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Speech decoding from non-invasive EEG signals can achieve relatively high

accuracy (70–80%) for strictly delimited classification tasks, but for more

complex tasks non-invasive speech decoding typically yields a 20–50%

classification accuracy. However, decoder generalization, or howwell algorithms

perform objectively across datasets, is complicated by the small size and

heterogeneity of existing EEG datasets. Furthermore, the limited availability

of open access code hampers a comparison between methods. This study

explores the application of a novel non-linear method for signal processing,

delay di�erential analysis (DDA), to speech decoding. We provide a systematic

evaluation of its performance on two public imagined speech decoding datasets

relative to all publicly available deep learning methods. The results support

DDA as a compelling alternative or complementary approach to deep learning

methods for speech decoding. DDA is a fast and e�cient time-domain open-

source method that fits data using only few strong features and does not require

extensive preprocessing.

KEYWORDS

delay di�erential analysis, non-linear dynamics, signal processing, speech decoding,

electroencephalography

1 Introduction

The field of speech decoding has made significant advances in recent years, yet current

technologies still suffer from major limitations in speed, accuracy, and practicality: brain-

computer interface (BCI) devices that utilize neural signals from invasive implants remain

inaccessible for the majority of their target user population, and devices that decode from

non-invasive electroencephalography (EEG) signals remain insufficiently fast with low

accuracy and a limited range of classification abilities.

The use of scalp electroencephalography (EEG) as neural inputs for speech decoding is

a non-invasive and affordable method that can be made widely available for both clinical

and non-clinical populations. Nonetheless, the sometimes poor quality of EEG signals

considerably limits the complexity of its applications; therefore, careful thought is required

to determine the best means to develop future real-world applications (Lopez-Bernal et al.,

2022). Different brain-computer interface (BCI) paradigms have evolved in the last decade
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for decoding from non-invasive EEG signals (Abiri et al., 2019).

Motor imagery paradigms are often employed, given the robust

nature of motor signals. Motor circuits play an integral role

in speech production and comprehension via the neuromotor

commands that are sent to muscles controlling speech articulation

(Liberman et al., 1967; Comstock et al., 2019).

Imagined speech paradigms will activate neuromotor signals,

although the signals may be less robust than when words or sounds

are mouthed or spoken. These paradigms are characterized by a

participant imagining the articulatory movements involved in the

generation of different target phonemes and words (Panachakel

and Ramakrishnan, 2021), which capitalizes on the fact that

imagining a movement will still lead to activation of the areas of

the brain involved in generating movements. An even more subtle

signal is generated by inner speech (also called internal speech

or covert self-talk), which involves participants thinking about

specific words, but without reconstructing the required articulation

to generate them. This approach offers additional challenges for

decoding due to the more complex and distributed nature of

the underlying neural activity (Nieto et al., 2022). Nonetheless,

imagined speech paradigms have proved popular, because they

are argued to represent the most naturalistic data that might be

easily produced by patients with locked-in syndrome (Cooney et al.,

2022).

EEG-based BCI devices currently involve paradigms that allow

for the selection of one item out of a set of commands or

sounds but are constrained in the scope and content of that

set, increasing the chance of successful decoding; when fewer

options are involved, the complexity of the decoding task is

decreased. That is, using fewer classes for decoding typically

simplifies acoustic and language modeling, while also reducing

ambiguity and computational requirements. Most imagined speech

EEG datasets contain relatively few classes, consisting of command

words (Alejandro Antonio Torres Garcia, 2012; Nguyen et al., 2018;

García-Salinas et al., 2019; Pawar and Dhage, 2023), vowels (/a/,

/e/, /i/, /o/, /u/) (Matsumoto and Hori, 2014; Min et al., 2016;

Pressel Coretto et al., 2017), or phonemes composed of different

articulatory features (Brigham and Kumar, 2010; Deng et al.,

2010; Zhao and Rudzicz, 2015). Naturalistic approaches are being

sought, but face challenges regarding within-subject inter-section

and inter-subject variabilities (Sharon et al., 2020).

The rapid expansion of deep-learning and signal processing

methods has led to promising state-of-the-art speech decoding

methods, with results that go far beyond near-chance level findings

(Pressel Coretto et al., 2017), as shown in Tables 1, 2 (for detailed

reviews, see Panachakel and Ramakrishnan, 2021; Lopez-Bernal

et al., 2022; Shah et al., 2022). However, comparing between these

methods and assessing how generalizable they are is currently a

difficult task because few papers make their data or code publicly

available (Shah et al., 2022). Furthermore, the datasets possess a

limited number of trials, participants, and classes, making it difficult

to assess their real efficacy. There is still a lack of well-established

benchmarks, and the reported evaluation metrics are limited to

accuracy (percent correct) in most cases (Shah et al., 2022), which

is an inadequate criterion for some datasets.

In this work, we aim to test a non-linear speech decoding

method based on delay differential analysis (DDA), a signal

processing tool that is increasingly being used in the analysis

of iEEG (intracranial EEG) (Lainscsek et al., 2017). DDA offers

a new approach that is computationally fast, robust to noise,

and involves few strong features with high discriminatory power,

unlike deep learning (DL) methods, which operationalize a huge

array of underlying features, making a true assessment of their

power and generalizability especially problematic when relying

upon small benchmarking datasets. What is more, DDA leverages

non-linear features of the data, which may be inaccessible to other

DL methods. We evaluate the performance of DDA classification

on two public imagined speech decoding datasets and compare

different DDA approaches, such as training and validation between

or across participants, in addition to varying window sizes.

Furthermore, the comparison of new decoding methods to

previous literature is made difficult by differences in the evaluated

datasets, validation methods, and performance metrics, as well

as the lack of code availability. We aim to address this gap by

providing a systematic review of our method relative to other past

decoding work on two benchmarking databases. We provide the

necessary code to reproduce our analysis, and discuss the most

adequate performance metrics for future speech decoding studies.

2 Materials and methods

2.1 Datasets

The two databases analyzed in this work were selected based

on the ease of access to their data online, their popularity

within the speech decoding community for benchmarking

purposes (Panachakel and Ramakrishnan, 2021), and the close

correspondence between their stimuli sets in terms of the types of

classification problems that are typically posed.

Dataset 1: UNL-CONICET database

The UNL-CONICET imagined speech database is an open-

access dataset published by Pressel Coretto et al. (2017). This

Spanish-language dataset provides two sets of stimuli that enable

decoding at the word or command level in addition to smaller

linguistic units: (i) six command words (up, down, left, right,

backward, forward), and (ii) five vowel phonemes (/a/, /e/, /i/, /o/,

/u/). The scalp EEG data consists of six channels, recorded from

active electrodes F3, F4, C3, C4, P3, and P4 and mounted according

to the 10-20 system. Reference and ground were placed on the

left and right mastoids, respectively. Signals were sampled at 1,024

Hz and acquired with an 18-channel Grass analog amplifier model

8-18-36 and a DataTranslation analog-to-digital converter board

model DT9816.

The dataset includes EEG signals from 15 participants who

performed a simple imagined speech task: after 2-s intervals

in which visual and auditory stimuli represented the target,

participants imagined the pronunciation of the given word (4

s), with 40 trials per target stimuli. Vowels were instructed to

be imagined throughout the whole 4 s. duration of the trial,

while the onset for imagining command words was given by a

sequence of three audible clicks. All trials were interleaved with rest

intervals of 4 s duration, in which participants could blink, move,

or swallow. The dataset also contains additional blocks (10 trials
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TABLE 1 Performance metrics for UNL-CONICET dataset (Pressel Coretto et al., 2017).

Work Method CV SD Problem Accuracy

Pressel Coretto et al. (2017) DWT + SVM/RF Train S1-S3, test on S4-S15 No
Vowels 22%

Words 19%

Cooney et al. (2019)
CNN 5-fold Yes

Vowels
33%

CNN + TL 5-fold + LOO No 36%

Cooney et al. (2020) CNN/DL Nested CV with HP optimization

Yes
Vowels 30%

Words 24%

No
Vowels 30%

Words 25%

Simistira Liwicki et al. (2022) CNN LOO
Yes

Vowels 35%

Words 29%

No Vowels 24%

Sarmiento et al. (2021) CNNeeg1-1 70% train/30% test
Yes

Vowels
66%

No 50%

Tamm et al. (2020)

CNN 5-fold CV Yes Vowels 24%

García-Salinas et al. (2018)

PARAFAC + SVM 10-fold CV (S01-S03) Yes Vowels 60%

Lee et al. (2020)

Siamese NN 5-fold CV Yes Words 31%

Lee et al. (2021)

Deep metric

learning

5-fold CV Yes Words 45%

Biswas and Sinha (2022)

DWT + CSP 5-fold CV Yes Words 41%

Current study

DE-DDA + SVM DE-DDA + 5-fold CV Yes
Vowels 37%

Words 34%

DE-DDA + SVM LOO No
Vowels 19%

Words 17%

CSP, common spatial pattern; DWT, discrete wavelet transform; TL, transfer learning; PARAFAC, parallel factorial analysis; LOO, leave one out.

per target) in which participants pronounced the words/vowels,

with simultaneous recording of EEG and acoustic signals. Only the

former imagined speech blocks will be used in the current work.

Taken together, the stimuli in total comprise 11 classes for one

decoding problem, or two problems with six (commands) and five

(vowels) classes. In this work, the latter was chosen because of the

difference in the command and vowel imagery blocks during the

task, and because it is the most common problem investigated in

the literature for this dataset.

Dataset 2: Kara One database

Kara One is an open-access database containing multi-modal

data recorded during imagined and vocalized speech prompts

(Zhao and Rudzicz, 2015). The study was conducted at the Toronto

Rehabilitation Institute, where scalp EEG, face tracking, and audio

recordings were collected. This database likewise provides two sets

of stimuli encompassing different linguistic levels: (i) words (pat,

pot, knew, gnaw), and (ii) phonemic syllables (iy, uw, piy, tiy, diy,

m, n). EEG signals were recorded with a 64-channel Neuroscan

Quick-cap, a SynAmps RT amplifier, and sampled at 1 kHz. A

Kinect sensor recorded the audio data and facial features during the

speech production stage. The multimodality (EEG, face tracking,

and audio) and versatility of this dataset make it one of the most

popular in the literature for speech imagery, BCI, and related fields.

EEG data were acquired from 14 participants. Each trial

consisted of successive periods, including (i) rest, during which

the participant clears their mind of any thoughts; (ii) prompt

presentation, where the text appears onscreen and its associated

auditory file is played simultaneously; (iii) articulation, during

which the participant silently articulates the prompt (2 s); and

(iv) imagined speech, in which the participant imagines speaking

the prompt without moving (5 s); and (v) production, when the

participant speaks the prompt aloud. Each of the 11 stimuli were

presented in 12 trials.

The dataset allows for different classification problems. Studies

utilizing this database most commonly investigate the binary

assignment of phonological categories into two classes: (i) two

vowel or five consonant (C/V) syllables; (ii) three bilabial (± Bilab.)

or four nasal (± Nasal) phonemes; and (iii) four high-front (± iy)

Frontiers inHumanNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1398065
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


C
a
rv
a
lh
o
e
t
a
l.

1
0
.3
3
8
9
/fn

h
u
m
.2
0
2
4
.1
3
9
8
0
6
5

TABLE 2 Performance metrics for Kara One dataset (Zhao and Rudzicz, 2015).

Work Method Training/CV SD Problem Accuracy AUC PPV Recall F1 score

Zhao and Rudzicz (2015) Statistical features + DBN/SVM LOO No

C/V 87

Nasal 63

Bilabial 57

iy 60

uw 82

Bakhshali et al. (2020) CSD Riemannian distance + KNN 80% train/20% test Yes

C/V 87

Nasal 72

Bilabial 69

iy 75

uw 84

Sun and Qin (2016) NN+RBM 70% train/30% test No

C/V 25

Nasal 47

Bilabial 53

iy 53

uw 74

11-class 42

Saha et al. (2019) CNN + deep autoencoder 80%/10%/10% No

C/V 89 0.86 0.65 0.75

Nasal 78 0.67 0.7 0.69

Bilabial 82 0.72 0.76 0.47

iy 87 0.86 0.78 0.82

uw 85 0.77 0.57 0.65

11-class 53

Cooney et al. (2018)

MFCCs + SVM 5-fold CV Yes 11-class 20

Rusnac and Grigore (2022a)

CNN 4-fold CV No 11-class 37 0.38

Rusnac and Grigore (2022b)

LDA+ CNNLSTM 4-fold CV No 11-class 44 0.44

Mini et al. (2021)

SMRT/MFCC/LPCC + PCA/ANN 10-fold CV Yes 11-class 77

(Continued)
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TABLE 2 (Continued)

Work Method Training/CV SD Problem Accuracy AUC PPV Recall F1 score

Bakhshali et al. (2022)

pCBCSD + SVM 10-fold CV (8 subjects) Yes 11-class 81.6

Alizadeh and Omranpour (2023) EM-CSP + KNN 10-fold CV No
11-class (one

vs. all)

97.3

binary 79.2–93.5

Hernandez-Galvan et al. (2023) CNN+GRU meta-training and testing No

C/V 99.9

Nasal 99.9

Bilabial 99.9

iy 99.9

uw 99.9

11-class 91.5

Current work

DE-DDA + SVM DE-DDA + 5-fold Yes

C/V 87 0.86 0.88 0.98 0.93

Nasal 77 0.81 0.76 0.60 0.65

Bilabial 79 0.82 0.76 0.63 0.68

iy 80 0.85 0.76 0.68 0.71

uw 93 0.87 0.73 0.41 0.51

DE-DDA + SVM LOO No

C/V 82 0.47 0.99 0.82 0.90

Nasal 65 0.49 – 0.08 –

Bilabial 65 0.49 – 0.15 –

iy 67 0.56 – 0.19 –

uw 91 0.52 – 0.01 –

EM-CSP, efficient multiclass common spatial pattern; GRU, gated recurrent unit; LPCC, Linear predictive cepstral coefficients; pCBCSD, partial Coherence-Based Correntropy Spectral Density; MFCC, Mel frequency cepstral coefficients; RBM, restricted Boltzmann

machine; SMRT, Sequency mapped real transform; RD-CSD, Riemannian distance of correntropy spectral density; SD, subject-dependent.
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or four high-back (± uw) vowels. Defining all stimuli as a unique

item for a decoding problem with 11 classes is also frequently

undertaken.

2.2 Delay di�erential analysis

Considering the challenges involved in scalp EEG speech

decoding, we propose to investigate delay differential analysis

(DDA) as a method for the quick, minimally-preprocessed,

and accurate classification of EEG signals in speech-decoding

paradigms. DDA (Lainscsek et al., 2019a,b, 2021) is a non-linear

signal processing technique based on embedding theory.

Traditional analyses are often based on spectral features

and thus have hundreds of features per data segment. Recent

approaches based on artificial neural networks increase the feature

space even further. DDA achieves a sparse feature space bymapping

data without subjective preprocessing steps, orienting to non-linear

features of the data. Meaningful, if not most, brain dynamics are

now assumed to be non-linear (Stam, 2005). Therefore, DDA is

efficient at embedding a meaningful set of dynamics within the

data in a minimal model, whereas more traditional analyses with

huge feature sets often require dimensionality reduction techniques

to achieve a viable number of features for decoding. As a result,

DDA has several advantages: it is noise-insensitive, less prone

to overfitting, and computationally fast, making it a useful tool

for analyzing neural data, particularly for BCI applications that

might optimally aim for real-time analysis (Lainscsek et al., 2017,

2019a,b,c, 2021).

Specifically, candidate sets of DDA models use differential and

delay embeddings for detection and classification tasks in time-

series data. The optimal model is determined by data type and the

delays are chosen according to a specific task. The DDA model

that is consistent with EEG data contains two linear one non-linear

terms, with two delays and is given by:

u̇(t) = a1 u(t − τ1)+ a2 u(t − τ2)+ a3 u(t − τ1)
2 , (1)

where u(t) is the neural time series and τ1,2 ∈ N are the delays

(Lainscsek et al., 2017). They are adjusted for a given participant

and channel in a supervised approach.While themodel is invariant,

it is the model’s coefficients and residual, in turn, that are used as

features to discriminate between classes in the decoding problem.

That is, the coefficients and errors approximate the underlying

dynamics of the analyzed system and may be used as features to

differentiate between classes in a time series dataset.

Several methods are available within the DDA framework,

which may be selected according to the demands of the

classification problem. Equation (1) is referred to as single-trial

DDA (ST-DDA) and is the backbone of the DDA framework. This

approach has been extended to capture the overall dynamics of

multiple time series simultaneously with cross-channel or cross-

trial DDA (CT-DDA) (Lainscsek et al., 2019c) and causality with

cross-dynamical DDA (CD-DDA) (Lainscsek et al., 2019a, 2023).

A combination of ST-DDA with CT-DDA can assess dynamical

ergodicity (i.e., dynamical similarity) from time series and is termed

DE-DDA (Lainscsek et al., 2021). In this work, DE-DDA is used

to extract features from the EEG, leveraging the spatiotemporal

aspects of the data that enable discrimination between the stimuli.

DDA features were extracted from each trial in two different

ways. The first approach is a single epoch after trial onset, yielding

a duration of 4 s for UNL-CONICET, and 500 ms for the Kara

One dataset. The second approach is a sliding window of 700 ms,

with 50% overlap to increase sensitivity to transients, and a better

overall feature representation. DDA coefficients are extracted from

all windows, and the resulting mean and standard deviation (across

windows) comprise the eight features that are used for classification

for each channel. The second approach was chosen as a good trade-

off between having few features and avoiding overfitting and having

more features that capture the varying dynamics that might occur

across imagined trials.

2.3 Classification and cross-validation

Two classification methods were evaluated in each dataset

with the aim to assess whether DDA succeeds better at detecting

common dynamics across subjects or individually. The first

involves subject-dependent (SD) models trained and validated with

DE-DDA, while the second is a subject-independent (SI) approach

with a leave-one-out (LOO) cross-validation (CV). In the latter, the

DDA delays and classification model are selected with all but one

participant, and then evaluation is performed with the remaining

data, and this is done successively for all participants.

After segmenting EEG data into trials, neighboring channels are

grouped into triples, yielding two triples for UNL-CONICET and

twenty for the Kara One dataset, from which DE-DDA coefficients

are extracted. The SDmethod makes use of the rich spatiotemporal

aspects of the DE-DDA coefficients to account for the small number

of trials found in the datasets. Specifically, trial permutations that

were randomized in time (see https://osf.io/d7m3n/ for technical

details) are used to extract the features for selecting the model and

defining the optimal DDA delay pairs [τ1 and τ2 from Equation (1),

ranging from 1 to 30 delay samples] for each participant. The

standardized features then serve as input to support vector machine

(SVM) (Cortes and Vapnik, 1995) classifiers, set with Gaussian

kernels (kernel scale set to 2), one-vs-one coding design, and

applied with 5-fold CV. From all models, the best delay pairs are

then ranked and the best is chosen. This SVM model resulting

from the best delay pair is now tested on the time-connected trials,

and the final performance of the model is evaluated. That is, non-

connected trials across channel triples are used for training (more

accurately, for DDA this is structure selection, see Comstock et al.,

2021) and validation, and time-connected trials are used as a test

set, from which performance metrics are calculated.

To assess inter-subject generalization, the SI method was

performed using only time-connected trials, grouping together data

from all participants and cross-validating with the LOO approach.

In this way, training and validation are implemented with all but

one participant. During training, the best delay pairs and SVM

classifier are defined. Testing is then performed with the remaining

participant added back into the data iteratively. Whether the model

will generalize across subjects will rely on how specific both the

DDA features and classifiers are across different participants.
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FIGURE 1

Classification results for the UNL-CONICET database. Boxplots (with

median, lower/upper quartiles, and whiskers showing 1.5

interquartile range) displaying accuracy values for two classification

problems: five vowels (/a/, /e/, /i/, /o/, /u/), and six command words

(up, down, left, right, backward, forward). Two window lengths are

assessed; 700 msec sliding window (blue), and 4 s single window

(orange). Each subplot shows the results across participants for two

methods: subject-dependent (SD, Top), using non-connected trials

for training and validation and connected trials for testing; and

subject-independent (SI, Bottom), which involves cross-subject

validation.

Classifier scores (or the likelihood that an observation belongs

to a certain class) from all channel triples are combined into a

mean score that is used for classification. Accuracy values are then

calculated for both datasets in order to allow our method to be

compared to other speech decoding algorithms. However, for the

Kara One dataset, the area under the receiving operating curve

(AUC-ROC) is better used as a performance measure, since the

evaluated classification problems of this dataset involve binary and

very unbalanced classes.

3 Results

All codes and the data required to generate the figures in this

work are available online https://osf.io/d7m3n/. DDA codes are

written in C, and MATLAB codes are used as wrappers to run the

DDA method, classification, and plotting.

Since the UNL-CONICET dataset involves a balanced multi-

class problem, performance was evaluated in terms of accuracy, as

shown in Figure 1. Values are displayed for the two classification

problems considered (vowels and words), and for different DDA

windows; single 4-s window, and a sliding window of 700 ms.

The two different classification approaches are also compared;

subject-dependent (SD), and subject-independent (SI). The latter

FIGURE 2

ROC curves for the UNL-CONICET database. ROC curves are

obtained by considering each classification problem (vowels and

words, one in each column) as di�erent one-vs.-all binary problems,

and averaging the resulting curves. Thinner and transparent lines

represent each participant, and thicker ones represent the mean

across participants for each case. Each subplot shows results for

two window lengths; 700 ms sliding window (blue), and 4 s single

window (orange). The first row shows the results for the

subject-dependent method (SD, Top), using non-connected trials

for training and validation and connected trials for testing, and the

second row shows the subject-independent (SI, Bottom) approach,

which involves cross-subject validation.

resulted in near-chance accuracies. Specifically, all SI results except

the 4 s window for words (p = 0.008) were not significantly

different from chance (20 and 16.66% for vowels and words,

respectively) according to one-sample t-tests with Bonferroni

correction (alpha = 0.0125). That is, the models are not

generalizable across participants. The SD method, on the other

hand, achieves accuracies of 33.6 and 36.8% for vowels, and

29.8 and 32.0% for words. For both classification problems, the

single-window approach results in a slightly better performance.

These differences also are observed with the receiver operating

characteristic (ROC) curves in Figure 2. Computing the area

under the curve (AUC) in each case, we also find a near-chance

performance for the SI case (mean AUCs of 0.50 and 0.49 for 700

ms and 4 s windows, respectively), and slightly superior values for

the 4 s window (0.67 for both vowels and words) compared with

the sliding window approach (0.64).

Similar procedures were used for decoding with the second

dataset. However, since it comprises different binary classification

problems, most of which are unbalanced, the choice of DDA delays

and subsequent presentation of results is made according to the

AUC. Thus, AUC values are shown in Figure 3, the respective ROC

curves in Figure 4, and additional metrics in Table 2. Once again,

the SI approach underperforms and does not achieve significant

above-chance performance levels according to one-sample t-tests
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FIGURE 3

Classification results for the Kara One database. Boxplots (with

median, lower/upper quartiles, and whiskers showing 1.5

interquartile range) displaying AUC values for the five classification

problems (C/V, ± Bilab., ± iy, nasal, and ± uw), and di�erent window

lengths (700 ms sliding window and 4 s single window). Each

subplot shows results across participants for two methods: (Top) SD,

using non-connected trials for training and validation and

connected trials for test, for each subject; and (Bottom) SI, which

involves cross-subject LOO validation.

with Bonferroni correction (alpha = 0.0125). The SD approach,

on the other hand, reaches above chance-level performances, with

median values (across participants) ranging from 0.81 to 0.87,

depending on the window size and classification problem. Another

aspect to observe is the equivalence between window sizes, where

both sliding window and single-epoch approaches reached similar

performance levels.

The delay pairs τ1,2 have no physical meaning in the case

of non-linear systems (Lainscsek and Sejnowski, 2015), but are

important parameters for the DDA method. We, therefore, aimed

to investigate how the best and worst delays are distributed for the

different classification problems and window sizes. Toward the end

of this manuscript, Section 5, we will show the delay distributions

for the different classification tasks. As discussed in that section, the

relation between delay pairs and classification performances have

similarities across tasks and data sets.

Delay pairs were ranked according to their performance during

the training stage, and mean rankings were obtained. Mean

rankings were then normalized according to min-max scaling,

with 0 indicating the worst-performing delay pairs for the given

problem, and 1 being the best delay pairs. Considering only SD

models showed satisfactory performance, only the results for the

SD approach are shown here.

Results for the UNL-CONICET dataset are shown in Figure 5.

Delay ranking distributions for the Kara One dataset are shown in

Figure 6. Note, that similar delay ranking distributions are present

for the different plots that represent different tasks.While the values

of the delays do not have any direct connection to frequencies

(see Lainscsek and Sejnowski, 2015 for a detailed analysis) the

similarity of the plots shows that the DDA model captures the

relevant dynamics of the system.

4 Comparisons

Speech decoding methods have rapidly evolved in the last few

years. We review the performance of these methods and compare

them to DDA for the UNL-CONICET database in Table 1 and the

Kara One dataset in Table 2.

The decoding accuracies reported in the original paper on the

UNL-CONICET database was only slightly above chance (Pressel

Coretto et al., 2017). Spectral features were obtained by discrete

wavelet transform (DWT) and combined with SVM or Random

Forests (RF), yielding a mean accuracy of 22.3% for vowels and

18.6% for words. This combination of signal processing methods

and traditional classifiers (such as SVMs, LDA, or RFs) in recent

years has given way to more complex approaches involving deep

learning architectures like CNNs and RNNs.

Cooney and colleagues (Cooney et al., 2019) employed

convolutional neural networks (CNNs) with different transfer

learning (TL) approaches, achieving a maximum overall accuracy

of 35.7% for vowels. The same group later (Cooney et al.,

2020) optimized hyperparameters for CNNs and improved on

previous methods, achieving 30 and 25% for vowel and word tasks,

respectively. More recently, Sarmiento and colleagues proposed

another CNN approach that led to accuracies of 65.6 and 50.0% for

intra- and inter-subject classification, respectively (Sarmiento et al.,

2021).

A consistent finding across UNL-CONICET studies is that

words, unsurprisingly, appear to pose a more complex decoding

problem than isolated vowel phonemes. Although phonemes, or

the phonological features offered in the Kara One dataset, might

not appear to be the end goal of imagined speech decoding, they

may serve as an intermediate step in the process (Saha et al., 2019),

particularly given their higher decoding accuracies; they may also

guide the choice of more discernible command words or stimuli

for EEG-based BCIs (Comstock et al., 2019). With a few exceptions

(Cooney et al., 2019; Sarmiento et al., 2021), intra-subject studies

also generally outperform inter-subject analyses due to individual

variabilities in the quality and features of themeasured EEG signals.

Regarding studies that utilize the Kara One database, binary

classification problems involving phoneme and phonological

categories have more frequently been investigated. The original

paper by Zhao and Rudzicz (2015) achieved between 80 and 91%

accuracy for± uw and C/V problems, respectively, using statistical

and spectral features with a Deep Belief Network (DBN). Bakhshali

et al. (2020) used Riemannian distance of correntropy spectral

density to achieve 86 and 83% on the same problems.

One of the most consistent methods across classification

problems, and the one which achieved some of the best results

with this dataset is from Saha et al. (2019), who used a

hierarchical combination of spatial and temporal convolutional

neural network (CNN) cascaded with a deep autoencoder (DAE).
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FIGURE 4

ROC curves for the Kara One database. ROC curves applied to each of the five binary classification problems (C/V, ± Bilab., ± iy, nasal, and ± uw) in

each column. Thinner and transparent lines represent each participant, and thicker ones represent the mean across participants for each case. Each

subplot shows results for two window lengths; 700 ms sliding window (blue), and 4 s single window (orange). The first row shows the results for the

subject-dependent method (SD, Top), using non-connected trials for training and validation and connected trials for testing, and the second row

shows the subject-independent (SI, Bottom) approach, which involves cross-subject validation.

The proposed approach first used this architecture to differentiate

between different phonological categories (CxV, bilabial, nasal,

etc.). The output latent vectors of this step are then used for

classifying the 11 phonemes and words. This systematic, two-

stage approach achieved an average accuracy of 83.42% across the

binary phonological classification tasks, and 53.36% for the 11-class

prediction task. Notably, this is one of the few studies that presents

multiple evaluation metrics in addition to accuracy for the binary

classification problems.

However, these results were nonetheless surpassed by

combinations of more recent deep learning architectures and

signal processing techniques (Mini et al., 2021; Bakhshali et al.,

2022; Alizadeh and Omranpour, 2023; Hernandez-Galvan et al.,

2023), as shown in Table 2. Hernandez-Galvan et al. (2023)

employed a combination of convolutional and bidirectional gated

recurrent unit (GRU) layers in the beta frequency band for input

embedding, followed by meta-training and meta-testing, leading

to a nearly perfect performance across all classification tasks,

including the 11-class problem. These advancements in combining

deep learning architectures and signal processing techniques have

set a new standard for classification performance, prompting

further exploration and refinement of these methods in imagined

speech decoding. However, considering the limited signal-to-noise

ratios of the involved EEG signals and the small sizes of the current

datasets, it is important to examine the generalizability of these

models and the underlying reasons for the significant performance

improvements over traditional methods. All these deep learning

methods work in a high-dimensional space of thousands of

parameters compared to a sparse DDA representation as presented

in this manuscript. The data in all studies mentioned here are

from mostly 15 subjects and not more than 40 trials per task.

Investigating the possibility of overfitting and leakage is therefore

needed for methods where the number of parameters gets close to

the amount of data.

As we can see, tremendous gains in decoding accuracy have

been obtained for the Kara One database, whereas the most

successful attempt with the UNL-CONICET database reports not

much higher than chance accuracy: 66% (Sarmiento et al., 2021).

As the two databases offer classification tasks that are allegedly of

comparable complexity (see Cooney et al., 2022 for a review of

speech decoding tasks), this phenomenon raises concerns. While

the Kara One database can be considered more flexible as a data

source for benchmarking studies in that it presents a large number

of possible classification tasks, caution should be taken because

some of the problems deal with few trials and an uneven allocation

of data between classes. In these cases, the use of accuracy as a

performance metric might be misleading because the model may

simply be predicting the majority class. This highlights the need to

transition to performance metrics, such as AUC, which accurately

gauge the model’s capability to differentiate between unbalanced

classes by measuring its performance across various threshold

settings. Overall, the DDA approach has been shown to consistently

perform above chance levels, with median AUC values ranging

from 0.76 to 0.9 across participants.

Our study also explored the distribution and impact of

delay pairs in the DDA method when applied to the datasets,
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highlighting their significance in different classification scenarios

and shedding light on the relationships between delay values and

model performance.
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FIGURE 5

Ranking best delay pairs for the UNL-CONICET database. Delays are

ranked according to their performance during the structure

selection or training stage. Ranked values are averaged across

participants and channel triples and min-max scaled, resulting in

worst (0, black) to best (1, white) delay pair values. Results for 700

ms sliding windows are shown at the top (A), for vowels and words

classification problems. (B) Bottom plots show the same but for the

4 sec single-window approach. The exact diagonal is filled with

empty values since the DDA model structure involves terms with

di�erent delays.

5 Discussion

Crucial differences in the DDA approach presented here are (i)

the use of a few strong features for classification, as opposed to the

large-scale networks that characterize deep learning methods; and

(ii) the current work provides the code for reproducing the results.

Item (i) is relevant because the compact and non-linear component

of DDA signal processing may add new features that are untapped

in previous deep learning methods. The significance of item (ii)

lies in the fact that, while deep learning models appear to perform

better than the DDA model presented here, the lack of publicly

available codes and proper metrics makes if difficult to evaluate if

these reflect the real potential of the algorithm for generalization to

new datasets. In sum, incorporating the DDA framework into other

methods may very well contribute to the overall development of the

field.

When investigating the distribution of best and worst delays,

the main conclusion is that they are not random, but show

characteristic distributions across different classification problems.

This implies that there is structure in the data, and that similar

dynamics might be captured by DDA across different problems,

especially for the UNL-CONICET dataset. Furthermore, the low

values near the main diagonals indicate that the relevant linear

and non-linear components have different timescales for the

investigated problems.

Refinements to the DDA method should also be considered.

Here, we compared two windows to assess what data segments

best serve as input to the DDA algorithm. Opposed to what we

expected, the sliding-window approach did not outperform the

single window one, being slightly inferior to it in the first dataset,

while both are equivalent in the Kara One dataset. For the former,

the task instructions for the vowels block might be related with

this, since vowels were supposed to be imagined continuously

throughout the whole trial, while words had auditory cues that
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FIGURE 6

Ranking best delay pairs for the Kara One database. Delays are ranked according to their performance during the structure selection or training stage.

Ranked values are averaged across participants and channel triples and min-max scaled, resulting in worst (0, black) to best (1, white) delay pair

values. Results for 700 msec sliding windows are shown at the top (A), for the di�erent classification problems (C/V, ± Nasal, ± Bilabial, ± iy, ± uw).

(B) Bottom plots show the same but for the 4 sec single-window approach. The exact diagonal is filled with empty values since the DDA model

structure involves terms with di�erent delays.
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indicated the onsets. Overall, the simplifying approaches used in

this work (taking the mean classifier score across channel triples,

and taking the mean and standard deviation across windows),

originally aimed for simplification and avoiding overfitting issues,

might have played a role in this. This highlights the challenge

of dealing with the highly heterogeneous distribution of relevant

dynamics throughout trials (and across channels, classes, and

participants), characteristic of tasks involving imagined speech

components that do not involve a stimulus-triggered response,

but rather an imagined component that may be distributed

heterogeneously throughout the trials. Regarding this, previous

work with invasive ECoG recordings (Mugler et al., 2014) has

used small window segments for the classification of all American

English phonemes. Thus, a potential future direction for our work

is to investigate the length and selection of optimal windows.

In both datasets, the SI approach resulted in near-chance

level performance. This likely reflects the specificity of DDA

delay coefficients for each participant. Another possibility is that

among participants, the assumptions from DE-DDA of dynamical

similarity between trials are no longer valid. This would be a

considerable limitation in applying the proposed method in a

subject-independent manner.

As discussed elsewhere (Sampson et al., 2019), another general

limitation of the DDA framework is the difficulty in interpreting the

resulting coefficients and delays, which do not map into frequency

components as in the case of linear methods. Despite this, it is

still possible to connect the non-linear terms and coefficients to

a Volterra series (Worden et al., 1997), which can be used to

determine how energy is transferred from harmonic inputs to sum

and difference frequencies in the output. The extension of these

ideas can be found in Zhu et al. (2022), and it could be investigated

whether they are applicable to the case in this study.

Furthermore, another limitation of this study concerns the

datasets used to evaluate the method. In addition to common

challenges faced by imagined speech EEG datasets (low SNR, few

participants and trials), it is important to remark that both datasets

used in this work involved healthy participants. BCI decoding in

clinical populations usually faces higher variability related to the

underlying pathologies, which may affect the performance of the

decoders (Lopez-Larraz et al., 2017; Lazarou et al., 2018). Thus,

testing the proposed methods in patients with different degrees of

speech and motor impairment is an important next step for their

application in clinical settings.

6 Conclusion

In this study, a speech decoding method is proposed using the

delay differential analysis (DDA) framework and is evaluated on

two publicly available datasets involving different imagined speech

classification problems: the identification of words, phonemes, and

phonological features. A subject-independent application of the

method did not generalize and resulted in near chance levels,

whereas within-subject models performed in alignment with other

classification attempts from the literature, with accuracies of 36.7%

(vowels), and 33.6% (words) for the UNL-CONICET database. For

the Kara One database, we report and AUCs ranging from 0.82 to

0.88 for binary phonological classification problems.

The absence of publicly available code and variations in

validation methods among studies pose significant challenges

in assessing and comparing speech decoding methods. We

have made the code available to facilitate its integration into

other frameworks and leverage the potent, compact features

inherent to the DDA method. We thus aim to promote

research that is reproducible, collaborative, and embraces an

open-science approach.
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