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This paper presents a systematic literature review, providing a comprehensive

taxonomyof Data Augmentation (DA), Transfer Learning (TL), and Self-Supervised

Learning (SSL) techniques within the context of Few-Shot Learning (FSL) for

EEG signal classification. EEG signals have shown significant potential in

various paradigms, including Motor Imagery, Emotion Recognition, Visual

Evoked Potentials, Steady-State Visually Evoked Potentials, Rapid Serial Visual

Presentation, Event-Related Potentials, and Mental Workload. However,

challenges such as limited labeled data, noise, and inter/intra-subject variability

have impeded the e�ectiveness of traditional machine learning (ML) and deep

learning (DL) models. This review methodically explores how FSL approaches,

incorporating DA, TL, and SSL, can address these challenges and enhance

classification performance in specific EEG paradigms. It also delves into the

open research challenges related to these techniques in EEG signal classification.

Specifically, the review examines the identification of DA strategies tailored to

various EEG paradigms, the creation of TL architectures for e�cient knowledge

transfer, and the formulation of SSL methods for unsupervised representation

learning from EEG data. Addressing these challenges is crucial for enhancing

the e�cacy and robustness of FSL-based EEG signal classification. By presenting

a structured taxonomy of FSL techniques and discussing the associated

research challenges, this systematic review o�ers valuable insights for future

investigations in EEG signal classification. The findings aim to guide and inspire

researchers, promoting advancements in applying FSL methodologies for

improved EEG signal analysis and classification in real-world settings.

KEYWORDS

EEG signals, Few-Shot Learning, Data Augmentation, Transfer Learning, Auto Augment,

Subject Invariance, spatiotemporal modeling, geometric transformations

1 Introduction

Electroencephalography (EEG) is a non-invasive neuroimaging technique that

measures electrical activity in the brain. It has been extensively used in research and clinical

settings to study brain function and diagnose neurological disorders. However, the analysis

of EEG signals presents significant challenges due to the low signal-to-noise ratio, high

dimensionality, and inter-individual variability in EEG features (Rashid et al., 2020; Alvi

et al., 2022). Recently, a machine learning method called Few-Shot Learning (FSL) has

become popular for improving EEG signal analysis. FSL is designed to work well even when

only a small number of examples are available for training (Chen et al., 2019; Wang and

Yao, 2019). This is particularly useful for EEG analysis, where collecting a lot of labeled
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data can be hard, expensive, and time-consuming. FSL techniques

have shown that they can accurately classify and analyze EEG

signals with only a few labeled samples (Bajaj et al., 2020; Dzedzickis

et al., 2020; Lin et al., 2020). This makes FSL a powerful tool

for EEG signal classification, helping to overcome some of the

major challenges in the field. By using FSL, researchers can achieve

accurate results without needing large amounts of labeled data,

making it a valuable approach for EEG studies.

Furthermore, Few-Shot Learning (FSL) enhances the

robustness of the model against the inherent inter-individual

variability found in EEG features. By leveraging knowledge from

prior tasks or datasets through transfer learning, FSL techniques

can effectively identify and generalize patterns across individuals,

thereby improving the performance of EEG signal classification

models (Schonfeld et al., 2019; Zhuang et al., 2020). Despite its

advantages, FSL encounters challenges in EEG analysis, such as

limited labeled datasets, subject variations, and adaptability to new

datasets (Song et al., 2022). However, recent advancements in FSL

strategies, including Data Augmentation (DA), Transfer Learning

(TL), and Self-Supervised Learning (SSL), exhibit promising

potential in mitigating these challenges (Gidaris et al., 2019; Li

et al., 2019b; Chen et al., 2021).

Having a robust model is an essential part of any Machine

Learning modeling, but due to lack of data, less data diversity or

overfitting leads to a poor performance of the unseen data, causing

the model to be unstable and can change its predictions with slight

changes in the input. All this brings to a need for a mechanism that

can overcome these challenges. Data augmentation (DA) addresses

these challenges of real-world problems by synthetically generating

data near the real world and adding it to the training process.

However, developing a robust model near the real world does

not solve other practical problems, such as the evolving nature

of the world yielding new unseen data characteristics and hence

bringing a need to adapt the pretrained model to a new data

domain; this gives rise to Transfer Learning (TL), which can

transfer new knowledge acquired to the existing model without

the need of training from scratch. Transfer Learning (TL) can

work if the underlying model is robust and rich enough to

understand the intricacies of the data; therefore, leveraging the large

amount of unlabeled data becomes very important to learn a rich

representation of the data to have a pre-trained model that then

can be used for fine tuning, this technique is referred to as Self

Supervised Learning (SSL). This paper explores the work done in

these paradigms from the lens of achieving FSL.

This systematic review sets itself apart significantly from

existing reviews that have delved into methodologies such as Data

Augmentation (DA), Transfer Learning (TL), and Self-Supervised

Learning (SSL) within the domain of EEG signal processing.

Unlike previous reviews that predominantly focused on specific

facets of these techniques, such as SSL in Rafiei et al. (2022), TL

in Redacted (2021), and DA in He et al. (2021), this research

takes a more comprehensive approach. The study introduces

an innovative taxonomy integrating DA, TL and SSL, providing

a holistic perspective on Few-Shot Learning (FSL) for EEG

signal classification. This taxonomy meticulously categorizes and

organizes these techniques, establishing a structured foundation

for comprehending their applicability across a broad spectrum

of EEG paradigms. Moreover, the review critically highlights the

differences and shortcomings in existing research, offering insights

into best practices for evaluating and selecting the most suitable

FSL strategy.

This review transcends the scope of existing literature by

actively examining each of these FSL techniques within the context

of different EEG paradigms. Rather than focusing solely on

the methodologies themselves, it investigates their performance

and adaptability across a diverse spectrum of EEG paradigms,

encompassing tasks such as Motor Imagery (MI), Emotion

Recognition (ER), Visual Evoked Potentials (VEP), Steady-

State Visually Evoked Potentials (SSVEP), Rapid Serial Visual

Presentation (RSVP), Event-Related Potentials (ERP), and Mental

Workload (MWD). By actively considering FSL methodologies

alongside distinct EEG paradigms, this research not only bridges

gaps in the existing literature but also lays the groundwork for a

more comprehensive understanding of FSL’s potential in EEG signal

processing. This comprehensive perspective actively contributes

to the academic discourse by providing a valuable reference that

actively assists researchers in navigating and advancing the domain

of EEG signal processing with FSL techniques. The field employs

a variety of techniques and methodologies, each with its own set

of acronyms and terminology. To facilitate understanding, Table 1

provides a comprehensive list of acronyms and their definitions

used throughout this paper.

The contributions of this review paper are:

• Comprehensive analysis of existing literature: This

paper rigorously examines the current literature on Few-

Shot Learning (FSL) techniques tailored for EEG signal

classification. Evaluating a diverse range of studies furnishes

a detailed overview of the prevailing state-of-the-art FSL

methodologies in EEG analysis.

• Evaluation of FSL techniques: The paper critically assesses

the merits and limitations of various FSL techniques within

EEG signal classification. It scrutinizes the strengths and

pitfalls of DA, TL, and SSL methods, considering challenges

like limited labeled data and inter-individual variability in

EEG analysis.

• Identification of key findings and trends: Through an

exhaustive literature analysis, this paper pinpoints key findings

and emerging trends in applying FSL techniques to EEG signal

classification. It underscores vital considerations, such as the

influence of distinct EEG paradigms on the selection and

efficacy of FSL methods.

• Highlighting research gaps: By analyzing existing literature,

this paper illuminates essential research voids in the Few-

Shot Learning (FSL) domain for EEG analysis. Instead of

merely suggesting future directions, this study accentuates

areas warranting deeper exploration. These gaps encompass

addressing current limitations, innovating FSL strategies, and

probing the amalgamation of diverse techniques to augment

the precision and efficiency of EEG signal classification.

• Proposed the best practices for conducting FSL research:

This paper points out a few best practices to conduct FSL

research and guidelines on how future research should report

their results for better reproducibility and clarity.
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TABLE 1 Acronyms and definitions.

Acronym Definition

EEG Electroencephalography: A non-invasive method to measure electrical activity of the brain.

MI Motor Imagery: Imagining movement without actual execution, used in brain-computer interfaces and neurorehabilitation.

ER Emotion Recognition: Detecting and analyzing emotional states, used in psychological studies and affective computing.

VEP Visual Evoked Potentials: Brain responses to visual stimuli, used in vision research and clinical assessments.

SSVEP Steady-State Visually Evoked Potentials: Steady response to flickering visual stimuli, used in brain-computer interfaces and attention tracking.

RSVP Rapid Serial Visual Presentation: Rapid sequential presentation of visual stimuli, used in cognitive processing and attention studies.

ERP Event-Related Potentials: Brain responses triggered by specific events, used in cognitive neuroscience and clinical diagnostics.

MWD Mental Workload Detection: Assessing cognitive workload during tasks, used in human factors and usability testing.

FSL Few-Shot Learning: Learning from a limited number of examples to classify or regress unseen data with minimal labeled samples.

DA Data Augmentation: Techniques to increase the amount of data by adding modified copies of already existing data or newly created synthetic data from
existing data.

TL Transfer Learning: Reusing a pre-trained model on a new, but related, task to improve learning efficiency and performance.

SSL Self-Supervised Learning: Learning useful representations from unlabeled data by solving pretext tasks.

GAN Generative Adversarial Network: A class of machine learning frameworks designed to generate new data samples that resemble a given dataset.

WGAN Wasserstein GAN: A variant of GAN that uses the Earth-Mover distance to improve training stability and quality of generated samples.

cWGAN Conditional Wasserstein GAN: A variant of WGAN that incorporates auxiliary labels to improve generative performance.

VAE Variational Autoencoder: A type of autoencoder that generates data samples by learning a probability distribution over the latent space.

LOOCV Leave-One-Subject-Out Cross-Validation: A cross-validation method where one subject is used as the validation set, and the remaining subjects are used
for training.

BCI Brain-Computer Interface: A system that enables direct communication between the brain and external devices.

CNN Convolutional Neural Network: A class of deep neural networks commonly used in visual and spatial data processing.

SVM Support Vector Machine: A supervised learning algorithm used for classification and regression tasks.

MAML Model-Agnostic Meta-Learning: An optimization-based meta-learning algorithm designed to train models that can adapt quickly to new tasks with
minimal data.

This review paper meticulously evaluates the extant literature

on FSL techniques for EEG signal classification, gauges the

effectiveness of different FSLmethods, discerns pivotal findings and

trends, and provides insights into prospective research avenues.

These contributions aspire to enlighten researchers and steer

further progress in employing FSL methodologies to refine EEG

signal analysis and classification.

The structure of this paper unfolds as follows as in Figure 1:

Section 2 delineates the methodology adopted for this review.

Section 3 unveils the review’s findings and proposes a taxonomy

grounded in the outcomes. Section 4 delves into a comprehensive

discussion of the identified challenges. After reviewing previous

literature, this paper layouts some Best Practices in Section 5 and

proposes Guidelines for reporting results for future work in FSL in

Section 6. Conclusively, Section 6 encapsulates the salient findings,

contributions, prospective research trajectories, and the relevance

of Few-Shot Learning (FSL) in EEG analysis.

2 Methodology

This review utilizes a systematic approach to ensure

the search strategy’s comprehensiveness and the results’

accuracy. The search spans multiple databases, including

PubMed, IEEE Xplore, and Google Scholar, targeting articles

published between January 2015 and March 2023. The search

keywords encompass “EEG” or “electroencephalography,”

combined with terms related to “signal classification,” “pattern

recognition,” and specific EEG paradigms. Additionally,

terms associated with data augmentation techniques, such

as “GAN,” “VAE,” and “Autoencoder,” are integrated as

popular generative methods for synthesizing data to augment

EEG datasets.

Boolean search strings are constructed to refine the search,

including combinations such as [Data Augmentation AND

(EEG OR electroencephalography)], [EEG AND (GAN OR

VAE OR AutoEncoders)], [Transfer Learning AND (EEG OR

electroencephalography)], and [Self Supervised AND (EEG OR

electroencephalography)]. Table 2 presents the common EEG

paradigms used in the query search in the review. There are other

paradigms, too, as the initial search started with ER and MI and

then, based on results, it is fixed to a few for the focus of this study.

This approach aims to yield specific, easily aggregatable results.

These queries yielded many duplicate records, which were filtered

out by paper name. Also, as this work focuses on exploring the

impact of Data Augmentation (DA), Transfer Learning (TL) and

Frontiers inHumanNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1421922
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Ahuja and Sethia 10.3389/fnhum.2024.1421922

FIGURE 1

Structure of the paper.

Self Supervised Learning (SSL) therefore, only the papers showcase

the improvements with either of these techniques rather than

modeling algorithms or hyperparameter tuning.

Articles are initially screened based on their title and abstract.

Those meeting the inclusion criteria have their full text retrieved

for a more detailed evaluation. The criteria for inclusion encompass

articles discussing machine learning techniques, especially FSL and

its associated strategies, in the context of EEG signal analysis.

Exclusions are made for articles not in English, those not peer-

reviewed, or those not primarily focused on EEG signal analysis.

The complete results are summarized in Figure 2.

Themethodology adopted in this paper is outlined as follows:

• Adherence to the Preferred Reporting Items for Systematic

Reviews and Meta-Analyzes (PRISMA) guidelines ensures

the transparency and rigor of the search strategy, screening

procedures, and data extraction (Liberati et al., 2009).

• Data extraction is executed based on predefined criteria,

encompassing aspects like the publication year, study design,

sample size, dataset employed, EEG feature extraction

method, machine learning technique, and FSL strategy.

The review assesses the maturity and applicability of

each FSL strategy in EEG signal analysis, pinpointing

existing challenges.

• A qualitative analysis of the extracted data offers a snapshot

of the prevailing state-of-the-art in FSL and its strategies for

EEG signal analysis. This review’s contributions extend to

discerning current trends, challenges, and potential solutions

in the realm of FSL for EEG signal analysis.

The criteria guiding the inclusion and exclusion of articles in

the selection process are summarized in Table 3.

3 Results

This section presents the results based on the above-

discussed comprehensive methodology, encompassing various

techniques, including Data Augmentation (DA), Transfer Learning

(TL), and Self-Supervised Learning (SSL). Collectively, these

techniques form a robust framework for training models to

comprehend the nuances of out-of-distribution data, enabling
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TABLE 2 EEG paradigms.

Paradigm Description Applications

Motor Imagery (MI) Imagining movement without actual execution Brain-computer interfaces, neurorehabilitation

Emotion Recognition (ER) Detecting and analyzing emotional states Psychological studies, affective computing

Visual Evoked Potentials (VEP) Brain responses to visual stimuli Vision research, clinical assessments

Steady-State Visually Evoked Potentials (SSVEP) Steady response to flickering visual stimuli Brain-computer interfaces, attention tracking

Rapid Serial Visual Presentation (RSVP) Rapid sequential presentation of visual stimuli Cognitive processing, attention studies

Event-Related Potentials (ERP) Brain responses triggered by specific events Cognitive neuroscience, clinical diagnostics

Mental Workload (MWD) Assessing cognitive workload during tasks Human factors, usability testing

FIGURE 2

Flowchart illustrating the study selection process, with numbers denoting the count of studies at each phase.

TABLE 3 Inclusion and exclusion criteria.

Inclusion criteria Exclusion criteria

Articles published within the past 10 years Studies involving multimodal signals combined with EEG, such as
Electrocorticography (ECoG), Functional Magnetic Resonance Imaging (fMRI),
Electrocardiography (ECG), and Magnetoencephalography (MEG)

Studies focusing specifically on non-invasive EEG signals Articles lacking robust metrics to validate the efficacy of the proposed method in
classification tasks using either DA, TL, or SSL

Articles discussing the application and benefits of Data Augmentation (DA),
Transfer Learning (TL), or Self-Supervised Learning (SSL) techniques

-

Studies employing DA, TL, or SSL techniques in EEG paradigms, including but
not limited to emotion recognition, motor imagery classification, event-related
potential classification, etc

-

domain adaptation and facilitating unsupervised representation

learning. The amalgamation of these methodologies not only

addresses the challenges of few-shot Learning but also underscores

their synergistic potential in advancing the field of EEG signal

processing. Together, they pave the way for a more profound

understanding of cognitive neuroscience and related domains by
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harnessing the power of limited data resources and extending the

boundaries of knowledge acquisition.

3.1 Data augmentation

Data Augmentation (DA) is a technique used to create more

training examples by modifying existing data. This helps solve

problems like having too few examples or having data that changes

a lot. Having a robust model is challenging for the following reasons

that DA aims to address while generating near real-world synthetic

data (Simonyan and Zisserman, 2014; He et al., 2016).

1. The datasets available in EEG are smaller and imbalanced, and

hence, samples of some controlled classes would be less; for

example, studying epileptic seizure detection would not have an

equal distribution of subjects with seizures as subjects without

subjects such as used by Andrzejak et al. (2001).

2. It is hard to acquire diverse datasets representing a large

proportion of real-world human demographics. This is due

to the expensive setup to acquire quality EEG signals, which

requires a controlled and stable environment for EEG signal

capturing using highly sophisticated EEG sensors.

3. Due to limited and less diverse data, models may overfit and

yield poor performance on unseen data, especially on new

subjects or sessions.

4. The model trained can also be unstable, i.e., small fluctuations in

the input can yield very different predictions.

This section collectively analyzes the work done in DA for EEG

signal processing while aggregating them by the techniques and the

characteristics they aim to address. Figure 3 details a three-phase

DA process designed to generate synthetic EEG signals with the

goal of curating a diverse dataset that closely mirrors real EEG

data. DA focuses on the training phase, which involves generating

synthetic samples resembling the input samples by learning a

generation function or manipulating existing samples.

3.1.1 Characteristics of data augmentation
The robustness of DA can be explicated through its adept

handling of diverse variances and the attributes inherent in the

transformed samples. Researchers commonly focus on specific

characteristics for transformation, aiming to maintain invariance

to these features. In the pursuit of inferring the characteristics from

the research, a meticulous set of steps was followed to discern

the nuances of the methodologies employed. This process involves

delineating results by subject, where the methodology is presumed

to be exclusively tested for session invariance. Conversely, when

results are aggregated across all subjects, it is reasonable to deduce

that the methodology exhibits invariance to both session and

subject. Additionally, if the methodology explicitly addresses how

the class distribution is utilized for augmenting samples, whether

through distribution balancing or separate augmentation per class,

it implies class invariance. These characteristics are explicitly

delineated in the research or inferred from the presentation

of results and methodology, pertaining to Subject, Session, or

Class Invariance.

1. Subject invariance: EEG signals often encapsulate features

indicative of individual subjects. Consequently, a generator

trained on such datasets becomes sensitive to these subject-

specific features. An optimal generator, Subject Invariant

Generator, should adeptly filter out these features. Both Aznan

et al. (2020) and Panwar et al. (2020) proposed a Wasserstein

Generative Adversarial Network (WGAN) for Rapid Serial

Visual Presentation (RSVP). They used a gradient penalty to

synthesize EEG data.

Aznan et al. (2020) introduced the Subject Invariant

Generative Adversarial Network (SIS-GAN) to generate

synthetic EEG signals. The objective was to remove subject-

specific elements while preserving Steady-State Visually Evoked

Potential (SSVEP) frequencies. The architecture of SIS-GAN

included a generator, discriminator, auxiliary classification

network, and a pre-trained subject-biometric classifier. The

synthetic data improved the performance of SSVEP frequency

classification models.

The study, conducted by Cimtay and Ekmekcioglu (2020),

underscores the imperative of enhancing subject-independent

recognition accuracy employing pre-trained Convolutional

Neural Networks (CNNs). In lieu of relying on spectral

band power characteristics, the authors employed windowed,

adjusted, and normalized raw Electroencephalogram (EEG)

data. The utilization of deep neural networks obviated the

necessity for manual feature extraction, potentially revealing

novel features. To mitigate false detections, a median filter was

incorporated into the methodology. The proposed approach

yielded mean cross-subject accuracies of 86.56 and 78.34% on

the SEED dataset (Miller et al., 2014) for two and three emotion

classes, respectively. Furthermore, it demonstrated a mean

cross-subject accuracy of 72.81% on the DEAP dataset (Koelstra

et al., 2011) and 81.8% on the LUMEDdataset (Ekmekcioglu and

Cimtay, 2021) for two emotion classes.

2. Session invariance: Achieving session invariance requires a

generator capable of filtering out session-specific features from

a signal. This generator’s task is to retain only the essential

information within the feature space while disregarding session-

related variations.

In the realm of person identification through EEG brain

activity using deep learning, challenges were encountered by

Özdenizci et al. (2019a). In response to these challenges, the

authors proffered a solution employing invariant representation

learning. Their approach encompassed the incorporation

of an adversarial inference technique, aiming to foster

the development of session-invariant and subject-invariant

representations endowed with longitudinal applicability. In

the context of within-session person identification models,

the authors documented noteworthy accuracies of 98.7% ±

0.005, 99.3% ± 0.003, and 98.6% ± 0.006 for Sessions

1, 2, and 3, respectively. These outcomes were derived

from the analysis of 2,760 half-second epochs, employing a

20% test split. The evaluation metrics employed facilitated

a comprehensive assessment of model performance within

individual sessions. Furthermore, in the domain of across-

session person identification, when subjected to evaluation on

an independent session, the model exhibited notable accuracies
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FIGURE 3

Schematic representation of an algorithm designed for generating synthetic EEG signals.

of up to 72% for 10-class person identification. This assessment

was based on the analysis of 13,800 half-second epochs, with

discernible enhancements of up to 6% attributed to adversarial

learning and its influence on two sessions’ invariance.

3. Class invariance: In addition to filtering out subject and

session-specific characteristics, achieving class invariance in

classification problems requires a generator to eliminate class-

related features from the signal effectively.

Rommel et al. (2021) introduced an advanced automated

differentiable DA approach for EEG data, comparing class-

wise augmentation to class-agnostic augmentation. Their

methodology introduced novel EEG augmentations to aid

model training in scenarios with limited labeled data.

3.1.2 Data augmentation techniques
In this section, a comprehensive overview of various data

augmentation techniques for EEG signals emerges from an

extensive review of the selected papers. Data augmentation

enhances the robustness and generalization of machine learning

models by artificially expanding the training dataset. Based

on the analysis, a proposed taxonomy outlines different data

augmentation techniques tailored explicitly for EEG signal

processing. These techniques encompass various approaches,

including temporal augmentation, spatial augmentation,

frequency-domain augmentation, and hybrid methods that

combine multiple augmentation strategies. Each technique offers

unique benefits and addresses specific challenges associated with

EEG data, ultimately contributing to improved performance and

adaptability of EEG-based machine learning models.

Figure 4 shows the taxonomy of DA techniques explored in

the literature. All the research in EEG focuses on improving

the robustness of the model on unseen data while showcasing

the improvement with and without augmentation. All techniques

discussed further use this mechanism only to prove the

effectiveness of the augmentation technique.

1. Geometric Transformation (GT) : Flipping, rotation, and

cropping were common operations that altered the shapes of

images, serving as visual representations of physical information

encompassing both direction and contour. These techniques

found wide application in speech signal processing (Cui

et al., 2015) and computer vision (Paschali et al., 2019). In

the context of EEG signals, the research by Krell and Kim

(2017) highlighted that standard DA approaches, specifically

in geometric transformations and noise injection (NI), did not

adequately address variations in the signal-to-noise ratio (SNR)

observed across multiple trials involving the same subject. The

discussed techniques did not explicitly address whether they

were designed to be session/subject invariant or class invariant.

Table 4 outlines the typical transformations that are

applied to raw time series data within the context of

geometric transformations. Table 5 presents a comprehensive

overview of prominent modeling techniques for EEG signal

classification utilizing various geometric transformations, which
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FIGURE 4

Taxonomy of Data Augmentation techniques for EEG signal processing.

have demonstrated the effectiveness of data augmentation in

enhancing model generalization across sessions, subjects, and

classes. While numerous studies have validated the efficacy of

data augmentation and its necessity, none of these works have

examined the statistical significance of the augmented signal.

The techniques comparing pre- and post-augmentation (relative

to the classification metric employed in the paper) demonstrate

effectiveness for session and subject independence but do not

assess whether the augmented session deviates from the original

session or the same for the subject and class.

Shovon et al. (2019) proposed a multi-input Convolutional

Neural Network (CNN) for modeling Motor Imagery (MI)

classification. The method converted each signal channel into

an image representation using Short Time Fourier Transform

(STFT). To address the data scarcity problem, rotation, flipping,

and zooming were applied to the images. Experimental results

on motor imagery datasets demonstrated accuracies of around

97 and 89.19% on the test split. However, the scalability

of this technique might not have been optimal with higher

dimensional EEG datasets. Freer and Yang (2020) introduced

different augmentation methods for Motor Imagery (MI)

classification tasks using a Convolutional Long-Short Term

Memory (C-LSTM) network based on filter bank common

spatial patterns (FBCSP). Training the model with data

augmentations such as Noise Addition, ConstantMultiplication,

sign flip and frequency shift improved the model without

augmentation by 5.3% on "BCIC IV—dataset—2a" (Brunner

et al., 2008).

2. Noise injection (NI): Gaussian white noise is added to the

original signal or the generated features as a common

DA technique. Since EEG signals exhibit a low signal-

to-noise ratio, adding excessive noise can degrade the

original signal. Therefore, applying NI requires careful

consideration. Research works listed in Table 6 employ

Noise Injection in training protocols and demonstrate

performance improvements compared to models without

noise injection. Despite the effectiveness of noise injection

in data augmentation, a key open question remains:

How much noise should be added, and how the efficacy

of the augmented signal be intrinsically measured post

adding noise?

3. Sliding window (SW) : Models typically utilize the complete

signal for classification problems. When applied to small

datasets, the sliding window mechanism creates multiple

instances from a single sample by setting the window size

to a value smaller than the original signal length. Table 7

lists studies that generate multiple instances from a single

sample using SW for EEG signal classification and demonstrate

performance improvements with the sliding window approach.

An argument could be made that the sliding window may

not be considered an effective enhancement technique because

it doesn’t significantly change the original signal. However,

when looking at EEG data as a series of time-based signals,

it’s important to recognize that each segment over time

may show some differences. Despite these variations, the key

features used for classification remain somewhat similar across

all time segments. Choosing the best window size becomes

a subjective task depending on the dataset’s characteristics,

making it a hyperparameter that requires careful adjustment

by researchers.
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TABLE 4 Common Geometric Augmentations for EEG data.

Augmentation Space References Description

FTSurrogate Frequency (Schwabedal et al., 2019) Randomize Fourier phases of all channels.

FrequencyShift Frequency (Rommel et al., 2021) Randomly shift PSD of all channels.

SignFlip Time (Rommel et al., 2021) Randomly flip the sign of all channels.

TimeReverse Time (Rommel et al., 2021) Randomly reverse the axis of time in all channels.

ChannelsSymmetry Spatial (Deiss et al., 2018) Randomly swap signals between hemispheres.

ChannelsDropout Spatial (Saeed et al., 2021) Randomly set signals of channels to zero.

ChannelsShuffle Spatial (Saeed et al., 2021) Randomly permute signals of channels.

SensorsRotation Spatial (Krell and Kim, 2017) Interpolate signals on rotated positions.

TimeShift Time (Mohsenvand M. N. et al., 2020; Mokatren L. S. et al., 2020) Translate the entire signal by –0.5 to 0.5.

TimeMasking Time (Cheng et al., 2020) Replace a random section with zeros.

TABLE 5 DA using geometric transformation for EEG signal classification. MI, Motory Image; ER, Emotion Recognition; SS, Sleep Staging.

References EEG
paradigm

Dataset DA characteristic Feature space Model Improvements post
augmentation

Shovon et al. (2019) MI BCIC II (III);
BCIC IV (2b)

Subject Variance Time Frequency CNN NA to 89.9%; NA to 97 %

Freer and Yang (2020) MI BCIC IV (2a) Session Invariance Time Series C-LSTM Avg of∼14%

Mokatren L. S. et al. (2020) ER DEAP Session Invariance Wavelet InceptionNet Avg of 2.2∼5%

Rommel et al. (2021) MI, SS Physionet
SleepEDF

Class Invariance Time Frequency Auto Augment NA

TABLE 6 DA using noise injection (NI) for EEG signal classification. MI, Motory Image; R, Emotion Recognition; MWD, Mental Workload Detection.

References EEG paradigm Dataset DA char Feat space Model Improvement

Wang et al. (2018) ER SEED: MANHOB- HCI Session Invariant DE SVM 40.8 to 45.4%

Salama et al. (2018) ER DEAP - Time Series 3D-CNN 79.11 to 89.4%

Li et al. (2019c) MI BCIC IV (2a): HGD - Spectral Image CP-MixedNet Avg of 1.1%

Yin and Zhang (2017) MWD Proprietary Session Invariant SAE RNN 34.2 to 75%

Kuanar et al. (2018) MWD Proprietary - Spectral Image CNN NA to 93%

Zhang et al. (2021a) MI BCIC IV (2a & 2b); Subject Invariant Time Series Inception Net 90 to 95%

TABLE 7 DA using sliding window for EEG signal classification.

References EEG
paradigm

Dataset DA char Feat space Model Improvement

Majidov and Whangbo (2019) MI BCIC IV (2a & 2b) NA Time Series RM Classifier NA to 80.4∼82.39%

O’Shea et al. (2017) SD Clinic Dataset NA Spatial Temporal CNN NA to 97%

Mousavi et al. (2019) SS SleepEDF Subject and Session Invariant Time Series CNN 82.9 to 85%

Avcu et al. (2019) SD Clinic Dataset NA Time Series CNN NA to 93%

Tayeb et al. (2019) MI BCIC IV (2b) NA Spectral Image CNN NA to 84%

Tsiouris et al. (2018) SD CHB-MIT Subject Invariant Spatial Temporal LSTM 70 to 80 %

MI, Motory Image; SD, Seizure Detection; SS, Sleep Staging; Feat Space, Feature Space; DA Char, DA Characteristics.

4. Generative models: Unlike deterministic transformation

techniques, generative models learn the underlying

data distribution and generate samples from this

distribution, offering a more robust approach

that facilitates automatic end-to-end modeling.

Determining whether the generated samples remain

subject or session-invariant poses a challenge.

Nonetheless, Table 8 highlights the effectiveness of
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TABLE 8 DA using generative models for EEG signal classification.

References EEG paradigm Dataset DA characteristic DA technique Feat space Model Improvements

Wei et al. (2019) SD CHB-MI NA WGAN Time Series GCNN 72.11 to 95.89 %

Chang and Jun (2019) ER Proprietary Subject and Session
Invariant

GAN Time Series DNN NA to 98.4%

Luo et al. (2020) ER SEED; DEAP Subject Invariant cWGAN + sVAE PSD + DE SVM NA to 90.8 %

Zhu et al. (2018) ER JAFFE Subject and Session
Invariant

Cycle GAN Time Series CNN Avg 3.7∼8%

Schlögl (2003) MI BCIC II (3) NA cDCGAN Time Freq CNN 78 - 83 %

Zhang et al. (2020b) MI BCIC IV (1, 2b) NA DCGAN Spectral Image CNN 74.5 to 83.2 % 80.6
to 93.2 %

Fahimi et al. (2020) MI Prop- rietary cDCGAN Spectral Image Avg 3.22∼5.45% EEGNet

Lawhern et al. (2018) RSVP BCIT X2 RSVEP NA WGAN Time Series CNN NA

Piplani et al. (2018) MWD Prop- rietary NA GAN Spectral Image Boosting 90 to 95 %

Hartmann et al. (2018) MI NA NA GAN Spectral Image k-NN NA

Luo and Lu (2018) ER SEED Subject Invariant GAN Spectral Image CWGAN Avg 3∼20 %

Zhang et al. (2018) MI BCIC IV (2b) GAN Spectral Image CNN 77 to 79 %

Chang and Jun (2019) ER CHBMIT Subject and Session
Invariant

GAN Time Series GAN 97 to 98 %

Zhang et al. (2019) MI BCIC IV (2b) Subject Invariant GAN Time Series CNN + LSTM NA to 76%

Panwar et al. (2019) RSVP BCIT X2 RSVEP NA GAN Time Series CNN 0.7∼2%

Arỳ et al. (2022) ER MAH- NOB HCI NA AE Wavelet CNN Avg∼22 %

Aznan et al. (2019) SSVEP Prop- rietary Subject Invariant VAE Time Series CNN Avg∼35%

Zhang et al. (2023) ER DEAP, DREAMER Subject, session, Class
Invariant

GAN Time Series CNN NA

SD, Seizure Detection; ER, Emotion Recognition; MI, Motory Image; SSC, Sleep Staging Classification; MWD, Mental Workload Detection; RSVP, Rapid Serial Visual Presentation; SSVEP, Steady-State Visually Evoked Potentials; NA, not explicitly provided in the

paper or can’t be inferred.
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these models in EEG signal classification and their

corresponding improvements.

a. Generative adversarial network (GAN): GANs generate

artificial data through adversarial learning. In this process,

two sub-networks, the Discriminator (D) and the Generator

(G), strive to match the statistical distribution of the

target data (Goodfellow et al., 2014). The Discriminator

differentiates between genuine and artificial input samples,

whereas the Generator produces realistic artificial sample

distributions to deceive the Discriminator. The output

from the Discriminator provides the likelihood of a

sample being genuine. Probabilities near 0 or 1 denote

distinct distributions, while values around 0.5 suggest

challenges in discrimination. GANs effectively produce

synthetic data resembling real distributions, as illustrated

in Equation (1):

min
G

max
D

V(D,G) =Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1− D(G(z)))]
(1)

Below are prominent GAN

architectures adapted for EEG-specific

data generation:

(1) Deep convolutional generative adversarial network

(DCGAN): DCGAN introduces a novel architecture

by replacing pooling layers with fractional-strided

convolutions in the generator and employing stride

convolutions in the discriminator (Zhang et al.,

2020b). This design, combined with adversarial

training, ensures adherence to feature distribution

principles. Studies have demonstrated that DCGAN

produces samples that are both diverse and closely

resemble real data. For instance, in epilepsy seizure

detection using EEG signals from the CHB-MIT dataset

(Goldberger et al., 2000), a DCGAN-based augmentation

was employed, followed by classification using

ResNet50. This approach achieved a 3% performance

improvement over non-augmented datasets (He et al.,

2016).

(2) Wasserstein generative adversarial network (WGAN):

WGAN addressed the challenge of discontinuous

GAN divergence for generator parameters,

which could result in training instability or

convergence issues (Arjovsky et al., 2017). The

key innovation was the adoption of the Earth-

Mover distance (Wasserstein-l), as described in

Equation (2):

W(Pr , Pg) = inf
γ∈5(PrPg )

, E(x,y)∼γ [‖x− y‖] (2)

Here, πPr , Pg denoted the set of all joint distributions

of (x,y) where Pr and Pg were the marginals. The

joint distribution (x,y) signified the "mass" transferred

from x to y to transition from the distribution Pr

to Pg . The WGAN value function, based on the

Kantorovich-Rubinstein duality (Villani, 2008), was given

by Equation (3):

minGmaxD ∈ D E
x∼Pr

[D(x)]− E
x̃∼Pg

[D(x̃)] (3)

(3) Conditional Wasserstein GAN (cWGAN): In emotion

recognition tasks using the SEED (Miller et al., 2014)

and DEAP (Koelstra et al., 2011) datasets, combining

cWGAN with manifold sampling has enhanced classifier

performance by ∼10% (Luo et al., 2020). cWGAN,

a variant of WGAN, incorporated the auxiliary

label by introducing the real label Yr to both the

discriminator and generator. The generator combines

the latent input Xz with Yr , while the discriminator

forms a hidden representation by merging the real

input Xr and generated input Xg with Yr . Equation

(4) presents the objective function for cWGAN,

that inferently learns latent representation Xz of the

input Xr .

min
θG

max
θD

L
(

Xr ,Xg ,Yr

)

=

Exr∼Xr ,yr∼Yr

[

D
(

xr | yr
)]

− Exg∼Xg ,yr∼Yr

[

D
(

xg | yr
)]

− λEx̂∼X̂,yr∼Yr

[

(

∥

∥∇x̂|yrD
(

x̂ | yr
)
∥

∥

2
− 1

)2
]

(4)

b. Autoencoders (AE): Autoencoder Rumelhart et al. (1985)

referred to feed-forward neural networks that encoded

raw data into low-dimensional vector representations

through the encoder and then reconstructed these

vectors back into artificial data using the other half of

the network. Instead of outputting vectors in the latent

space, the encoder of Variational Autoencoders (VAE;

Kingma and Welling, 2013) produced parameters of

a pre-defined distribution in the latent space for each

input. The VAE then enforced constraints on this latent

distribution, ensuring its normality. Compared with

AE, VAE ensured that generated data adhered to a

specific probability distribution by introducing structural

constraints (Luo et al., 2020). Komolovaitė et al. (2022)

introduced a synthetic data generator using VAE for

Stimuli Classification employing EEG signals from healthy

individuals and those with Alzheimer’s disease. This

technique exhibited a 2% improvement over models without

non-augmented data.

c. Diffusion models: VAE constrained a specific probability

distribution in the latent space. Normalizing Flows

learned a tractable distribution in which both sampling

and density evaluation could be efficient and precise.

However, Normalizing Flows were trained in a denoizing

manner to capture an underlying distribution. Ho et al.

(2020) outperformed GAN while devising a denoizing

model and normalizing flows for image generation.

Similarly, Hajij et al. (2022) employed a diffusion
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model-based generator for chest X-ray images to create

synthetic data.

The initial work, as illustrated above, utilized various

generative models. Recent research has also shifted focus toward

determining optimal tasks for training generative models, rather

than exclusively focusing on signal reconstruction. It has led to

developing models such as GANSER (Generative Adversarial

Network-based Self-supervised Data Augmentation; Zhang

et al., 2023). Unlike previous approaches that reconstructs

the complete signal, GANSER emphasizes masking the data

and predicting the masked part of the signal for pre-training.

Subsequently, the classifier is fine-tuned over the pre-trained

model to predict augmentation. In this process, 80% of the

data is utilized for pre-training without labels, followed by

fine tuning with all the labels. While the paper does not

explicitly demonstrate improvement with and without the

proposed method, it compares favorably with other state-

of-the-art emotion recognition models and other generative

method for DEAP Koelstra et al. (2011) and DREAMER

Katsigiannis and Ramzan (2018), showcasing an improvement

of ∼4% across all classes compared to the respective state-of-

the-art models.

5. Signal decomposition: Unlike other techniques discussed so far,

DA in feature space is another technique that has shown some

promising results. Generally, these techniques decompose a

signal using methods such as Empirical Model Composition

(EMD) or Fourier Transform (FT), transform the signal in

the decomposed space, and then reconstruct the time domain

signal. All the studies utilizing Signal Decomposition have

augmented signals on a per-class basis, thereby establishing

class invariance.

Kalaganis et al. (2020) proposed a DA method based

on Graph-Empirical Mode Decomposition (Graph-EMD)

to generate EEG data, which combined the advantages

of the multiplex network model and the graph variant

of classical empirical mode decomposition. They used a

graph CNN to implement the automated identification of

human states while designing a continuous attention-driving

activity in a virtual reality environment. The experimental

results demonstrated that investigating the EEG signal’s graph

structure could reflect the signal’s spatial characteristics and

that merging graph CNN with DA produced more reliable

performance. Zhang et al. (2019) suggested a new way to

classify EEG data by combining DL and DA. The classifier

consisted of Morlet wavelet features as input and a two-

layered CNN followed by a pooling layer NN architecture.

The author used EMD on the EEG record, mixing their

Intrinsic Mode Functions (IMF) to create a new synthetic

EEG record.

Huang et al. (2020) proposed three different augmentation

techniques: Segmentation, Time domain exchange, and

Frequency domain exchange to generate more training samples.

Combined with a CNN for training the classification model,

these techniques yielded a gain of 5–10 % accuracy compared

to pre-augmentation. Schwabedal et al. (2018) proposed

a novel augmentation technique called FT Surrogates. FT

Surrogates generated new samples by changing the signal

phase by decomposing the signal using the Fourier Transform

(FT) and then reconstructing it into the time domain using

the Inverse Fourier Transform (IFT). The premise that

stationary linear random process sequences are uniquely

described by their Fourier amplitudes, while their Fourier

phases are random values in the interval [0, 2π), drove

this approach.

3.2 Transfer Learning for EEG signal
classification

Transfer Learning (TL) is a method where a model trained

on a lot of data in one area (source) is used to help learn from

less data in another area (target). This is useful for understanding

brain signals.

1. Acknowledging the inherent dynamism in human physiology

and psychology is crucial, as individuals undergo constant

physical and mental fluctuations.

2. The profound inter-individual variability in human behavior

and characteristics accentuates the need for continuous

model updates.

3. The acquisition of EEG signals, essential for decoding brain

activity, introduces further complexity due to sensor variations

from diverse manufacturers.

Hence, the imperative arises to prioritize ongoing data

transfer, steering away from retraining models from scratch.

This multifaceted consideration underscores the importance of

embracing Transfer Learning not only as a methodological

necessity but as a dynamic and adaptive tool for the nuanced

exploration of human brain signals in the ever-evolving landscape

of neuroscience. The source and target tasks are the same in domain

transfer learning, but the source and target domains are distinct.

For example, they can differ due to EEG sensors, different subjects,

or even different but similar tasks. Transfer Learning is common

in FSL, where prior information is transferred from the source

task to the few-shot task through transfer learning methods (Luo

et al., 2017; Azadi et al., 2018; Liu et al., 2018). Figure 5 illustrates

the entire transfer learning procedure, involving pre-training using

comparable datasets and fine tuning the pre-trained model for the

intended job.

3.2.1 Transfer of characteristics
Transfer Learning transfers many data characteristics across

the datasets. This section sheds light on the different transfer of

characteristics, specifically in EEG signals, and the work done

to them.

1. Cross subject and session: This approach leverages information

from both other subjects (referred to as "source domains")

and previous sessions to help calibrate a new subject and

session (referred to as the "target domain"). Cross-subject

knowledge can be transferred by incorporating data from

multiple subjects who perform the same task using the same

EEG equipment to enhance learning. Similarly, preserving

consistency between sessions, where data from earlier sessions
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FIGURE 5

Process flow of Transfer Learning.

FIGURE 6

Taxonomy of Transfer Learning (Zhang et al., 2020c; Ko et al., 2021).

are utilized to calibrate the data from the present session, aids in

capturing temporal relationships and enhances generalization.

This combined approach enables the model to benefit from a

broader range of data, reducing the dependency on subject-

specific or session-specific labeled examples and enhancing the

overall few-shot learning performance.

Yang et al. (2019) examined cross-subject classification of

emotions on DEAP (Koelstra et al., 2011) and SEED (Miller

et al., 2014). Ten linear and non-linear features were extracted

from each channel and assembled. These included the standard

deviation, PSD (alpha, beta, gamma, and theta), sample entropy,

and wavelet entropy. The Hjorth coefficients (activity, mobility,

and complexity) were also considered. Then, significance tests

and sequential backward feature selection chose the features

and trained a classifier using SVM with an RBF kernel. Fahimi

et al. (2019) trained a CNN model using EEG signals of the

source subjects, followed by fine tuning using the calibration

data. The model inputs EEG frequency bands, specifically delta,

theta, alpha, beta, and gamma bands, subsequent to filtering

through a Bandpass filter in this methodology. The suggested
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technique exhibits potential for generalization across diverse

subjects. Li et al. (2019a) proposed a neural network model

for cross-subject/session EEG emotion recognition that did not

require label information in the target domain. By reducing

the classification error in the source domain and aligning the

latent representations of the source and target domains, the

neural network was improved as much as possible. It adjusted

to the joint distribution in this manner. The first few layers

altered themarginal distributions using adversarial training, and

the last few layers altered the conditional distributions using

association reinforcement.

Song et al. (2018) suggested a Dynamical Graph

Convolutional Neural Network (DGCNN) for classifying

emotions dependent on the subject and those that were not.

Differential entropy features from five distinct frequency

bands were fed into the DGCNN. A node in the network

represented each EEG channel. After graph filtering,

a 1x1 convolutional layer learned what differentiated

the five frequency bands. A ReLU activation function

ensured that the outputs of the graph filtering layer

were always positive. The study evaluated the proposed

method using the DREAMER (Katsigiannis and Ramzan,

2018) dataset, resulting in recognition accuracies of 86.23,

84.54, and 85.02% for valence, arousal, and dominance

prediction, respectively.

Ning et al. (2021) introduced the SDA-FSL approach

for cross-subject EEG emotion recognition. This method

effectively addressed challenges posed by individual

differences and limited information in EEG analysis. SDA-

FSL integrated key components, including a CBAM-based

feature mapping module, a domain adaptation module,

and Prototypical Networks with an instance-attention

mechanism. Evaluations on DEAP (Koelstra et al., 2011)

and SEED (Miller et al., 2014) datasets demonstrated its

superior performance in cross-dataset experiments. However,

limitations such as data requirements and interpretability issues

were noted.

2. Cross device: The data from the source EEG device

(referred to as the source domain) is utilized to

calibrate another EEG device (referred to as the

target domain) in a manner where both EEG devices

are standardized to perform the same task using

common electrodes.

Lan et al. (2018) utilized various EEG devices, each with

varying numbers of electrodes, to record data from DEAP

(Koelstra et al., 2011) and SEED (Miller et al., 2014), datasets

that contained different numbers of individuals. The study

encompassed the 32 channels shared by the two datasets,

each comprising merely three trials—positive, neutral, and

negative outcomes, respectively. The final feature set for

each channel required the extraction and combination of

five distinct frequency bands. The study demonstrated that

applying domain adaptation (Yan et al., 2017), particularly

techniques such as transfer component analysis (Pan et al., 2010)

and maximal independence domain adaptation, significantly

augmented classification accuracy. DL approaches were shown

to enhance cross-device TL in BCIs greatly. EEG data were

frequently transformed into images before inputting into

the models, rendering EEG signal outputs consistent across

different devices.

In a similar vein, Siddharth et al. (2019) engaged in cross-

dataset emotion categorization, employing various modalities

such as EEG, Electrocardiography (ECG), and Facial Expression

Recognition (FAR). The paper briefly discussed their EEG-

based deep learning technique for emotion classification,

training on DEAP (Koelstra et al., 2011) and testing on the

MAHNOB-HCI dataset (Soleymani et al., 2011). This approach

remained effective across datasets with diverse numbers and

locations of electrodes, as well as variable sampling rates.

Power spectral densities (PSDs) of theta, alpha, and beta

bands from EEG signals were extracted for all trials—the

suggested technique generated topographic PSD images for

each trial, consolidating information from multiple EEG

devices. The alpha blending ratio was used to weigh each

topography as a component of a color image. VGG-16

(Tammina, 2019) was employed to extract 4,096 features from

the images, which were subsequently reduced to 30 through

Principal Component Analysis (PCA). After pre-training, the

author applied an extreme learning machine as the final

classification classifier.

An advanced CNN model, Inception-ResNet-v2 (Szegedy

et al., 2016), was utilized by Cimtay and Ekmekcioglu (2020)

to transfer information across subjects and datasets. Adding

Gaussian random noise expanded the number of channels

from 75 to 80 in Inception-ResNet v2’s input data size,

which is (N1, N, 3), where N1 is the number of EEG

channels and N geq 75 is the number of time domain

samples. An 80x300x3 matrix was created for each trial,

which was then sent into Inception-ResNet-v2 for further

processing. After Inception-ResNet-v2, the work included

a global average pooling layer and five dense layers for

classification purposes.

3. Cross task: Calibration for a new task is made more

accessible by using labeled data from prior activities

that are comparable or relevant (source domains;

the target domain). Left-and Right-handed MI data

calibrates the foot and tongue Motory Image (MI). In

most tasks, the subject and the EEG instrument remain

the same.

He and Wu (2020) compared Label Alignment (LA)

with Reiman Alignment (RA) and Euclidean Alignment (EA,

Eisenhart, 2016). RA and LA assumed that the source and

target domains shared identical features and label spaces

in cross-task transfers. However, this assumption held only

in certain practical implementations. LA accommodated

source domains that had distinct label spaces from the

target domains. For instance, during the calibration of

a target subject for Motor Imagery-based Brain-Computer

Interfaces (MI-based BCIs), source subjects might have

performed tasks such as left and right-hand MIs, while target

subjects might have engaged in foot and tongue MIs. LA

identified the EEG channels from the source that most closely

resembled the EEG channels of interest in the target. This

method estimated covariance matrices for each target class.
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It then recentered each source domain’s classes to their

expected mean. The alignment of these trials facilitated feature

extraction and classification in both Euclidean and Riemannian

spaces. Since LA needed only one labeled sample from each

class in the target domain, researchers could use it as a

preprocessing step before implementing other feature extraction

and classification techniques.

Zheng et al. (2020) made significant contributions

to the field of motor-imagery brain-computer interface

systems (MI-BCI) by addressing key challenges related

to task transfer and enhancing the usability of MI-BCI

applications. They introduced a novel approach that enlarged

the command set by incorporating combinations of traditional

MI commands, thereby expanding the potential applications

of MI-BCI. Moreover, they developed a transfer learning-

based algorithm for feature extraction that demonstrated

remarkable results. This algorithm effectively reduced the

calibration time required for data collection and model

training while improving classification accuracy, particularly

for low-quality datasets. Notably, the authors highlighted

the practical implications of their work by showing how it

made MI-BCI more user-friendly for subjects, eliminating the

need for extensive training to adapt to MI tasks. Additionally,

the findings suggested that this algorithm outperformed

traditional methods, especially in scenarios with limited

training samples and suboptimal performance in conventional

algorithms. However, they did not explore looking beyond MI

in this work.

3.2.2 Techniques for Transfer Learning
The categorization of Transfer Learning (TL) by Ko et al. (2021)

comprises two principal classifications: Implicit Transfer Learning

(ITL) and Explicit Transfer Learning (ETL). ETL explicitly addresses

distinctions between domains, such as subjects or training sessions,

with the objective of mitigating disparities through the alignment

of feature spaces during the training process. On a more detailed

level, ITL encompasses methodologies such as Representation

Learning (Schirrmeister et al., 2017), Fine Tuning (Andreotti et al.,

2018; Fahimi et al., 2019; Zhao et al., 2019; Raghu et al., 2020),

and Meta-Learning (Finn et al., 2017), as illustrated in Figure 6.

Similarly, ETL involves techniques like Non-Parametric Alignment

(Gretton et al., 2012), or Adversarial Learning (He and Wu, 2019).

Zhang et al. (2020c) further categorizes TL into instance transfer,

parameter transfer, and feature transfer. It’s important to note

that domain adaptation through feature and parameter transfer,

occurring without explicit alignment, falls under ITL. Similarly,

instance transfer, involving explicit alignment of instances to the

source domain, is equivalent to ETL.

1. Explicit learning

(a) Non-parametric alignment: In the context of EEG signal

processing, addressing distributional disparities across

subjects or sessions is paramount. Non-parametric alignment

emerges as a pivotal technique in this regard. Unlike its

parametric counterparts, non-parametric alignment does not

adhere to predetermined models or specific distributional

assumptions. Instead, it directly aligns the distributions of

EEG signals from different domains, leveraging the inherent

characteristics of the data. This flexibility enables it to

accommodate diverse and intricate EEG data structures,

enhancing its applicability in EEG-based transfer learning

scenarios. By bridging the distributional gap between source

and target domains, non-parametric alignment ensures

seamless and effective knowledge transfer, even amidst

varying data distributions. A comprehensive overview of

research employing non-parametric alignment for EEG

signal processing can be found in Table 9, underscoring the

technique’s versatility and efficacy.

(b) Adversarial Training: Adversarial Training employs

a distinctive strategy where a discriminator network

distinguishes between samples from the source and target

domains. Simultaneously, the feature extractor network

is designed to produce domain-invariant representations.

This dual mechanism ensures cohesive alignment between

the source and target domains. The objective is 2-fold:

to diminish the discriminator’s capacity to differentiate

domains and to ensure that the feature extractor captures

representations shared by both domains. Table 9 presents a

detailed overview of how Adversarial Training is applied in

Explicit Domain Adaptation, highlighting its role within the

Explicit Learning (EL) Type framework.

2. Implicit Learning

(a) Parameter transfer: Implicit learning constitutes a

foundational facet of transfer learning, encompassing

pre-learned parameters, latent spaces, or task-agnostic

representations. This technique bolsters performance

and facilitates efficient adaptation across diverse machine

learning applications, particularly within EEG signal

processing. Amid various transfer learning strategies, fine

tuning emerges as a potent approach to tailor a pre-trained

model from a source domain to a target domain burdened by

scant labeled data. Refining the model’s parameters through

a smaller labeled dataset or a few-shot learning arrangement

markedly enhances its capability to unearth implicit insights

from EEG signals. In contrast, the paradigm of zero shot

transfer introduces an innovative avenue for prognosticating

implicit information within EEG signals, obviating the

necessity for explicit training on the specific information.

This methodology capitalizes on semantic representations

or attributes tied to the intended implicit information,

enabling the model to extrapolate knowledge from kindred

domains or explicit learning tasks. Furthermore, the utility

of meta-learning becomes evident in swift adaptation to

nascent implicit learning undertakings, even in the presence

of limited labeled instances. Through meta-learner training

on task distributions, each comprising only a handful of

labeled samples, the model imbibes task-agnostic attributes,

enabling agile assimilation of novel tasks within EEG-centric

implicit learning.

(1) Fine tuning: In this form of transfer learning, the model

is first pre-trained on the source dataset and further fine-

tuned on the (smaller) target dataset to learn its specific

characteristics (Pan and Yang, 2009). There are various

fine-tuning mechanisms that either fine tune the complete
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TABLE 9 Explicit Transfer Learning with non-parametric alignment and adversarial learning categorized by column Explicit Learning (EL) type.

References EEG par TL char EL type Model Datasets Results Main contribution

Azab et al. (2019) MI CS NPA LR+CSP 19 subjects’ data; BCIC-IV-2a; BCIC-III-
4a

70.3%; 75%; 75% Utilizes KL divergence for measuring similarity in transfer
learning.

Giles et al. (2019) MI CS NPA CSP+LDA BCIC-IV-2a 77% Uses Jensen Shannon ratio for measuring similarity and
adopts rule adaptation TL.

Adair et al. (2017) P300 CS NPA Bayesian LDA 8 participants’ data 62.50% Ensembles learning of generic information in transfer
learning.

Wei et al. (2018) SSVEP CS NPA Cluster 8 subjects’ data - Performs variability assessment using Fisher’s discriminant
ratios in transfer learning.

Hossain et al. (2018b) MI CS NPA LDA BCIC-IV-2a 76% Proposes selective informative expected decision boundary in
transfer learning.

Sybeldon et al. (2017) SSVEP CS NPA LDA 10 healthy subjects - Ensembles learning and similarity measurement with mutual
information in transfer learning.

Zhang et al. (2020a) MI CS NPA CNN BCIC-IV-2b - Proposes instance TL based p-hash in transfer learning.

Jin et al. (2018) MI CS NPA Discriminant Analysis 6 subjects 61% Adaptive Selective CSP

Özdenizci et al. (2019b) MI CSS AL DANN - cVAE GigaScience - MI - Adds an adversarial network to cVAE and trains cVAE and
classifier separately.

Özdenizci et al. (2020) MI CSS AL DANN - cVAE BCI2000 69.8% Devises DANN by exploiting various CNN-based
architectures as their feature extractor.

Zhao et al. (2020) MI CT AL DANN - CNN BCIC-IV 83.98% Adds centre loss for the target to minimize intra-class
compactness and maximize inter-class separability.

Tang and Zhang (2020) MI CT AL DANN - CNN BCIC-IV 74.55% Feeds the output of a classifier into a domain discriminator.

Jeon et al. (2019) MI CT AL DANN - CNN HGD 92.50% Selects the source based on resting-state EEG signals.

Wei et al. (2020) RSVP CSS AL DANN - CNN 11 subjects - Selects sources based on the ranking of performances in
subject-specific classifiers.

Wang et al. (2021) ER CSS AL SPDMatrix + CNN Dreamer; Deap 75.44% Selects sources based on a ranking of performances in
subject-specific classifiers and devises centroid alignment
loss.

Nasiri and Clifford
(2020)

Sleep CS AL DANN - CNN SHHS; P18C 84%; 85% Estimates attention maps using channel-wise domain
discriminators.

Ma et al. (2019) Drowsy CS AL DANN - ResNet SEED - Trains additional parameters capturing subject-specific
features.

Ref, Reference; EEG Par, EEG Paradigm; TL Char, TL Characteristics; CS, Cross Session; CD, Cross-Device; CT, Cross Task; CSS, Cross Session and Subject; EL, Explicit Learning; NPA, Non-Parametric Alignment; AL, Adversarial Learning.
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TABLE 10 Implicit Transfer Learning via feature transfer and parameter transfer.

References EEG par TL char IL type Model Datasets Results Main contribution

Jeon et al. (2019) MI CS RL CNN BCIC-IV-2a - DA with PSD

Pal et al. (2019) MI CS MultiT Linear SVM BCIC-III-IVa 75.80% Many objective optimization

Hossain et al. (2018a) MI CS RL LDA BCIC-IV-2a 67.70% Informative TL with AL

Yin et al. (2017) ER CS RL Least-squares SVM DEAP dataset 78% Transfer recursive feature elimination

Dai et al. (2019) MI CD MultiT SVM BCIC-III-Iva 5 subjects 81.6% 76% Multiple kernel boosting

Nakanishi et al. (2019) SSVEP CD RL TRCA 10 subjects - Spatial filtering transfer for latent features

Salami et al. (2017) MI CSS RL SVM BCIC-IV-2a 89.30% Fuzzy TL based on generalized hidden-mapping
RR

Rodrigues et al. (2018) Multitask CD MultiT - 8 publicly available BCI
datasets

- Geometrical transformations on Riemannian
Procrustes analysis

Waytowich et al. (2016) ERP CD RL MDRM 15 subjects 62% Spectral transfer using information geometry

Gaur et al. (2019) MI CS RL LDA BCIC-IV-2a - Tangent space-based TL

Dai et al. (2018) MI CSS RL SVM BCIC-III-IVa 81.14% Transfer kernel CSP

Zanini et al. (2017) MI/ ERP CS RL Minimum distance mean
& Bayes classifier

BCIC-IV-2a Brain
Invaders experiment

- Affine transform

Jayaram et al. (2016) MI CSS MultiT RR +SVM 10 healthy subjects an
ALS subject data

85% Multitask learning

Yair et al. (2019) MI CT ZT Linear SVM BCIC-IV-2a - Zero Shot: Domain adaptation parallel transport
on the cone manifold of SPD

Chiang et al. (2019) SSVEP CS PT - BCIC-IV-2a 82.10% Fine Tuning: Least-squares transformation

Xu et al. (2019) MI CSS FT CNN BCIC-IV-2b 74.20% Fine Tuning: Based on VGG16

Sakhavi and Guan (2017) MI CS FT - BCIC-IV-2a 69.71% Fine Tuning: Based on pre-trained network

Behncke et al. (2018) ErrPs CT FT CNN Proprietary 15 epilepsy
patients

81.50% Fine Tuning: Based on pre-trained network

Pati et al. (2023) MI Cross Subject MetaT Meta-learning with
optimization-based
algorithms; uses EEGNet
architecture

BCI Competition IV 2a 55.56% (0 shots)
63.13% (10 shots)

Utilized optimization-based meta-learning to
achieve better initialization for rapid adaptation
to new subjects with limited data, demonstrating
superior performance over transfer learning.

Li et al. (2021a) MI Cross Session MetaT Model-Agnostic Meta-
Learning (MAML) with
convolutional layers

Physionet EEG motor
imagery dataset

60-80% Applied MAML to train EEG BCI decoders,
enabling rapid generalization to new users and
sessions through few-shot learning and gradient-
based optimization.

Duan et al. (2020) MI, Emotion Cross Subject MetaT Meta UPdate Strategy
(MUPS-EEG)

BCI IV-2a, DEAP 76.3% (BCI IV-2a)
67.2% (DEAP)

Proposed MUPS-EEG, a meta-update strategy
leveraging meta-learning to extract versatile
features and perform fast adaptation, retaining
knowledge across subjects.

(Continued)
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network end to end or fine tune either the last few layers

(classification or regression heads) or specific layers of the

network which are highlighted in Table 10.

(2) Meta transfer: Meta-learning is like teaching a model how

to learn quickly from new tasks or situations. It’s especially

helpful when there are only a few examples to learn from.

The utilization of meta-learning has gained importance in

machine learning domains and has recently extended its

application to Brain-Computer Interfaces (BCIs) based on

Deep Learning (DL; An et al., 2020a; Duan et al., 2020;

Li et al., 2021a; Pati et al., 2023; Ng and Guan, 2024) as

highlighted in Table 10.

Duan et al. (2020) employed a Model-Agnostic Meta-

Learning (MAML) approach (Finn et al., 2017), seeking

optimal parameters adaptable to target data through

gradient-based optimization across multiple subjects.

The methodology involved parameter updates based

on gradients during two distinct phases: meta-training

and meta-test. Subsequently, fine-tuning was performed

with a limited amount of target data. Notably, the

susceptibility of MAML to overfitting prompted (Duan

et al., 2020). To design shallow convolutional layers for

feature extraction. This design choice, however, may limit

the capacity of their method to sufficiently capture class-

discriminative information.

Recent advancements include the work of Pati

et al. (2023), which demonstrated the effectiveness of

optimization-based meta-learning for subject adaptation

in low-data environments. They utilized an optimization-

based meta-learning approach to tackle the problem

of subject variability in EEG-based motor imagery

classification. This method involves pre-training a model

using data from multiple subjects and fine-tuning it on

new subjects with limited data. The model employed

is EEGNet, a compact convolutional neural network

optimized for EEG signal classification. During meta-

training, the model learns an initialization that can

be quickly adapted to new tasks using a few gradient

steps. This allows the model to generalize better to

unseen subjects, significantly improving classification

accuracy in low-data scenarios. The results showed that

this approach outperformed traditional transfer learning

methods, demonstrating the potential of meta-learning

for enhancing BCI systems.

In another notable work, Li et al. (2021a) applied

Model-Agnostic Meta-Learning (MAML) to EEG motor

imagery decoding, enabling rapid generalization to

new users and sessions through few-shot learning and

gradient-based optimization. Their approach significantly

improves classification accuracy, demonstrating the

potential of meta-learning in BCI applications. This

approach enables rapid generalization to new users and

sessions through few-shot learning and gradient-based

optimization. MAML operates in two phases: meta-

training and meta-testing. During meta-training, the

model parameters are optimized such that a few gradient

updates can lead to good performance on new tasks. This
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involves repeatedly training on small batches of tasks

and then fine-tuning on new, unseen tasks with limited

data. The results showed significant improvements

in classification accuracy, indicating that MAML can

effectively handle the variability in EEG signals across

different sessions and subjects.

Moreover, Han et al. (2024) proposed META-EEG,

an advanced implicit transfer learning framework

designed to tackle inter-subject variability in MI-BCIs.

By incorporating gradient-based meta-learning with

an intermittent freezing strategy, META-EEG ensures

efficient feature representation learning, providing a

robust zero-calibration solution. Comparative analysis

reveals that META-EEG significantly outperforms

baseline and competing methods on multiple public

datasets, demonstrating robust performance and

generalizability even with unseen subjects through a

leave-one-subject-out cross-validation (LOOCV) training

strategy. This state-of-the-art framework highlights the

efficacy of meta-learning in achieving calibration-free

MI-EEG classification.

Despite these advancements, challenges remain, such

as the risk of overfitting, the need for computational

resources, and the difficulty in capturing complex class-

discriminative features. Addressing these challenges

requires further research into more robust and efficient

meta-learning frameworks that can generalize well

across different subjects and tasks without extensive

computational overhead. Wu and Chan (2022) suggests

that recent advancements in meta-learning, such as

Reptile algorithms (Nichol et al., 2018), may not

significantly enhance performance in EEG tasks,

particularly motor imagery classification. Reptile is a

first-order meta-learning algorithm designed for rapid

adaptation to new tasks. It works by performing gradient

descent steps on randomly sampled tasks to find a good

initialization, simplifying the meta-learning process

without needing second-order derivatives. However,

thorough studies across various EEG paradigms and

datasets are necessary to fully assess the effectiveness of

meta-learning techniques, including Reptile, for EEG

classification tasks.

(b) Feature transfer: The incorporation of feature transfer

constitutes a fundamental element within Implicit Transfer

Learning, facilitating the transfer of knowledge from a

source domain to a target domain without direct emphasis

on the target task. Embedding Learning (EL) emerges

as a pivotal technique in this context, overseeing the

transformation of samples into a lower-dimensional space

where similar samples converge while dissimilar samples

differentiate (Willmore, 2013; Vedaldi et al., 2014). EL

mitigates the need for an extensive array of training instances

by cultivating a more condensed hypothesis space, drawing

upon prior knowledge and domain-specific data. The process

of embedding captures inherent patterns within the data,

thereby facilitating efficacious knowledge transfer. In the

domain of Implicit Transfer Learning, approaches such as

Feature Transfer, particularly through Embedding Learning,

enhance the capabilities of Machine Learning models,

enabling adept adaptation to novel tasks even in scenarios

with limited labeled samples.

(1) Representation learning To represents any data for

Machine Learning algorithms, especially Neural Networks

to understand is referred as Embeddings and therefore

there is another name to it called Embedding Learning

(EL). AsWillmore (2013) and Vedaldi et al. (2014) embeds

each sample xi ∈ X ⊆ R
d to a lower-dimensional zi ∈

Z ⊆ R
m, such that similar samples are close together

while dissimilar samples can be more easily differentiated.

In this lower-dimensional Z , one can then construct a

smaller hypothesis space H̃, which subsequently requires

fewer training samples. The embedding function is

mainly learned from prior knowledge and can use task-

specific information fromDtrain . Table 10 summarizes the

development that happened in the area of Feature transfer

for Implicit Transfer Learning.

EL is the most common technique in transfer learning,

where three different embedding styles are popular: task-

specific, task-invariant, and hybrid, a combination of task-

specific and task-invariant.

Suh and Kim (2021) proposed the adoption of

common spatial patterns through manifold learning. This

method is efficiently able to represent 2D features through

Riemannian geometry. Hence, when evaluated on cross-

subject and session tasks yields acceptable results for 80 %

of subjects without losing the overall accuracy,

Yu et al. (2022) proposed the learning of embedding

through decomposition using a DeepSeparator model,

which is a sequence-to-sequence model. This inherent

separation strategy effectively denoizes and identifies the

EEG signal’s artifacts. Both the encoder and decoder are

composed of inception modules.

Thiyagarajan et al. (2017) applied triplet loss to the

TUH dataset Obeid and Picone (2016) for clustering. The

author proposes a CNN network optimized using triplet

loss along the euclidean distance. Using the embedding,

the authors obtained k-clusters using the elbow method.

Visualization through TSNE made it evident that this

approach yields good embedding.

(2) Multi task learning (MTL) Multitask learning (Caruana,

1997; Zhang and Yang, 2021) learns numerous related

tasks simultaneously using both general and task-specific

data. According to Autthasan et al. (2021), this is the

first and only study to employ a single EEG dataset

for two separate objectives, such as reconstruction and

classification, to provide a regularization impact in a

dataset of such a low size such for Motory Image

classification. MTL is, therefore, a natural choice for FSL

as it can generalize well across tasks.

In the realm of BCIs, the hybrid approaches proposed

recently, namely the Double Stage Transfer Learning (DSTL;

Gao et al., 2023a) and the Multi-layer Transfer Learning

Algorithm based on Improved Common Spatial Patterns

(MTICSP; Gao et al., 2023b), garnered attention for their

innovative methodologies and promising results. DSTL Gao
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et al. (2023a) tackled the challenge of limited EEG signal

quantities in BCIs by employing a double-stage transfer

learning strategy. It first utilized Euclidean alignment for

aligning EEG trials from different subjects and subsequently

reweighted aligned trials based on the distance between

covariance matrices of the source and target domains. After

extracting spatial features using Common Spatial Patterns

(CSP), transfer component analysis (TCA) was applied to

further reduce domain differences. Experimental results on two

public datasets [BCIC IV—Dataset 1 (Blankertz et al., 2007) and

BCIC IV—Dataset—2a (Brunner et al., 2008)], employingmulti-

source to single-target (MTS) and single-source to single-target

(STS) transfer paradigms, demonstrated superior classification

accuracy—84.64 and 77.16% in MTS, 73.38 and 68.58% in STS.

This indicated the effectiveness of DSTL in mitigating domain

differences and outperforming existing state-of-the-art methods

in EEG data classification.

Similarly, MTICSP Gao et al. (2023b) addressed challenges

in decoding algorithms for BCIs, particularly focusing on

motor imagery tasks. The algorithm first aligned source and

target domain data using Target Alignment (TA) to reduce

distribution differences between subjects. Subsequently, the

mean covariance matrix was re-weighted based on the distance

between covariance matrices of each trial in the source and

target domains. An improved Common Spatial Patterns (CSP)

technique, introducing a regularization coefficient, was then

employed to further reduce differences between source and

target domains and extract features effectively. Finally, Joint

Distribution Adaptation (JDA) aligned feature blocks from the

source and target domains. Experimental evaluations on two

public datasets using MTS and STS paradigms demonstrated

the efficacy of MTICSP, achieving classification accuracies

of 80.21 and 77.58% in MTS, and 80.10 and 73.91% in

STS for 5-person and 9-person datasets, respectively. These

results underscored the superiority of MTICSP over existing

algorithms, showcasing its potential in combining transfer

learning with motor imagination tasks in BCIs.

3.3 Self supervised learning (SSL)

Transfer Learning serves as a fundamental cornerstone in

our dynamically progressing world, playing a pivotal role in

fostering technological and human advancements. The efficacy of

Transfer Learning is intricately tied to the quality of the pre-

trained model utilized, as it mitigates the necessity for copious

amounts of data during the subsequent fine tuning process.

This imperative has spurred the emergence of Self-supervised

Learning (SSL), leveraging expansive unlabeled datasets to cultivate

a comprehensive feature representation within the pre-trained

model. Consequently, this optimization streamlines and enhances

the fine tuning procedure for subsequent tasks characterized by

limited labeled data availability.

SSL employs similarity functions, such as Contrastive Learning

(CL; Le-Khac et al., 2020), or GenerativeModels (Kostas et al., 2021;

Li et al., 2022; Ho and Armanfard, 2023), to extract meaningful data

representations from unlabeled datasets. A salient attribute of SSL

lies in the introduction of a distinct task, the tretext task. Diverging

from the original task, the pretext task assumes a pivotal role in

effectively acquiring and transferring knowledge to downstream

applications. This nuanced approach marks a notable dimension

within the realm of Self-supervised Learning.

As discussed by Rafiei et al. (2022), there exist two primary

techniques for pretext training: the “Optimal Augmentation

Technique” and “Contrastive, Generative, or Hybrid EEG

Recognition.” Notably, for EEG classification challenges, the

Contrastive approach coupled with Generative Models has

demonstrated efficacy on extensive datasets such as the Temple

University Hospital (TUH) dataset for Sleep Staging (Obeid and

Picone, 2016).

1. Optimal Augmentation technique: Self-supervised learning

necessitates a substantial pool of unlabeled data to achieve

effectiveness. Nonetheless, acquiring such data presents

challenges in terms of collection and expense. Researchers have

explored diverse data augmentation techniques to mitigate

these challenges to generate synthetic data suitable for self-

supervised learning scenarios. For instance, Mohsenvand

et al. (2021) introduced multiple self-supervised algorithms

and augmentation strategies, including mixup techniques, to

enhance the accuracy and sample efficiency of subsequent EEG

classification tasks.

2. Contrastive EEG recognition: Contrastive learning, a prominent

self-supervised paradigm, involves learning data representations

by contrasting positive and negative instances. Recent studies

have delved into the application of contrastive learning within

the domain of EEG signal recognition. BENDR (Kostas et al.,

2021), for instance, harnessed transformers and a contrastive

self-supervised learning framework to glean insights from

extensive EEG data. Moreover, Li et al. (2021b) introduced a

self-supervised model tailored for EEG signal representation

learning, utilizing aggregate statistics from the dataset to discern

patterns linked to different sleep stages.

3. Generative EEG recognition: Generative models, another

prevalent self-supervised technique, strive to produce synthetic

data resembling real data distributions. In the context of EEG

signal recognition, recent investigations have explored the

application of generative models. Notably, Peng et al. (2021)

proposed a Self-weighted, Semi-supervised Classification

(SWSC) model capable of emotion recognition from EEG

signals. The SWSC model incorporates a self-weighted

component that assigns weights to features based on relevance

across diverse emotion recognition scenarios, leveraging

combinations of labeled and unlabeled data.

4. Hybrid EEG recognition: Hybrid models amalgamate multiple

self-supervised learning approaches to yield highly robust and

generalizable representations. An example of such a hybrid

approach is the Self-Supervised Graph Neural Networks method

proposed by Zhang et al. (2021c), which harnesses graph

neural networks in a self-supervised manner to enhance seizure

analysis utilizing EEG signals.

Banville et al. (2019) introduced two methods, relative

positioning and temporal shuffling for SSL, which helps to learn

a rich representation of EEG signals. A simple CNN-based network
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was used and trained in a Siamese Network (Dong and Shen, 2018)

style to learn embedding. The learnt embedding are used to classify

the SleepEDF (Goldberger et al., 2000), MASS (O’reilly et al.,

2014) dataset, showcasing FSL capablilities with just 10 labeled

samples, although it is still away from matching performance of

fully supervised learning.

Kostas et al. (2021) conducted a study in which they built

upon the work of Banville et al. (2019), who had introduced

the SSL approach for EEG signal processing. Kostas et al. (2021)

extended this work by incorporating transformer networks and

named the model BErt-inspired Neural Data Representations

(BENDR). The model had been trained on the TUEG (Obeid and

Picone, 2016) dataset and fine-tuned on P300 (Goldberger et al.,

2000), MMI (Goldberger et al., 2000), and BCIC (Schirrmeister

et al., 2017) datasets. However, only the P300 dataset had

significantly improved using this strategy, indicating that SSL had

effectively labeled data without compromising accuracy. Kostas

et al. (2021) had adopted an approach used in automatic speech

recognition, leveraging a self-supervised training objective to learn

compressed representations of raw EEG data. The adapted model

had successfully handled different hardware, subjects, and tasks,

demonstrating versatility. Moreover, the internal representations

and the model’s architecture had been fine-tuned for various

downstream BCI and EEG classification tasks, outperforming

previous research in self-supervised sleep stage classification.

Automated seizure detection and classification from EEG has

significantly enhanced seizure diagnosis and treatment (Tang et al.,

2022). However, prior studies in this area have yet to adequately

address several modeling challenges, including (1) representation

of non-Euclidean data structure in EEGs, (2) accurate classification

of rare seizure types, and (3) needing a quantitative interpretability

approach for localizing seizures. This study addresses these issues

by (1) using a Graph Neural Network (GNN) to capture the

spatiotemporal dependencies in EEGs, (2) proposing two EEG

graph structures that capture electrode geometry or dynamic brain

connectivity, (3) introducing a quantitative model interpretability

a method that predicts preprocessed signals for the next period

to further improve model performance, particularly for rare

seizure types.

You et al. (2022) introduces SleepGAN, a novel approach that

combined Generative Adversarial Networks (GANs) with few-

shot learning algorithms to improve sleep staging classification

performance. SleepGAN generated synthetic EEG signals and

augmented the sleep stage classification training dataset. It

showcased good gains in classification metrics on the SleepEDF

dataset, even though it posed challenges in verifying if the generated

signals were near the real world and could be used on unseen data.

An et al. (2020b) innovatively proposed an approach to

address the challenges of few-shot learning in the context of

EEG-based motor imagery (MI) classification. The authors devised

a two-way few-shot classification network that incorporated

attention mechanisms, thereby accentuating pertinent features

within the support data. This architectural augmentation aimed

to enhance the model’s generalization performance when

confronted with previously unseen subjects. The outcomes of

the proposed approach were substantiated through evaluations

conducted on the BCI Competition IV 2b dataset, showcasing

a substantial improvement in classification accuracy. The

paper’s notable contributions encompassed the introduction of

a pioneering few-shot attention technique, the integration of 1D

Convolutional Neural Networks (CNNs), and the application

of few-shot learning principles in the realm of EEG-based MI

classification. However, the authors conscientiously acknowledged

and addressed considerations pertaining to data requirements

and the applicability of the proposed approach in online

learning scenarios.

In a manner akin to the BENDR framework (Kostas et al.,

2021), BrainBERT, as introduced by Wang et al. (2023), involves

the acquisition of EEG signal representations through training

on a dataset comprising observations from 10 subjects engaged

in diverse activities such as viewing distinct movies. Notably,

annotations pertaining to Sentence onset Speech/Non-speech,

Volume, and Pitch were applied to the movie clips for the

purpose of classification. The resultant representations offer

three primary advantages. Firstly, they enhance the accuracy

and efficiency of neural decoding, a crucial aspect given that

pivotal findings in neuroscience often rely on the performance

of linear decoders in specific tasks. Given the common limitation

of working with small datasets in neuroscience experiments,

a substantial reduction in the requisite data for decoding has

significant implications. This is particularly relevant in the context

of developing advanced brain-machine interfaces. Secondly,

these representations achieve performance enhancement while

preserving the interpretability characteristic of linear decoders,

even when compared to the complexity of more intricate

decoders. This represents a direct enhancement of a widely

utilized technique in neuroscience. Finally, by generating task-

agnostic embeddings open to subsequent analysis, BrainBERT

facilitates novel investigations into cognitive processes. The

temporal evolution of representations may uncover mechanisms

and dynamics underlying phenomena such as sleep and other

alterations in brain states in a fully data-driven manner. To

refine the representations constructed by BrainBERT further, future

endeavors aim to train more expansive variants on continuous 24/7

recordings from numerous subjects.

4 Research gaps and future directions

Research in EEG signal classification using FSL has significantly

progressed in recent years. However, some open challenges and

research gaps still need to be addressed to improve the accuracy

and robustness of the models. This section discusses some of these

research gaps and open challenges.

4.1 Data augmentation

Despite an extensive body of research concerning data

augmentation, particularly in the context of EEG signals, there is a

notable absence of a standardized evaluation methodology among

researchers. A limited number of investigations have addressed

challenges associated with data augmentation, specifically

addressing issues such as data skewness resulting from class
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imbalance within control classes. For instance, Freer and Yang

(2020) employed the data skew value to quantify the degree of

augmentation required for each class. Moreover, as emphasized by

Rommel et al. (2021), the augmentation of EEG signals does not

guarantee the preservation of the original class after augmentation.

Consequently, an approach involving class-by-class augmentation

is considered more efficacious and secure. Importantly, there exists

no current research that validates the appropriateness of chosen

augmentation techniques; instead, reliance is placed on extrinsic

evaluations to demonstrate effectiveness. The following research

gaps underscores the need for future investigations:

1. Need for intrinsic evaluation: While the majority of research

works rely on extrinsic evaluation criteria to demonstrate the

efficacy of augmentation techniques, a notable gap arises due

to the absence of intrinsic methodologies. The assessment

of the effectiveness of the generated signal poses challenges,

particularly in gauging its fidelity to real-world scenarios.

A critical consideration involves ascertaining whether the

generated signal maintains constancy in terms of class, session,

and subject in comparison to the original signal. In contrast to

domains such as computer vision, audio processing, and natural

language processing, where visual inspection of generated data

is viable, the assessment of EEG data presents unique challenges.

Consequently, there is a strong need for intrinsic evaluation.

One direction could be, the training of a model without

augmentation, followed by the computation of test metrics.

Subsequently, augmentation is applied to the test split, and the

test metrics are recalculated. The test metrics should exhibit

a comparable range if the augmentation technique effectively

approximates real-world conditions.

2. Addressing the Challenge of Limited Labeled Samples in Few-

Shot Learning through Class Invariant Data Augmentation:

Drawing upon the insights derived from Section 3.1.2

and the Tables 5–8, which elucidate diverse augmentation

methodologies including Geometric Transformations,

Noise Injection, Generative Adversarial Networks, and

Sliding Window, it becomes apparent that the predominant

spectrum of existing data augmentation techniques within

the realm of FSL predominantly exhibits subject or session

invariance. Consequently, there exists an imperative for further

investigation and innovation in data augmentation strategies

specifically oriented toward achieving class invariance. The

overarching goal is to systematically generate an extensive array

of synthetic samples transcending class invariance, thereby

empowering FSL models to attain heightened performance and

enhanced generalization across classes.

3. Revolutionizing Automatic Data Augmentation Techniques for

FSL: Traditional data augmentation methods often require

manual specification of augmentation parameters and careful

consideration of transform choices to preserve signal semantics

(Rommel et al., 2021). In the context of Few-Shot Learning (FSL)

with limited labeled samples, there is a need to revolutionize

automatic data augmentation techniques that can adaptively

augment data per class without extensive labeled data or reliance

on generative models. The work done by Rommel et al. (2021)

is the only work that explores the automatic data augmentation

for EEG signal processing. Hence, further exploration and

development of novel automatic data augmentation approaches

are required to fully harness the potential of data augmentation

in FSL for EEG signals.

4. Elevating Multivariate EEG Signal Augmentation in the FSL

Paradigm: Augmenting multivariate EEG signals presents

an open area of work, as most existing data augmentation

techniques focus on univariate augmentation such as Geometric

Augmentations and Noise Injections discussed in Section 3.1.2

and Tables 5, 6. However, in the context of FSL, considering

multivariate dimensions of EEG signals is crucial. Current

approaches augment individual channels independently,

overlooking the intricate interdependencies among them.

Hence, it is necessary to develop channel-wise augmentation

techniques in the frequency domain and convert them into

volumetric representations. Additionally, extending spectral-

domain augmentation methods, such as SpecAugment, to

three-dimensional volumes with multiple channels would

capture inter-channel relationships and significantly enhance

the generalization capabilities of FSL models on multivariate

EEG data (Park et al., 2019).

4.2 Transfer Learning

1. Cross-task learning: The cross-task learning paradigm remains

a significant challenge in transfer learning for EEG signal

processing. Label alignment addresses this challenge, which

aims to transfer classes from one task to another. However,

the effectiveness of label alignment approaches can vary,

highlighting the necessity for a valid Euclidean alignment

(Eisenhart, 2016). Despite advancements, this remains an open

problem in the context of transfer learning for EEG signal

processing, emphasizing the need for further exploration and

development of novel approaches to enhance cross-task learning

in this domain.

2. Cross-device transfer: The transfer of learned models from one

EEG sensor to another poses significant challenges due to

the availability of different EEG sensor vendors with varying

device specifications. This variabilitymakes it difficult to transfer

data, even for similar tasks. As a result, existing research in

transfer learning for EEG signal processing, such as studies by

Koelstra et al. (2011) and Cimtay and Ekmekcioglu (2020), has

primarily focused on specific datasets collected from particular

EEG sensors. These studies have explored the transfer ability of

models within datasets collected from different devices for the

same task. However, there remains a notable research gap in

addressing the challenges of transferring models across different

EEG sensor vendors, which requires further investigation and

development of robust transfer learning techniques in EEG

signal processing.

3. Transferability of domain validity: The prevailing body of

research predominantly substantiates the plausibility of

Cross-Session and Cross-Subject transfers. However, the

question pertaining to the attainability of Cross-Task transfer

remains a subject of unresolved inquiry. Recent advancements,

exemplified by the BENDR framework (Kostas et al., 2021),
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have delved into the realm of cross-task transfers, employing

pretext learning on extensive Sleep Staging data and subsequent

fine tuning on downstream tasks such as Motory Image (MI) or

Event-Related Potential (ERP) tasks. Despite these endeavors,

it is noteworthy that BENDR (Kostas et al., 2021) has yet to

manifest performance levels comparable to fully supervised

equivalents. Furthermore, research conducted by Lan et al.

(2018) elucidates that tasks originating from the same domain

but captured by disparate sensors, as evidenced by the transition

from DEAP (Koelstra et al., 2011) to SEED (Miller et al.,

2014) or vice versa, can indeed be effectively transferred. These

divergent findings prompt a pivotal inquiry: does the scope of

transferability extend solely to tasks that are identical or closely

related in nature?

4. Meta-learning techniques:Despite recent advancements inmeta-

learning, there remain challenges and uncertainties regarding

their effectiveness for EEG classification tasks. For instance,

Nichol et al. (2018) posits that recent advancements in meta-

learning, such as Reptile algorithms, may not significantly

enhance performance in EEG tasks, particularly motor imagery

classification. The Reptile algorithm is a first-order meta-

learning approach designed for fast adaptation to new tasks

by optimizing for a good initialization with gradient descent

steps on randomly sampled tasks. Comprehensive studies across

various EEG paradigms and datasets are essential to thoroughly

evaluate the efficacy of meta-learning techniques, including

Reptile, for EEG classification tasks.

4.3 Self supervised learning

The lack of massive datasets in EEG signal processing has

posed challenges in developing foundational models using self-

supervised learning. While inspiring works like BENDR (Kostas

et al., 2021) have explored the potential of self-supervised learning,

searching for a promising foundational model for downstream

tasks still needs to be more conclusive. The absence of extensive

labeled datasets hinders the exploration of self-supervised learning

techniques and their effectiveness in the context of EEG signal

processing. Addressing this challenge and developing robust

foundational models that leverage self-supervised learning for

EEG signals require further research and efforts in data collection

and annotation. SSL has been successful in image, audio, and

language processing tasks, and it can similarly benefit EEG signal

processing by providing a foundation model. However, some

challenges prevent achieving state-of-the-art performance, such

as limited data availability or smaller architecture. Kostas et al.

(2021) encountered analogous challenges in their study, conducting

pretext learning on the Sleep Staging dataset—TUEG (Obeid and

Picone, 2016), which currently stands as the only expansive open

EEG dataset available.

4.4 Practical implications and real-world
spplications

Although theoretical advancements in Few-Shot Learning

(FSL) have shown promise, practical implementation poses

additional challenges. This section explores the practical

implications, challenges, and provides case studies demonstrating

the application of FSL techniques in real-world EEG scenarios.

4.4.1 Practical implications
1. Low signal-to-noise ratio: EEG signals are often contaminated

with noise from various sources, including muscle activity and

environmental interference. Effective preprocessing and noise

reduction techniques are crucial.

2. High dimensionality: EEG data is high-dimensional, making it

computationally intensive to process. Dimensionality reduction

techniques like PCA or t-SNE can be used to mitigate this issue.

3. Inter-individual variability: EEG features can vary significantly

between individuals due to differences in brain anatomy

and physiology. Personalized models or domain adaptation

techniques are essential to address this variability.

4. Real-time processing: For applications like BCIs, real-time

processing is critical. Implementing efficient algorithms and

optimizing code for speed are necessary to meet real-

time constraints.

4.4.2 Case studies
4.4.2.1 Case study 1: epileptic seizure detection (Tang

et al., 2022)

• Scenario: Detecting epileptic seizures in patients using

EEG data.

• Data collection: EEG data from clinical visits.

• FSL technique: A Graph Neural Network (GNN) combined

with FSL algorithms.

• Challenges:

– High inter-patient variability.

– Noise in clinical EEG recordings.

– Accurate classification of rare seizure types.

• Solutions:

– Data Augmentation (DA): Employed various data

augmentation techniques to artificially increase the size

of the training dataset, helping the model learn more

robust features.

– Transfer Learning (TL): Used pre-trained models on large

EEG datasets and fine-tuned them on the specific dataset

for seizure detection.

– GraphNeural Networks (GNN): Utilized GNNs to capture

spatiotemporal dependencies in EEG signals, which are

crucial for accurate seizure detection.

– Model interpretability: Introduced a quantitative model

interpretability method to predict preprocessed signals

for the next period, improving the model’s performance,

particularly for rare seizure types.

• Outcome: Achieved significant improvements in classification

accuracy, particularly for rare seizure types.
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4.4.2.2 Case study 2: cognitive load monitoring in

educational settings (Kuanar et al., 2018)

• Scenario: Monitoring students’ cognitive load during learning

activities using EEG.

• Data collection: EEG data from students performing

cognitive tasks.

• FSL technique: Deep Recurrent Neural Networks (RNNs)

combined with FSL algorithms.

• Challenges:

– Variability in cognitive load patterns.

– Real-time analysis requirements.

• Solutions:

– Data Augmentation (DA): Applied various DA techniques

to create synthetic data, enhancing the training process.

– Self-Supervised Learning (SSL): Leveraged SSL techniques

to pre-train the model on large unlabeled EEG datasets,

followed by fine-tuning on the specific task of cognitive

load monitoring.

– Deep Recurrent Neural Networks (RNNs): Used RNNs to

capture the temporal dynamics of EEG signals, which are

crucial for monitoring cognitive load.

– Real-time processing algorithms: Implemented efficient

real-time processing algorithms to ensure immediate

feedback during learning activities.

• Outcome: Achieved high accuracy in cognitive load

monitoring with limited labeled data.

These case studies illustrate the practical challenges of

implementing FSL techniques in real-world EEG applications. They

also highlight the importance of developing robust preprocessing

methods, effective data augmentation strategies, and efficient real-

time processing algorithms.

5 Best practices for Few-Shot EEG
signal classification

Few-shot learning (FSL) has emerged as a pivotal research

frontier in EEG signal classification, addressing the challenging

task of classifying brain signals with limited labeled data. This

survey delves into an extensive exploration of various paradigms

within EEG signal classification and investigates how they can be

harnessed to enhance FSL methodologies. This section presents

a comprehensive set of best practices from empirical findings

and methodological insights. These best practices encompass data

augmentation techniques, robust validation strategies, transfer

learning considerations, and model adaptation nuances. By

adhering to these guidelines, researchers and practitioners can

navigate the intricate landscape of FSL for EEG signal classification,

ultimately fostering advancements in this critical field. Transfer

learning and self-supervised learning are two techniques that show

the potential for achieving zero- or few-shot learning. Figure 7

illustrates three phases an FSL algorithm should undergo to study

the approach’s effectiveness, as outlined below.

When developing a model and assessing the effectiveness

of any modeling technique or methodology, it is crucial to

implement an unbiased split to prevent data leakage during

evaluation. Therefore, an 80–20 split is commonly used as a

general guideline in most machine-learning problems. Train split

should exclusively use this data split for the modeling process

in the pre-training phase; fine-tuning split similarly exclusively

uses this data split for fine-tuning the pre-trained model. Use the

testing split, which should only be used for reporting classification

metrics. One can avoid the fine-tuning split if fully supervised

learning is employed without any fine-tuning considerations. For

imbalanced data, stratified sampling with class distribution is

recommended. Similarly, consider subjects/sessions as strata in

Leave-One-Subject-Out (LOSO) style if evaluating cross-subject or

session. For instance, split N subjects into three splits: designate

N-3 subjects for training, the N-2th subject for fine-tuning,

the N-1th subject for fine-tuning if doing domain transfer, and

the Nth subject for test evaluation. Similarly, for cross-session

evaluation, allocate m-3 sessions for each subject to training,

the m-2th session for validation, the m-1th subject for fine-

tuning and the mth session for test evaluation, assuming each

subject has m sessions. Once data is split carefully, it is safe to

begin pre-training, fine-tuning, and finally, inferencing to report

the errors.

1. Pre-training: Pre-training is an initial stage in developing

a model that understands rich feature representations for

downstream tasks. For Few-Shot Learning (FSL) problems,

using a technique that does not allow fine-tuning of the pre-

trainedmodel is not advisable unless a model emerges with great

zero-shot transfer capabilities. The following steps outline the

ideal training protocol:

(a) Model training and validation split:While training anymodel,

there is a need for Hyperparameter Tuning (HPT). Therefore,

it is advisable to use a separate split as validation.

(b) Data preparation: Any EEG signal processing starts with

artifact removal and baseline calibration concerning the

sensor. Also, normalize the data either using standardization

or any other technique.

(c) Data augmentation: Most TL research uses DA. However,

they do not ablate DA but have some positive impact

while pre-training, and therefore, it is suggested to augment

the training data to increase the number of samples to

have a robust pre-trained model. Begin with the Geometric

Transformations and Noise Injection as shown in Table 4 in

Section 3.1.2 and apply class by class to balance the class

distribution for training (Freer and Yang, 2020) until there

is a need not use class labels as in SSL. While implementing

DA in the Deep Learning setup, introduce DA augmentation

during the sampling process so that each batch sees different

augmented samples rather than the same in every epoch.

(d) Model training: Train the model parameters and the

hyperparameters using a validation split to develop an

optimal training configuration that yields the best model on

the validation split by iteratively performing Steps eandf .
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FIGURE 7

Ideal strategy for employing Few-Shot learning. HPT, Hyperparameter Tuning.

(e) Data preparation: During validation for hyperparameter

tuning, use the same preprocessing logic and parameters like

mean and standard deviation computed for standardization

and artifact removal.

(f) Hyperparameter tuning: Usually, it is required to tune the

training and model hyperparameters, such as learning rate,

optimizer, batch size, and number of epochs. For this, a

manual process or automatic algorithms, which are usually

iterative, can be employed.

(g) Diverse data sources: Use multiple EEG datasets representing

various populations, experimental conditions, and hardware

setups. This ensures that FSL techniques are tested across a

broad spectrum of scenarios.

(h) Dataset description: Provide detailed descriptions

of each dataset used, including participant

demographics, recording conditions, and

hardware specifications.

2. Domain adaptation: It is advisable to begin any modeling

without the consideration of domain adaptation. If model

cross-subject or session performance is poor during testing,

consider transferring the subject or session using domain

adaptation techniques.

(a) Data preparation:Once the pre-trainedmodel is available, use

the same preprocessing logic to prepare the fine-tuning split.

(b) Finetuning: Adjust the parameters of the target domain

through fine-tuning or align the data using the designated

fine-tuning split. Commencing the process involves

selectively fine-tuning segments of the pretrained neural

network to facilitate the transfer of knowledge pertaining

to EEG analysis (Zhao et al., 2019; Zhang et al., 2021b). In

instances involving a novel subject, (Zhao et al., 2019; Zhang

et al., 2021b) specifically fine-tuned solely the parameters

associated with fully-connected layers while maintaining

the immutability of preceding layers. In cases where model

overfitting occurs due to a lack of samples, it is advisable

to prioritize domain alignment over fine-tuning. The

Riemannian Alignment (RA) method is recommended for

aligning EEG covariance matrices from distinct subjects

within the Riemannian space, while an alternative approach

involves utilizing the Euclidean space (EA). Research
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conducted by He and Wu (2019) illustrates the superiority

of EA over RA alignment in terms of efficiency. Notably,

EA necessitates a dataset size ranging between 20 and 50

examples, whereas RA alignment can be achieved with

a smaller dataset size of 3–5 examples (Chiang et al.,

2019). Consequently, initiating the process with EA-based

domain adaptation is advisable when dealing with a dataset

comprising approximately 20 samples for subject transfer.

Conversely, in scenarios where the availability of new

subject samples is limited, preference should be given to

RA-based techniques.

(c) Detailed metrics: Evaluate model performance using a variety

of metrics, such as accuracy, sensitivity, specificity, precision,

recall, and F1-score.

(d) Statistical analysis: Conduct statistical analyzes (e.g.,

ANOVA, t-tests) to compare performance across different

datasets and conditions. Report p-values and effect sizes to

highlight significant differences.

3. Inferencing: For testing on unseen data, use the holdout split

kept at the initial phase and not included in the pre-training or

fine-tuning phase.

(a) Data preparation: Again, use the same preprocessing

steps and parameters for preprocessing, such as baseline

correction, artifact removal, and data normalization.

(b) Inferencing: It is safe to make predictions using the fine-

tuned model.

(c) Error calculation: Use test/holdout split predictions to report

errors or model selection.

(d) Cross-hardware validation: Test FSL techniques on data

collected from different EEG devices to assess their

robustness against hardware-induced variability.

(e) Noise and artifact management: Implement preprocessing

steps to handle noise and artifacts. Techniques such as

filtering, Independent Component Analysis (ICA), and

robust data augmentation should be used to enhance

signal quality.

(f) Real-world scenarios: Discuss the applicability of FSL

techniques in real-world clinical and research settings.

Include case studies where these techniques have been

successfully deployed.

(g) Scalability and adaptability: Address the scalability of FSL

techniques to larger datasets and their adaptability to new,

unseen data. Propose solutions for any identified limitations.

By following these best practices, researchers can develop and

assess FSL models that are robust, generalizable, and applicable

across diverse EEG datasets and conditions, ultimately advancing

the field of EEG signal classification.

Table 11 provides a detailed overview of various EEG

paradigms, the challenges they face, the state-of-the-art techniques

used to address these challenges, and the improvements achieved.

6 Guidelines for reporting results for
FSL research

To ensure the clarity, reproducibility, and consistency of

reporting in Few-Shot Learning (FSL) research, authors must

adhere to the following positive guidelines when presenting their

results. These guidelines aim to facilitate future researchers in easily

validating proposed methods against existing techniques:

1. Thorough methodological description: Articulate the proposed

methodology precisely, elucidating key details such as the

number of trials, samples, classes, preprocessing steps,

and hyperparameter configurations at each stage of Data

Augmentation (DA), pre-training for Transfer Learning (TL),

or Self-Supervised Learning (SSL). This meticulous approach,

as advocated by prior research (Fahimi et al., 2019; Freer and

Yang, 2020; Kostas et al., 2021), provides a detailed description

of the methodology, contributing to enhanced reproducibility.

2. Assessment approach and baseline benchmarking: In the

introduction of novel techniques, the methodology should

establish a rigorous assessment strategy and implement a robust

baseline for evaluation. Utilization of conventional metrics such

as Accuracy, F1-Score, Precision, and Recall is imperative in the

context of EEG signal classification. Furthermore, accounting

for class distribution is essential, particularly when dealing with

imbalanced datasets, and accuracy reporting should reflect this

consideration. The presentation of results on a per-class basis is

advocated over reliance on micro, macro, or weighted averages.

Substantive attention must be given to ensuring a meaningful

baseline comparison, especially in the domains of DA, TL, or

SSL studies.

3. Comparative analyzes with Pertinent Methodologies: In the

domain of Data DA, it is crucial for the methodology to compare
the devised techniques against robust and substantive baseline

methodologies. As noted by Zhang et al. (2023), the proposed
DA technique is compared with other generative models

alongside state-of-the-art classification algorithms. Similarly, in
the execution of TL or SSL investigations, the methodology

should undertake comparisons with alternative TL or SSL
techniques, avoiding non-TL/SSL approaches. As reported by

Eldele et al. (2023), the four SSL approaches are thoroughly
evaluated without amalgamating the results with modeling

or any other approaches. The central focus must remain on

showcasing the effectiveness of DA, TL, or SSL, whether applied
independently or in conjunction with these methodologies.

4. Data leakage free evaluation strategy: It is important to conduct
complete experiments without any data leakage to ensure

that results reported across research are comparable. All work
around the dataset should use a similar evaluation strategy,

as follows:

(a) Data split (train, validation, test/holdout) ratio:

(1) Data augmentation: Report the split percentage used for
training and validating the augmentation technique. Also,

be clear about the splitting criteria such random or
stratified and respective parameters used. Ensure the test

split remains untouched during the augmentation process
to maintain unbiased evaluation and augmentation is

done using train split only.

(2) Transfer learning: Be specific if training on the validation
split or if a separate split is used for domain transfer. Have

a separate validation split for transferring the domain.
Avoid using the test split during the transfer learning

process to accurately assess the model’s generalization to
unseen data.
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TABLE 11 Overview of state-of-the-art techniques and improvements for EEG paradigms.

EEG paradigm &
dataset

Challenges State of the art technique
(DA/TL/SSL, etc)

Improvements

Motor imagery (BCI
competition IV, dataset 2a)

Inter-subject variability, low
signal-to-noise ratio

Data augmentation (geometric transformations,
noise injection) Freer and Yang (2020), Transfer
learning (Fine-tuning) Zhao et al. (2019)

Increased accuracy from 70% to 85% with DA; TL
improved cross-subject performance by 10%

Emotion recognition
(DEAP, SEED)

High variability in
emotional responses,
artifact presence

Self-supervised learning (SSL) Schwabedal et al.
(2018), Domain adaptation (He and Wu, 2019)

SSL improved robustness to noise; Domain Adaptation
increased cross-session accuracy by 15%

Steady-state visually
evoked potentials (SSVEP,
proprietary dataset)

Consistency across sessions,
individual differences

Transfer learning [adversarial learning (Özdenizci
et al., 2019b), Euclidean alignment (He and Wu,
2019)]

Adversarial Learning improved session invariance by
12%; EA reduced data requirement by 50%

Rapid serial visual
presentation (RSVP, BCIT)

High variability in cognitive
responses, low data
availability

Generative Models [GANs (Chang and Jun, 2019),
VAEs (Komolovaitė et al., 2022)], Transfer
Learning [Parameter Transfer (Zhang et al.,
2021b)]

GANs increased data diversity and improved accuracy
by 8%; TL enabled better generalization with fewer
samples

Sleep staging (Sleep-EDF) Variability in sleep patterns,
limited labeled data

Data augmentation [signal decomposition
(Kalaganis et al., 2020), Sliding window (Mousavi
et al., 2019)], Self-supervised learning (SSL)
Schwabedal et al. (2018)

Sliding Window technique improved model robustness;
SSL enhanced performance with limited data

TABLE 12 Summary of open-source projects for EEG Data Augmentation, transfer learning, self-supervised learning, and frameworks.

Category Project name with citation Description

Data Augmentation EEG-AUGMENTATION-BENCHMARK-2022
(Rommel, 2022)

Systematic comparison of data augmentation techniques for EEG.

EEG Data Augmentation using Variational
Autoencoder (Vasarkar, 2021)

Uses VAE to generate synthetic EEG signals for motor imagery classification.

DeepEEGDataAugmentation (Freer, 2019) Methods for data augmentation and EEG data processing using deep learning-based
classifiers.

EEG Data Augmentation (Jacobsen, 2021) Investigates the role of data augmentation on the TUH EEG Artifact corpus.

EEG Synthetic Data Generation Using Probabilistic
Diffusion Models (Tosato et al., 2022)

Generates synthetic EEG data using denoising diffusion probabilistic models.

PyTorch-GANSER (Zhang et al., 2023) A GAN-based method for generating synthetic EEG data.

EEG-GAN (Neuroidss, 2018) Uses GANs to generate synthetic EEG data for augmentation.

Transfer Learning EEG-Transfer-Learning (IMICS-Lab, 2021) Self-supervised EEG data transfer learning using a deep convolutional neural network.

EEG-Adapt (Zhang, 2020) Adaptive transfer learning using deep CNNs for EEG motor imagery classification.

MS-MDA (VoiceBeer, 2022) Multi-source domain adaptation for EEG-based cross-subject emotion recognition.

Cross-subject EEG Emotion Recognition (Ferreira,
2020)

Cross-subject emotion recognition through neural networks.

Reptile_on_EEG (Bielby, 2021) Applies OpenAI’s Reptile algorithm for EEG classification using few-shot learning
techniques.

Self-Supervised
Learning

SelfEEG (MedMaxLab, 2021) Integrates SSL algorithms for EEG.

BENDR (Kostas et al., 2021) Leverages transformers and contrastive self-supervised learning for EEG.

EEG HELPS FEW SHOT LEARNING (Lu, 2024) Utilizes contrastive learning to enhance feature extraction from EEG signals for few-shot
learning tasks.

Eval SSL SSC (Emadeldeen, 2024) Evaluation of self-supervised learning techniques for semi-supervised classification of EEG
signals.

Frameworks BrainDecode (MacInnes et al., 2020) Library for EEG machine learning.

TorchEEG (Zhou et al., 2022) Integrated framework for EEG modeling, augmentation, transfer learning, and
pre-training.

MMFewShot (OpenMMLab, 2021) Comprehensive toolbox for few-shot learning tasks, including EEG classification.
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(3) Self supervised learning: Be explicit about which split labels

are used during the fine tuning process train, valid or

any other.

(b) Amount of samples used during augmentation and

domain transfer:

(1) Data augmentation: Showcase the performance of the

final task while changing the augmented samples in the

ratio of 0-20% of training data as presented by Rommel

et al. (2021) for each transformation they used. It is

also suggested to discuss how each class is augmented if

maintaining the same distribution or balancing the class

distribution as Freer and Yang (2020) augments the more

samples of theminority class tomake the dataset balanced.

(2) Transfer learning: If transferring a new domain on a

validation split or a separate data split. Most of the work

does not layout which split is used for hyperparameter

tuning and which is for transfer learning, which poses a

question of whether the results presented are prone to data

leakage. Also, study how transferring 1 to N samples from

the chosen split affects the testing metrics.

(3) Self-supervised learning: When dealing with multiple

datasets, it is advisable to be specific about how all datasets

are combined and trained for pretext learning. Similar to

TL, present the few-shot performances across 0-N samples

to showcase howmany samples are optimal to finetune the

pre-trained model.

(c) Hyperparameters used during training:

(1) Data augmentation: Specify the parameter values used for

Geometric transformations like rotation ratio, dropout

probability, masking ratio, shifting scale, and the amount

of noise added using noise injection. Include model

training hyperparameters for learning a generating model,

such as the optimizer choice, learning rate, and batch size.

(2) Transfer learning: State model architecture and training

parameters with the final values, whether tuned or

heuristic-based. Include details like learning rate

schedules, weight decay, and the optimizer’s choice to

ensure reproducibility and transparency.

(3) Self-supervised learning: Provide details on pretext data

preparation parameters, pretext model architecture,

training hyperparameters, and fine tuning parameters,

including specifics on how the pretext model’s knowledge

is transferred to the downstream task.

By adhering to these comprehensive guidelines, researchers can

contribute to the advancement of FSL research through transparent

and reproducible findings. A good start on few-shot learning

research would be to begin with good experimentation frameworks

and libraries available in open source. These frameworks, such

as BrainDecode, have been active in integrating state-of-the-art

models and data augmentation techniques already (MacInnes

et al., 2020). Similarly, for SSL, SelfEEG is a good project

to look at, as it is actively being pursued to integrate SSL

algorithms for EEG (MedMaxLab, 2021). BENDR is another

excellent project that leverages transformers and contrastive self-

supervised learning to learn from massive amounts of EEG

data (Kostas et al., 2021), it is a good example on how to

systematically conduct SSL related research and test robustly

across various tasks. In general, TorchEEG aims to integrate

all EEG-related modeling, augmentation, transfer learning, and

pre-training work under one area (Zhou et al., 2022). Instead

of starting from scratch, it is always beneficial to start from

such projects (AliasVishnu, 2020; SuperBruceJia, 2020). Adding

to the list of useful resources, the MMFewShot library is a

comprehensive toolbox that supports multiple tasks in few-shot

learning, including classification and detection, and offers strong

baselines and state-of-the-art methods (OpenMMLab, 2021). For

those specifically interested in applying few-shot learning to EEG

data, the repository Reptile_on_EEG demonstrates the application

of OpenAI’s Reptile algorithm for EEG classification using few-

shot learning techniques (Bielby, 2021). Another valuable project

is the EEG HELPS FEW SHOT LEARNING, which utilizes

contrastive learning to enhance feature extraction from EEG signals

and applies these features to few-shot image tasks (Lu, 2024).

Apart from these, Table 12 highlights few projects by category,

that can easily be followed due to their code structure and

good README.

7 Conclusion

In conclusion, this systematic review has provided an in-

depth and integrated perspective on the application of Few-Shot

Learning (FSL) techniques, encompassing Data Augmentation

(DA), Transfer Learning (TL), and Self-Supervised Learning (SSL)

in the domain of EEG signal processing. Our research distinguishes

itself from existing reviews by offering a comprehensive and

forward-looking approach, introducing a novel taxonomy that

categorizes and organizes these techniques, facilitating a structured

understanding of their applicability across a diverse range of

EEG paradigms.

The challenges and opportunities discussed in this review

not only shed light on the current state of FSL in EEG signal

analysis but also lay the foundation for future research directions.

Addressing the challenges posed by limited labeled data, inter-

subject variability, and the need for robust models, this review

propose avenues for further exploration. Future research

can actively focus on advancing Transfer Learning strategies

to enhance model adaptation to new domains, robustness

to out-of-distribution data, and generalization across EEG

paradigms. Although the availability of sophisticated open-source

frameworks for EEG is limited, this remains an important

area of work for the community. Developing such frameworks

can provide new researchers with essential tools to bootstrap

their research efforts. This paper highlights a few existing

frameworks that offer valuable resources for EEG signal processing

and analysis. By leveraging these frameworks, researchers

can advance the field through transparent, reproducible, and

efficient experimentation.

Moreover, the potential of Self-Supervised Learning to

reduce data annotation burdens and provide robust EEG signal

representations offers exciting prospects for future investigations.

Developing SSL techniques tailored for EEG signal processing
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is a promising area that can actively expand the scope of

FSL applications.

Overall, this systematic review not only offers a comprehensive

reference for researchers and practitioners in EEG signal processing

but also actively inspires and guides future research endeavors

and also proposes best practices and guidelines for future

research in FSL. The combined potential of Data Augmentation,

Transfer Learning, and Self-Supervised Learning, as elucidated

in this review, holds the promise of advancing the field

of EEG signal analysis, ultimately benefiting applications in

neuroscience, human-computer interaction, and clinical diagnosis.

The challenges discussed in this review serve as catalysts for

pioneering research, actively propelling us toward the development

of robust, adaptable, and efficient FSL models, thereby furthering

our understanding of the human brain through EEG signal analysis.
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