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Introduction: In real-life scenarios, individuals frequently engage in tasks that 
involve searching for one of the distinct items stored in memory. This combined 
process of visual search and memory search is known as hybrid search. To date, 
most hybrid search studies have been restricted to average observers looking 
for previously well-memorized targets in blank backgrounds.

Methods: We  investigated the effects of context and the role of memory in 
hybrid search by modifying the task’s memorization phase to occur in all-new 
single trials. In addition, we aimed to assess how individual differences in visual 
working memory capacity and inhibitory control influence performance during 
hybrid search. In an online experiment, 110 participants searched for potential 
targets in images with and without context. A change detection and go/no-go 
task were also performed to measure working memory capacity and inhibitory 
control, respectively.

Results: We  show that, in target present trials, the main hallmarks of hybrid 
search remain present, with a linear relationship between reaction time and 
visual set size and a logarithmic relationship between reaction time and memory 
set size. These behavioral results can be  reproduced by using a simple drift-
diffusion model. Finally, working memory capacity did not predict most search 
performance measures. Inhibitory control, when relationships were significant, 
could account for only a small portion of the variability in the data.

Discussion: This study provides insights into the effects of context and individual 
differences on search efficiency and termination.
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1 Introduction

Visual search (VS) is the action of looking for a target among distractors. It is a ubiquitous 
task in many everyday situations, from searching for products in stores to driving. Mainly used 
to examine visual attention (Treisman and Gelade, 1980), visual search has been intensively 
researched for decades. The core manipulation in visual search is to vary the distractor set size 
while measuring the time until a target is detected (reaction times or RTs) and measuring 
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detection accuracy (Neisser, 1964). From these, a hallmark was 
established—the linear dependence between RT and visual set size 
(VSS) (Wolfe, 2020).

While much is known about elements that influence visual search 
when one sole item is searched for, search in real life is substantially 
more complex, often involving several objects in memory. From 
(Schneider and Shiffrin, 1977) classic work, encompassing both visual 
search and memory search (MS), hybrid search (HS) is when 
observers search for any of many possible targets (Wolfe, 2012a). 
Hybrid search tasks involve memorizing potential targets to 
subsequently identify their incidence in a display. In a previous study 
(Schneider and Shiffrin, 1977), different memory manipulations 
included whether the hybrid search had consistent mapping (when 
target sets are fixed, used throughout trials), all-new mapping (when 
new items compose the memory set each trial), or varied mapping 
(when targets become distractors and vice versa), which negatively 
impacted efficiency and accuracy in this order. Regardless of the 
specific conditions, a robust logarithmic relationship between RT and 
memory set size (MSS) has been consistently reported: up to MSSs of 
100 for objects (Wolfe, 2012a) and words (Boettcher and Wolfe, 2015). 
Nonetheless, most recent hybrid search studies have not manipulated 
memory mappings. Solely utilizing consistent-mapping-like 
paradigms, high accuracies are observed (e.g., see Wolfe, 2012a). 
Under such conditions, speed-accuracy trade-offs that vary across set 
sizes cannot be evaluated as adequately as by paradigms that limit 
memory strengths (Nosofsky et al., 2014b). Given the prominent role 
of context in memory representations, such as recognizing a face or 
place after a single real-world encounter (Ison et al., 2015), examining 
paradigms with trial-by-trial changing memory sets is justified.

Most hybrid search findings are based on experiments conducted 
with artificial stimuli on blank backgrounds (Wolfe et al., 2011b), 
which may limit their ecological validity. In visual search, 
accumulating evidence shows that context is critical in guiding 
attention in real-world search (Wolfe et al., 2011a). Indeed, context 
guidance was found to overpower bottom-up saliency in guiding eye 
movements in naturalistic search (Henderson et  al., 2009) and 
facilitate search in scenes for targets in plausible locations rather than 
implausible ones (Neider and Zelinsky, 2006) or blank backgrounds 
(Wolfe et  al., 2011a). However, naturalistic scenes are complex/
continuous, with set sizes impossible to define (Rosenholtz et  al., 
2007) but they are never random (Henderson and Ferreira, 2004). 
Scenes have syntax, that is, structural plausibility—humans appear on 
horizontal superficies (Biederman, 1977; Torralba et al., 2006), and 
semantics, that is, meaningful associations—for example, a toothbrush 
on a sink (Võ and Henderson, 2009). In hybrid search, the limited 
exploration of contextual information has left mixed results. To our 
knowledge, only Boettcher et al. (2013, 2018) attempted to examine 
contextual effects in hybrid search. However, both were investigating 
whether context-aided memory set partition to context-relevant items 
at fixed visual set size and memory set size. This means that it is largely 
unknown how variable set sizes affect their relationship with context. 
The primary objective of this study was to explore the relationship 
between reaction time and set size in visual search and memory search.

A small number of hybrid search models have been proposed in 
the literature to explain behavioral signatures in hybrid search. 
Cunningham and Wolfe (2014) postulated a three-stage model for 
hybrid search. After the first stage of guided search (Wolfe, 2007), where 
solely feature-plausible objects affiliated to the memory set are 

considered for the second stage of object recognition, a third stage of 
logarithmic memory search is performed through a diffusion process. 
Each memorized target item races as information is accumulated in 
parallel over time, forming N-diffusion processes, where 
N = MSS. Target selection only occurs when information from a target 
accumulator reaches the decision threshold. The threshold is set higher 
to impede exaggerated false alarms and lower to promote speed—the 
speed-accuracy trade-off (Chun and Wolfe, 1996). As most hybrid 
search paradigms follow a condition akin to consistent mapping, not 
much is known when targets’ memory strengths are manipulated 
(Wolfe et al., 2015). Drawing from memory search literature, which 
focuses on the processes underlying memory search through memory-
mapping manipulations, Nosofsky et al. (2014b) proposed an exemplar-
familiarity random-walk memory search model with a logarithmic RT 
diffusion stage. In contrast to recent hybrid search models, it proposes 
that racing items are dictated by their ‘memory strength’, influenced by 
repetition effects and time presented, while they compete, and 
information is accumulated. Thus, while the curvilinear relationship of 
RTxMSS is maintained, efficiency and accuracy are affected (Nosofsky 
et al., 2014a,b), which can elucidate hybrid search processes for different 
memorization conditions. Another family of computational models 
that have been extensively used in decision-making tasks involving 
two-choice decision-making is the drift-diffusion model (DDM) 
(Ratcliff and McKoon, 2008). Essentially, the decision-maker 
accumulates evidence until a boundary is reached, and at that moment 
the decision is made. This process is modeled by sequential diffusion 
signals that drift over time. Diffusion models have been used to estimate 
the RT distribution in visual search tasks before (Palmer, 1975), and 
they may provide valuable insights into the underlying cognitive 
processes (Myers et al., 2022). More complex models have emerged in 
recent years that try to predict human scanpaths in a visual search task 
and one could also sample RTs from them (Kummerer et al., 2018; Bujia 
et al., 2022; Travi et al., 2022). The problem with this approach is that 
the more complex the model is, the more difficult it is to understand its 
underlying processes and relate them to a particular study. A secondary 
objective in this study was to implement a drift-diffusion model and 
interpret its parameter values (drift, boundary, non-decision time) in 
terms of the hybrid search variables, such as the visual set size (VSS), 
the memory set size (MSS), and the presence of the context.

Two fundamental components of executive function, namely, 
working memory and inhibitory control, have long been largely 
implicated in visual search processes. Visual working memory 
(VWM), which entails the maintenance and manipulation of a limited 
amount of visual information that serves current task demands (Luck 
and Vogel, 1997), has been connected to a variety of visual search 
processes, such as representing the search template to guide attention 
(Desimone and Duncan, 1995), comparing the search template to 
potential suitor objects (Bundesen, 1990), and influencing search 
facilitation in visual search under contextual cueing (Manginelli et al., 
2013). Most recent hybrid search research has emulated a consistent 
mapping paradigm, which has been seen to produce near-error-free 
data (Nosofsky et al., 2014b). Studying different memory manipulations 
could be critical to further uncover memory’s role in search, since 
visual working memory involvement might only be observed when 
targets change per trial (Woodman et al., 2007), and in memory search 
it is still unclear if context can restrict the memory set to scene-relevant 
items on a trial-by-trial basis (Boettcher et al., 2013, 2018). Inhibitory 
control (IC) is the critical executive function of suppressing 
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goal-irrelevant stimuli interference and subduing prepotent motor 
response (Young et al., 2018). Experimental paradigms conventionally 
include brusque prepotent response incitation, where one either 
proceeds or subdues action (e.g., go-no-go tasks) (Miyake et al., 2000). 
Individuals who have higher false alarms, or larger negative response 
bias, when subjected to signal detection theory (SDT) analysis, have 
more difficulty inhibiting prepotent responses (Young et al., 2018). 
Given the proposed importance of inhibitory control in visual search 
models for top-down selection and search termination (Treisman and 
Sato, 1990; Moran et al., 2013), an evaluation of the potential impact 
of individuals’ inhibitory control is also merited. The last objective of 
this study was to examine the role of individual differences in working 
memory and inhibitory control in hybrid search. Based on previous 
literature, it is feasible to formulate specific predictions regarding the 
manipulations employed in this study. With mounting replications of 
hybrid search’ RT signatures in divergent conditions, we expect all-new 
memorization and context to preserve qualitatively the main behavioral 
hybrid search signatures. However, we expect to see changes in search 
efficiency and accuracy. Predicting the role of visual working memory 
in hybrid search is more difficult, given the conflicting findings 
reported in visual search. If this study follows (Drew et  al., 2016) 
account that a fixed amount of visual working memory is used as a 
conduit to transfer incoming target templates to memory, one might 
expect working memory capacity to correlate with RT intercepts in 
hybrid search, where individuals with higher working memory 
capacity might transfer targets through working memory faster than 
lower visual working memory capacity individuals. However, given 
our modified paradigm with targets changing per trial, analogous to 
Woodman et al. (2007), this proposition might not hold, and we might 
see higher visual working memory capacity producing smaller RT 
slopes as well; given high-visual working memory capacity individuals 
would have higher storage capacity/resource allocation flexibility as set 
sizes increase (Luck and Vogel, 2013). Given the potential importance 
of inhibitory control in search termination (Moran et  al., 2013), 
we would expect that individuals with higher inhibitory control show 
larger RT intercepts than lower inhibitory control individuals, 
reflecting a potential to better maintain conservative thresholds with 
fewer false alarms and higher accuracy. In addition, by implementing 
a drift-diffusion model for hybrid search, we expect to link model 
parameters with the behavioral results and, in doing so, propose new 
directions for future experiments.

The rest of the study is organized as follows. Section 2 presents the 
results of the main experiment (Experiment 1) on the role of context 
in hybrid search. Section 3 shows that a simple drift-diffusion 
computational model can reproduce the main behavioral signatures 
of Experiment 1. Section 4 evaluates the extent to which individual 
differences in visual working memory and inhibitory control 
contribute to hybrid search behavior.

2 Experiment 1: context effects on 
hybrid search

2.1 Methods

2.1.1 Participants
An online data collection method gathered data from 110 

participants, identifying as women (59), men (49), non-binary (1), 

different identity (0), and non-disclosing (1). Participants were 
recruited via email and social media. Their ages (excluding 3 age 
misreports) ranged from 18 to 61 years old (M = 27 and SD = 7.63). 
Data were also collected for another 10 participants who were 
excluded due to aborting the experiment (N = 7) or low behavioral 
performance (N = 3). More specifically, to exclude participants with 
poor performance we used a threshold of 3 standard deviations below 
the mean accuracy (calculated from the raw data in the whole 
experiment), as done in previous visual search studies (Treisman, 
1982). Participants were given the option to enter a draw for Amazon 
vouchers worth £20 each, so two people were compensated. 
Convenience sampling was adopted, as email and social media 
outreach is limited to users and not randomized. Online recruitment 
concentrated on Chinese-oriented social media platforms (WeChat) 
and Brazilian social media groups. The study was approved by the 
University of Nottingham School of Psychology Ethics Panel (ethics 
approval: S1240).

2.1.2 Materials
A total of 112 images with (N = 56) and without (N = 56) context 

were constructed. As shown in Figure 1B, the contextual images were 
constructed by superimposing real-world background scenes 
(including outdoor scenes—e.g., forest, and indoor scenes—e.g., shelf) 
with target and distractor stimuli. Each image contained 1, 2, 4, or 8 
stimuli (visual set size, VSS), and a separate set of 1, 2, 4, or 8 stimuli 
were selected for memorization (memory set size, MSS). Items (targets 
and distractors) only appeared once during the experiment. All the 
targets and distractor stimuli were built from images from the COCO 
dataset (Lin et al., 2014) and ImageNet (Deng et al., 2009). These 
datasets were selected due to their extensive size and appropriate 
licensing. Images were then resized so that their new size would 
be compatible with the background image and placed according to 
scene syntax (i.e., no major violations of support, interposition, 
position, and size). All targets and distractors belonged to the same 
category (objects, animals, or people). The experiments were 
implemented in PsychoPy and executed online by participants 
through https://pavlovia.org/ (Peirce et al., 2019).

2.1.3 Procedure
Participants searched 112 images with or without context and 

varying MSS and VSS. Following written consent, participants were 
instructed to press “m” for target present and “v” for target absent. The 
trial begins by showing the memory set (see Figure 1), on a display. A 
fixation cross is shown for 1 s in the center of the screen. This is then 
followed by the search screen (see Figure 1). The visual set contained 
at most 1 memory set item. Subsequent trials are promptly initiated 
after a response, or, after 7 s if no response is given. Target and context 
were present in 50% of trials. Completion of the 112 trials 
automatically triggered the de-briefing slides. Trials were randomized 
and showed one of the 4 combinations of conditions—either target 
present or target absent conditions in a context absent or context present 
trial. The completion time was approximately 20 min.

2.1.4 Design and data analysis
First, a descriptive analysis was conducted to assess the data’s 

statistical metrics to provide validation of the experiments’ properties 
and distributions delivered in an online medium. Second, a 
preliminary analysis was conducted to satisfy the data assumptions 
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necessary for the main analyses. Pre-analysis checks examined 
outliers, homoscedasticity, normality of residual errors, and sphericity 
by inspecting Cook’s distance, the distribution of the residual error, 
and Mauchly’s test. Where Mauchly’s test indicated that the sphericity 
assumption had been violated (here, for variables with 2+ levels), 
Greenhouse–Geisser correction was applied. When significant and 
variance–covariance matrices were not homogenous, conservative 
Pillai’s trace was reported. No outliers (maximum Cook’s distance 
surpassing 1) were identified. For simple linear regressions, collinearity 
was assessed. No correlations above r > 0.9 were observed. By visually 
inspecting scatterplots of residuals against independent variables, no 
systemic pattern was observed (homoscedastic). In addition, 
examining residuals’ histograms, all conformed to an acceptable 
departure from normality.

To identify potential large differences being associated with one 
of the images used in a given condition, the following process was 
followed: First, a one-way ANOVA over images was conducted per 
condition {context present, MSS, VSS, target present} with formula 
rt. ~ stimulus. For example, for {context present = 1, MSS = 1, VSS = 4, 
target present = 1}, there were four stimuli answered by all participants, 
and the ANOVA is aimed to distinguish if there were one or some of 
the stimuli behaving differently than the others. Then, if the F value 
was larger than 20 with a corresponding p-value smaller than 0.05, 
post-hoc comparisons using Tukey’s HSD test (alpha = 0.05) were used 
to determine which of the stimuli would be  discarded. For the 
stimulus with the highest mean difference compared to the others, 
only one stimulus was discarded per condition at most to keep data 
balancing. This resulted in 6 out of 112 images being discarded. For 
counterbalancing, the trial order was randomized across participants 

in each experimental task. Each participant experienced a unique 
sequence. The data were retrieved from https://pavlovia.org/ to Excel 
files and matched by participant ID.

To illustrate the relationships between reaction times and set size, 
linear and logarithmic regression models were constructed in Python 
with NumPy (version 1.23.5) for visual search and memory search. 
These models were used to fit each participant and condition ({MS, 
VS} × {CP, CA} × {linear, log}).

Linear mixed models (LMMs) were used on the combined data 
from all participants to compare models for both visual search (VS) 
and memory search (MS). For each search type, four models were 
constructed: two with a linear term for set size and two with a 
logarithmic term. Two of these models included context and set size 
(VSS for visual search, MSS for memory search) as fixed effects, their 
interaction, and participants as a random intercept [e.g., RT ~ VSS * 
Context + (1|Participant)]. We  also specified a baseline model of 
decreased complexity that only included context as a fixed effect 
[RT ~ Context + (1|Participant)]. To assess the sequential 
decomposition of the contributions of fixed effect terms, we used 
likelihood ratio tests, which allowed us to compare models of different 
complexity (Burnham and Anderson, 2004; Bates et al., 2015). For 
model selection, we used the Akaike information criterion (AIC). This 
approach allowed for a direct comparison of linear and logarithmic 
models while accounting for the repeated measures design of the 
study (Bates et al., 2015).

Python (version 3.10.5) was used for general data management 
and analysis. SciPy (version 1.12.0) was used to compute Pearson 
correlation coefficient. NumPy’s polyfit was employed for linear 
regressions. Statsmodels (version 0.14.1) was used for the ANOVA 

FIGURE 1

(A) Model trial for a memory set size of 4 and a visual set size of 8 without contextual information. (B) Model trial for a memory set size of 4 and a visual 
set size of 4 with context. Each trial initiates with the images to be memorized, which is then followed by a fixation cross. The search screen 
(containing or not the target) follows until a response is made.
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table and post-hoc analyses. Although statsmodels includes mixed 
models, we opted for lme4 (version 1.1.35.1) in R (version 4.3.2) for 
linear mixed model analysis as it is widely used and has strong 
community support. To compare models of increasing complexity, 
we  used the anova() function from the lme4 package (version 
1.1.35.1). Scikit-learn (version 1.3.0) was used for its ParameterGrid 
implementation, which facilitated dividing data between conditions.

2.2 Results

2.2.1 Online validation of experiments
Descriptive statistics of the hybrid search show properties 

consistent with previous lab-based experiments in literature, 
conferring adequate online validation. Consistent with Wolfe (2012a), 
this task saw a mean accuracy well above the chance level (M = 67%, 
SEM = 1%). The characteristic decline in accuracy when set sizes 
increase in divergent memory-mapping conditions was also observed: 
visual set size: VSS1 = 75% to VSS8 = 55%; and memory set size: 
MSS1 = 97% to MSS8 = 58%.

2.2.2 Context effects and trial-by-trial 
memorization in hybrid search

In this section, the following abbreviations will be  used for 
orderliness—target present (TP); target absent (TA); context present 
(CP); and context absent (CA). Across all conditions, targets were 
correctly detected on 67% (SEM:1%) of target present trials, and false 
alarms were produced on 26% (SEM:0.9%) target absent trials. The 
corresponding discriminability d-prime was 1.07.

For RT analyses, from a total of 12,320 trials across 110 
participants, we excluded trials with no answer within the maximum 
time allowed (7 s) (N = 217). Very short responses (less than 200 ms) 

were only recorded for four trials and were not excluded from the 
data. Finally, we kept only correct trials which gave us a final sample 
of 8,042 trials (3,850 target present trials).

Linear mixed models with random intercepts per participant were 
used to control for repeated measurements. The inclusion of the 
variables of interest [VSS, MSS, log(VSS), log(MSS)] and their 
interaction with Context was evaluated by comparing these models 
[e.g., RT ~ VSS * Context + (1|Participant)] with the baseline model, 
containing only the Context as a fixed effect 
[RT ~ Context + (1|Participant)]. All variables of interest yielded 
significant improvements in log-likelihood over the baseline model 
[VSS: Δχ2 (2 df) = 215, p < 2.2e-16; log(VSS): Δχ2 (2 df) = 130, 
p < 2.2e-16; MSS: Δχ2 (2 df) = 320, p < 2.2e-16; log(MSS): Δχ2 (2 
df) = 459, p < 2.2e-16]. In this context, the χ2 statistics represent the 
difference in deviance between successive models.

Linear and logarithmic dependencies were estimated for RT as a 
function of visual and memory set sizes (VSS and MSS, respectively) 
on a single-participant basis. For visual search, the classic linear 
dependence between RT and visual set size was replicated (Context 
Absent R2 = 0.54 ± 0.03; Context Present R2 = 0.49 ± 0.03). For memory 
search, a positive logarithmic relationship between RT and memory 
set size was observed (Context Absent R2 = 0.54 ± 0.03; Context Present 
R2 = 0.54 ± 0.03). Figure 2 exhibits the regression fits constructed for 
the average RT as a function of set sizes. The Akaike information 
criterion values were used to directly compare the linear and 
logarithmic models. Given the improvements in goodness of fit shown 
by models containing set size over the baseline model, comparisons 
were made for the full models. In visual search, the AIC value for the 
linear model (AIC_vs_linear: 10636) was lower than that for the 
logarithmic model (AIC_vs_log: 10717), indicating that the linear 
model in visual search better fits the data. Conversely, in memory 
search, the AIC value for the logarithmic model (AIC_ms_log: 10388) 

FIGURE 2

RT as a function of visual and memory set sizes for target present in correct-only trials. (A) Visual search target present; (B) memory search target 
present. In RT  x  VSS, MSS was fixed at SS4; in RT  x  MSS, VSS was fixed at SS4. Red squares denote context present (CP), and blue circles context absent 
(CA) conditions. Error bars denote 95% CI. Dashed/continuous lines depict linear/logarithmic fits, respectively. Equations for each condition: VS: 
y  =  (0.13  ±  0.01)*x  +  (1.35  ±  0.05) (CA); y  =  (0.13  ±  0.02)  +  *x  +  (1.84  ±  0.06) (CP); MS: y  =  (0.40  ±  0.03)*log(x)  +  (1.28  ±  0.04) (CA); 
y  =  (0.63  ±  0.04)*log(x)  +  (1.43  ±  0.05) (CP). The slope and the intercept were the mean  ±  SEM from the individual fits.
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was lower than that for the linear model (AIC_ms_linear: 10531). This 
indicates that the logarithmic model in memory search provides a 
more parsimonious fit to the data than the linear model.

Correct-trial RT analysis (Figure 2) presented a positive slope with 
visual set size (p < 0.001, Table 1), larger RTs when the context was 
present (p < 0.001, Table 1), and no interaction between them (p = 0.13, 
Table 1) indicating that, for target present trials, both context conditions 
have similar efficiencies. Moreover, the main effects were still significant 
in a larger model including target absent trials (p < 0.001, 
Supplementary Table S2). In this case, the interaction showed a 
significant effect (p < 0.01, Supplementary Table S2) pushed by target 
absent trials (Supplementary Figure S3). The target presence showed no 
significant main effect but significant interactions with the other 
co-variables.

When considering memory search, the context did not present a 
significant effect by itself (Table 1) but an interaction with the logarithm 
of the set size log(MSS) (p < 0.0001, Table  1) indicating stronger 
log(MSS) effect when the context was present. The log(MSS) had a 
significant main effect by itself (p < 0.0001, Table 1). The significant 
effects were replicated when also considering the target absent trials 
(Supplementary Table S2), as well as the main effect of context and the 
main effect of target presence.

Similar models were built for accuracy as the dependent variable. 
There were significant main effects of visual set size and memory set size 
(Supplementary Table S3). No significant main effect of context, or 
interaction with visual/memory set sizes was observed. This suggests 
that participants followed a strategy in which they spent more time to 
locate each item but the extent to which they explored the image was 
the same. Both visual set size and memory set size odds ratios indicate 
a significant negative relation with the accuracy (odds < 1).

2.3 Discussion

Experiment 1 aimed to investigate the potential effects of 
context and trial-by-trial memorization on hybrid search 

performance. The results replicated the characteristic RT 
signatures seen in the existent lab-based literature (see Wolfe, 
2020), as well as the typical decrease in accuracy as set sizes 
increased, consistent with results observed in previous hybrid 
search studies (Drew et al., 2017). Generally, as RT rose, accuracy 
diminished. Trial-by-trial memorization and context did not 
qualitatively affect RT. Whereas in visual search RT increased 
linearly as the visuals set size rose, in memory search RT increased 
logarithmically as memory set size escalated, with log fits 
exhibiting a smaller AIC score, thus providing a more 
parsimonious fit to the data, than linear fits. In target present 
conditions, the results qualitatively replicated the characteristic 
RT signatures of hybrid search even when context was present, 
and memorization occurred trial-by-trial.

In visual search, the canonical linear relationship between 
reaction time and set size seen in serial visual search literature and 
hybrid search literature was replicated (Treisman and Gelade, 
1980; Wolfe, 2007, 2012a), whereas in memory search, the 
logarithmic relationship between reaction time and memory set 
size seen in traditional memory search studies and hybrid search 
was also observed here (Wolfe, 2012a; Nosofsky et  al., 2014b; 
Boettcher and Wolfe, 2015). Memorization of all-new targets trial 
by trial does not seem to qualitatively affect the way attention is 
deployed and visual information is processed in non-efficient 
visual search (Shiffrin and Schneider, 1977).

Indeed, Schneider and Shiffrin (1977) demonstrated how 
manipulating memory lists to change (all-new mapping) or 
remain the same [consistent-mapping conditions—as seen in 
Wolfe (2012a) and existent hybrid search literature] on every trial 
provokes dramatic differences in accuracy patterns and RT 
efficiency in hybrid search but not RT signatures. A previously 
memorized target set used repeatedly throughout visual search 
trials can create memory reinstatement effects in memory 
search—that is, helps increase the distinction between memory 
representations and distractors (Nosofsky, 1986). Nosofsky et al. 
(2014b) found mean RTs are much faster, and error rates are much 

TABLE 1 Search efficiency.

RT

Predictors Estimate CI p-value

Visual search

(Intercept) 1.23 1.11–1.34 <0.001

Context present 0.49 0.37–0.62 <0.001

VSS 0.12 0.10–0.14 <0.001

Context present × VSS −0.02 −0.05 − 0.01 0.133

ICC (N = 110) 0.15

AIC 10,636

Memory search

(Intercept) 1.27 1.16–1.38 <0.001

Context present 0.10 –0.01 – 0.22 0.084

log(MSS) 0.38 0.32–0.44 <0.001

Context present × log(MSS) 0.24 0.15–0.33 <0.001

ICC (N = 110) 0.16

AIC 10,388

Both LMMs were built using the single trials from all participants with participants as random effects (N observations = 3,850). ICC, intraclass correlation coefficient. AIC, Akaike’s 
information criterion.
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lower in the consistent-mapping condition than in an all-new 
condition in a memory search task. Consistently, this study 
observed lower accuracy in comparison with previous hybrid 
search studies, which had pre-tested fixed memory sets 
throughout trials (e.g., Wolfe, 2012a; Cunningham and 
Wolfe, 2014).

When context was present, we observed higher RT intercepts and 
similar RT slopes compared to context absent conditions. The context 
in our stimuli did not violate scene syntax or scene semantics. Prior 
studies have shown that syntactic and semantic violations affect 
attention allocation in scene processing. Indeed, syntactic 
inconsistencies (e.g., floating objects) and scene inconsistencies (e.g., 
searching for a toaster on the floor) have been shown to impair scene 
guidance of attention when compared to semantically consistent 
objects in scenes, such as a toaster on a table (Wolfe, 2020). 
Differences in search slopes might emerge if distractors in our stimuli 
set were placed in more implausible locations than the targets, as 
observed by Neider and Zelinsky (2006) in a visual search task. 
Therefore, future studies using stimuli sets with varying degrees of 
semantic association between the context and memory set items are 
needed to uncover the influence of context on hybrid search.

While the main analyses were conducted on target present 
trials, we also analyzed target absent trials. In target and context 
absent conditions, RT shapes replicated the linear dependence 
between visual set size and RT and the logarithmic dependence 
between memory set size and RT (Wolfe, 2012b; Boettcher and 
Wolfe, 2015). Accuracy overall also decreased as set sizes 
increased. However, the quality of the model adjustments in these 
conditions was worse than the ones when the target was present. 
As explored below, this could be linked to participants’ adoption 
of adaptive strategies for search termination.

3 A drift-diffusion computational 
model of hybrid search

3.1 Methods

A DDM was implemented using the Python package pyddm 
0.7.0 (Shinn et al., 2020). At first, the model was fitted using all the 
target present data using pyddm.models.loss.LossRobustLikelihood 
as the loss function and differential evolution as the fitting method 
(the rest of the parameters were the default). In this case, the goal 
was not to find the best, generalizable model but to explain its 
parameter values in terms of the experimental variables (MSS, VSS, 
and context). This would allow a better interpretation of the effects 
in terms of the model’s parameters. The parameters considered were 
the drift rate (μ), the boundary (a), and the non-decision time (t0). 
To keep the model simple and maintain interpretability, the drift 
rate was assumed to depend only on the MSS and the context, while 
the boundary was assumed to depend on the VSS (Figure 3). There 
were no constraints on the non-decision time. As a form of 
validation, RT simulations were performed to assess whether the 
RT × VSS and RT × MSS curves were like the experimental data or 
not. In the second step, the model was fitted including target absent 
data, and the boundary and non-decision time could vary with the 
target’s presence (Supplementary Figure S4).

3.2 Results

Figure 3 shows the results of a drift-diffusion model fit for each of 
the conditions. Panel A describes mu (drift rate), a (boundary), T0 
(non-decision time), and how they affect a typical drift-diffusion model. 

FIGURE 3

Interaction between the parameters of a drift-diffusion model (DDM) and the visual search/memory search parameters: The drift interacts with the 
memory set size and the context, while the decision boundary interacts with the visual set size. The DDM was fit to the target present trials. The RT 
simulations (averaged across 10,000 per condition) show similar results as what was seen in Figure 2.
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A comparison of Panels B and C with Figure 2 shows that the main 
behavioral effects can be replicated, although an additional significant 
context X VSS interaction emerges. Panel D shows how those 
parameters relate to each experimental variable (MSS, VSS, and 
context). The drift rate has a multiplicative inverse relationship with the 
memory set size, while the context applies an intercept to the drift rate. 
The non-decision time remains constant across experimental 
conditions. The boundary is linear in terms of the visual set size. In this 
model, there is a constant relationship between boundary and memory 
set size, boundary and context, and drift rate and visual set size.

3.3 Discussion

Previous computational models of memory/visual search (Moran 
et al., 2013; Nosofsky et al., 2014b) have provided useful information 
related to both search processes and termination, which was later 
incorporated into general models of visual search, such as Wolfe’s Guided 
Search 6.0. However, these models are particularly suitable for setups 
where the stimuli are artificial (i.e., white background with geometric 
figures) and are not defined in setups with natural scenes (where there is 
an inherent correlation between different regions in the image as well as 
added noise). This can be overcome by using data-driven approaches 
such as the drift-diffusion model we implemented here.

In a drift-diffusion model, the drift rate is associated with the 
amount of information a subject accumulates in a single time step. A 
higher drift rate would result in a lower RT. We observed that the drift 
rate goes down as the MSS goes up in a logarithmic fashion (Figure 3). 
One simple interpretation is that the higher the MSS, the more time 
is needed to process/remember the memory set, so in a fixed time 
interval participants will be less certain of what they are looking for 
when the MSS is large. The context applies a bias to the drift rate. This 
could be related to the fact that when looking at objects with a white 
background, there will typically be a few fixations in the background. 
However, when there is context present, there are contextual cues in 
the background that guide our search and the stimulus is noisier, 
which would add an overhead to the processing of the image.

The boundary is related to the amount of evidence needed to 
make a decision. The further it is from 0, the higher will be  the 
RT. We observed that the boundary is linearly proportional to the 
visual set size (Figure 3). Interpreting the evidence as the proportion 
of the image explored until the target object is found, more objects will 
require increased attention when the visual set size is high, which in 
turn would result in a larger portion of the image being explored. This 
means that the higher the set size, the more evidence is needed to 
decide that the object has been found.

4 Experiment 2: a change detection 
and a go/no-go task to explore 
individual differences in hybrid search

4.1 Methods

4.1.1 Participants
The participants were the same as in Experiment 1. Typically, 

Experiment 2 was conducted after a short break following 
Experiment 1.

4.1.2 Materials
Visual working memory capacity was measured using the classic 

change detection task (CDT) adapted from previous studies (Xu et al., 
2018; Balaban et al., 2019). It involved 120 trials with set size 4 (N = 60) 
and set size 6 (N = 60) of colored blocks. To measure inhibitory 
control, the well-established go/no-go (GNG) task was employed. It 
was based on the parameters of previous studies (Wessel, 2018; Young 
et  al., 2018). To isolate inhibitory control from other cognitive 
processes, the 150 trials varied between a blue circle in go trials 
(N = 120) and an orange circle in no-go trials (N = 30).

4.1.3 Procedure
Trials began with four or six color blocks, followed by a fixation 

cross and, subsequently, a detection screen with one color block 
(for timeframes, see the Supplementary Figure S1). If the same 
color and location as in the initial display appeared, the “k” key was 
pressed. If a different color and/or location popped up, “l” was 
pushed. The next trial automatically started after a response without 
feedback. Changes occurred in 50% of trials. Once the 120 CDT 
trials were completed (approximately 10 min), the Go/No-Go task 
instructions appeared. After four practice trials with feedback, the 
Go/No-Go task started by displaying either blue (go stimuli; size 
[0.15, 0.15]cm) or orange circles (no-go stimuli; size [0.15, 0.15]
cm) at a 4:1 go/no-go ratio. For go stimuli, the space bar was 
pressed, and for no-go stimuli, that action had to be inhibited. With 
an intertrial interval of 450 ms, 150 trials lasted approximately 
3 min (see the Supplementary Figure S2). Part 2 lasted 
approximately 15 min.

4.1.4 Data analysis
Simple linear regressions were performed to assess the potential 

effects of individual differences in visual working memory capacity 
and inhibitory control on hybrid search performance. Here, the 
independent variables were the memory capacity K and the 
response bias c (see Supplementary material), and the dependent 
variables included the RT slopes and intercepts for each condition 
(context absent or present, and target absent or present). Age was 
also checked for its potential impact on search; however, it did not 
show a significant result. While some measures in this study are 
from direct observations, visual working memory capacity and 
inhibitory control are measured by K and c, respectively. K is the 
estimate of an individual’s VWM capacity, whereas c is seen as a 
measure of decision/response bias. These are calculated through 
Cowan’s (2001) formula and SDT analysis (Green and Swets, 1966), 
respectively.

Scikit-learn (version 1.3.0) and statsmodels (version 0.14.1) in 
Python (version 3.10.5) were used for data analysis.

4.2 Results

To ensure the validity of the visual working memory capacity K on 
the change detection task experiment, the normality of K was assessed 
using a Kolmogorov–Smirnov normality test. As in previous studies 
(Balaban et  al., 2019), K was found to be  normally distributed [D 
(110) = 0.065, p > 0.05]. This study’s K replicates two pivotal characteristics 
concerning VWM capacity—(1) capacity-limited characteristic 
(M = 2.31) and (2) significant individual differences denoted by SD = 0.82 
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(Balaban et al., 2019). It is consistent with China-based (K:2.14) (Xu 
et al., 2018) and American studies (K:2.55) (Fukuda et al., 2016).

Signal detection theory analysis was applied to calculate the 
decision bias measure in the Go/No-Go task. A negative c mean 
(M = −0.23, SD = 0.58) was achieved, consistent with existing literature 
(Young et al., 2018).

A correlation analysis was performed to investigate the impact of 
individual differences in memory capacity K, decision bias c, and false 
alarms on hybrid search performance, measured through RT 
intercepts and slopes. For target present trials, none of the correlations 
(see Figure S5) were statistically significant, with values ranging from 
−0.18 to 0.18. However, for target absent without context, memory 
capacity and RT slopes were positively correlated (R = 0.18, p < 0.05). 
Participants’ decision bias c did not predict RT in any condition when 
the target was present, but it did predict RT intercepts when the target 
was absent (R = 0.22 for context present and R = 0.20 for context 
absent). Nevertheless, all these correlations explained little variability 
in hybrid search performance (maximum R2 = 0.05).

4.3 Discussion

Experiment 2 assessed the possible interplay of visual working 
memory capacity and inhibitory control in hybrid search.

The general lack of relationship between visual working 
memory capacity (VWM) and hybrid search performance 
measures is inconsistent with accounts that propose that search/
target templates reside in VWM to (1) bias attentional deployment 
to goal-relevant objects (Desimone and Duncan, 1995; Soto et al., 
2008) and (2) be compared to suitor objects (Bundesen, 1990). If 
that was so, higher VWM capacity individuals, supposedly having 
larger storing capacities or better ability in manipulating 
attentional resources (see Luck and Vogel, 2013), would search 
more efficiently as set sizes increase, than observers with lower 
VWM capacity (Sobel et  al., 2007). However, these results are 
partially consistent with the sparse hybrid search literature that 
previously assessed VWM capacity’s role. Indeed, Drew et  al. 
(2016) used a dual-task paradigm with CDTs in between HS tasks 
and found that performing a hybrid search task diminished VWM 
capacity by a fixed amount (e.g., one slot) regardless of set size 
variation. Hence, if it is assumed that a “one-item” channel/path 
must successively move visual items to long-term memory, VWM 
interaction would not be dependent on set size, that is, only a 
fixed amount of each individual’s VWM capacity would be used 
for the task. This would be  consistent with the largely 
non-significant results seen here between VWM capacity 
differences and hybrid search RT slopes.

An important difference between this study and other studies 
including (Drew et al., 2016) is that memory sets here were not 
kept constant, changing trial by trial. In the visual search 
literature, some dual-task studies indicated that loading VWM, 
with a change detection task embedded in a VS task, solely 
impacted search when target sets changed per trial, not when they 
were kept constant (Woodman et al., 2007; Woodman and Arita, 
2011). Behaviorally, they observed a slowing of RT slopes when 
loading working memory. However, electrophysiological data 
suggested an effect on working memory representation 
maintenance (Fukuda and Vogel, 2009). While the results 

presented are inconsistent with these findings, this points to the 
importance of evaluating electrophysiological data alongside 
behavior to pull apart the meaning of behavioral observations.

Studies investigating the effect of individual differences in 
inhibitory control (IC) on search, especially those with direct 
inhibitory control measures (Clarke et al., 2022), are markedly 
scarce. Given inhibition’s clear importance in visual search (Beck 
and Kastner, 2009) and search termination (Moran et al., 2013), 
this study investigated the IC’s role in hybrid search. The results 
showed that individuals with higher IC (lower negative bias) had 
significantly higher RT intercepts than participants with lower IC 
only when the target was absent (Supplementary Figure S5). These 
results suggest that more inhibitory control is needed to remain 
in search when there is no target on the visual display. This is 
consistent with Moran et al. (2013) competitive-guided search 
model that advances inhibitory links between the priority search 
map and the quitting unit that terminates the search when 
selected, and other memory search models that propose a 
diffusion stage with laterally inhibiting racing target items (i.e., 
Cunningham and Wolfe, 2014; Nosofsky et al., 2014b). In target 
present trials, the activation of the priority map is automatically 
increased, which leads to higher inhibition of the quit unit in 
comparison to target absent trials (Moran et al., 2013). In other 
words, target absent conditions inherently increase 
quitting probability.

5 General discussion and conclusion

This study contributes to the understanding of various 
elements involved in typical real-world search scenarios, where 
multiple targets are searched for, contextual information is 
available, and searching occurs after a single exposure. Unlike 
traditional search scenarios with items presented against a blank 
background, the fundamental reaction time signatures of hybrid 
search—linear increase with visual set size and logarithmic 
increase with memory set size—are preserved. Individual 
differences in working memory and inhibitory control only 
showed a modest impact on search termination when the target 
was absent, aligning with established visual search models such as 
the guided search model. In addition, we showed that a simple 
computational drift-diffusion model can reproduce the primary 
behavioral results of a hybrid search. To our knowledge, our study 
is the first hybrid search study to present search items against a 
photorealistic scene background rather than the commonly used 
blank backgrounds. This approach introduces a more realistic 
context, which is crucial for understanding search behaviors in 
real-world settings. Indeed, our findings have potential 
implications for real-world tasks, such as airport security 
screening, where officers must remember a set of prohibited items 
(memorized targets) among numerous distractors, and medical 
imaging analysis, where radiologists use their expertise to identify 
abnormal patterns in images.

While this study has made contributions toward a better 
understanding of search in real life, it also had some limitations. First, 
this study did not systematically manipulate the categories in memory 
sets (i.e., in each trial, targets and distractors belonged to the same 
category) and scene semantics/syntactics (i.e., there were no objects 

https://doi.org/10.3389/fnhum.2024.1436564
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Barbosa et al. 10.3389/fnhum.2024.1436564

Frontiers in Human Neuroscience 10 frontiersin.org

placed in scenes with semantic/syntactic violations). Second, the 
experiment design does not allow direct comparisons between the 
efficiency and accuracy in all-new mapping and consistent-mapping 
conditions as this would require a separate comparison group. Since 
the mapping of the stimuli was not manipulated, the comparisons 
made here are related to the qualitative nature of the relationship 
between reaction times and set sizes. Third, the amount of time 
observers fixated on individual items was not controlled. This can also 
affect memory strength and working memory consolidation for each 
target item (Donkin and Nosofsky, 2012). Future studies could include 
eye tracking to better understand how memory strength impacts 
memory search via dwell times, and how observers encode target 
items in memory. This can help disentangle VWM’s role in hybrid 
search and understand memory strength impact, which is not 
controlled for in the existent hybrid search corpus (Nosofsky et al., 
2014b). This could also give more information to the model to work 
with, or even allow the use of scanpath prediction models in 
conjunction with, a drift-diffusion model (Travi et al., 2022). Fourth, 
the current drift-diffusion model does not explain the variability 
across subjects or stimuli. Finally, as an online study, environmental 
factors were uncontrolled, and attentional engagement throughout the 
experiment could not be  assessed. This could have impacted the 
search in several ways including participants’ appraised value of 
continuing the search if there were external attentional demands 
present. Contextual information in search should be  further 
investigated in lab-based studies to strengthen the results 
reported here.

Altogether, our study exposes an intricate interplay of various 
behavioral mechanisms in hybrid search. While the results reported 
here provide some valuable insights, some key questions remain 
unanswered, particularly concerning the influence of scene semantics 
on hybrid search and the little role that visual working memory seems 
to have on hybrid search. To address these intriguing aspects, future 
research can leverage recent technical advancements, such as 
concurrent M-EEG and eye movement recordings (Dimigen and 
Ehinger, 2021; Care et al., 2023). The integration of these cutting-edge 
methodologies promises to unveil the underlying physiological 
mechanisms driving hybrid search, further deepening our 
understanding of this complex cognitive phenomenon.
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