask

ourselves, what if it is also possible that, on a single-trial basis, a

distinguishable error signal is not available at the scalp level? If

this would be the case, classification accuracies would already be

fundamentally limited.

Nonetheless, more complex models and other machine

learning techniques could be further investigated. The generic

model could be modified using adaptation techniques to

incorporate subject-specific information and improve the

classification accuracy, as shown in Schonleitner et al. (2019,

2020). The number of trials and subjects used for training should

also be evaluated, as well as the error rate used for the data

simulation. As mentioned by Schonleitner et al. (2019), training

data selection based on suitable similarity criteria could also be

investigated.

In summary, BCIs are usually designed for each subject and

require a subject-specific classifier to decode the brain signals of

the particular user. In BCIs that apply ErrPs to improve their

performance, the implication is that more than one subject-specific

classifier needs to be trained, increasing the calibration sessions.

Existing works suggest that a generic ErrP classifier can be used to

remove or at least reduce the calibration time for new subjects (see

works reviewed in Section 2). However, a decrease in performance

is still present when compared to baseline classifier trained for

each subject. Therefore, the purpose of this work is to contribute

toward a truly generic subject-independent ErrP classifier. For that,

we propose and validate a new framework for training a generic

ErrP classifier. Similar to the works reviewed, we apply an inter-

subject, intra-ErrP-type-transfer. On the other hand, we propose

using simulated subjects for the generic decoder training. Using

simulated data frees subjects from a tedious task and allows more

flexibility regarding the data to use for training. We hypothesize

that if the simulated data covers the inter-subject variabilities

underlying the ErrP generation, a generic classifier trained on this
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data will be able to generalize to unseen subjects with little or no

loss in performance.
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Appendix A

For four subjects recorded in the MI + ErrP experiment a prominent ErrP is also not clearly visible in the recorded data, as can be seen in

Figure A1. As neither a loso nor the generic classifier performed well in the data of these four subjects for the error detection, they were

removed from further analysis.

FIGURE A1

ERP images for the subjects recorded during the motor imagery and ErrP experiment at channel Cz (dataset 2). On the top we show the four rejected

subjects and on the bottom four subjects for whom a clear ErrP signal is visible for comparison. For each subject, the average over all correct trials

were subtracted from each error trial. After smoothing over five trials, the data was color-coded and combined into one image. First trial is at the

bottom and last trial is at the top of each plot. For comparison, all plots have the same scale. The vertical black lines denote the time t = 0 ms

(feedback onset).

Frontiers inHumanNeuroscience 16 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1390714
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org

	A generic error-related potential classifier based on simulated subjects
	1 Introduction
	2 Related work
	3 Materials and methods
	3.1 Simulated ErrP datasets
	3.2 Real-life ErrP datasets
	3.2.1 Experimental protocol
	3.2.2 Data recording
	3.2.3 Data analysis

	3.3 Single-trial ErrP classification

	4 Results
	4.1 Neurophysiological analysis of the real-life ErrPs
	4.2 Neurophysiological analysis of the simulated ErrPs
	4.3 Single-trial ErrP classification

	5 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References
	Appendix A


