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Dyadic social interactions evoke complex dynamics between two agents that, 
while exchanging unequal levels of body autonomy and motor control, may 
find a fine balance to synergize, take turns, and gradually build social rapport. To 
study the evolution of such complex interactions, we currently rely exclusively 
on subjective pencil and paper means. Here, we  complement this approach 
with objective biometrics of socio-motor behaviors conducive to socio-motor 
agency. Using a common clinical test as the backdrop of our study to probe 
social interactions between a child and a clinician, we demonstrate new ways to 
streamline the detection of social readiness potential in both typically developing 
and autistic children by uncovering a handful of tasks that enable quantification 
of levels of motor autonomy and levels of motor control. Using these biometrics 
of autonomy and control, we further highlight differences between males and 
females and uncover a new data type amenable to generalizing our results to any 
social setting. The new methods convert continuous dyadic bodily biorhythmic 
activity into spike trains and demonstrate that in the context of dyadic behavioral 
analyses, they are well characterized by a continuous Gamma process that can 
classify individual levels of our thus defined socio-motor agency during a dyadic 
exchange. Finally, we  apply signal detection processing tools in a machine 
learning approach to show the validity of the streamlined version of the digitized 
ADOS test. We offer a new framework that combines stochastic analyses, non-
linear dynamics, and information theory to streamline and facilitate scaling the 
screening and tracking of social interactions with applications to autism.
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1 Introduction

All research involving autism is (arguably) fundamentally tied to the Autism Diagnosis 
Observation Schedule [ADOS, currently in version 2 (Lord et al., 2000; Gotham et al., 2007; 
Torres et al., 2013a,b)]. Research spanning disparate fields, from genomics to complex social 
interactions, relies on this test as the gold standard to classify humans across the lifespan as 
autistic or on the autism spectrum. Although clinically validated, the ADOS-based diagnosis 
misses females (D'Mello et al., 2022; Lundstrom et al., 2019; Loomes et al., 2017). Moreover, 
there are not enough raters to absorb the large number of toddlers, children, and adults who, 
according to various screening tools, are suspected of being autistic today. The test is long and 
taxing on both the child and the clinician administering it because it has an average of 27 tasks 
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aimed at engaging the child through social presses and expecting 
overtures from the child.

The ADOS is a dynamic and flexible test in the sense that the 
clinician can choose the tasks according to observing the flow of the 
child’s performance. It also adapts the test on demand, choosing the 
module that best agrees with the child’s communication level. 
However, the interaction occurs while the clinician also scores the 
child’s performance. Though valid to probe social competence, many 
of the tasks artificially rob the child of a chance to be naturally social, 
as the interaction is also taxing on the clinician and, at times, awkward 
and seemingly forced. In this sense, several of the tasks might 
be biased, interfering with the child’s socio-motor agency and robbing 
the clinician of the spontaneity characteristic of a natural social 
exchange. In this sense, we need objective ways to help automate the 
scoring process and to quantify this potential bias that such a taxing 
effect may produce on both social agents. New digital means could 
help us achieve such goals of automation and objectivity, but to 
be valid, they would need to preserve the clinical criteria, which have 
been empirically validated across decades. In this sense, clinically 
informed digital biomarkers that unveil physiological underpinnings 
of social and communication differences across neurodevelopment 
could be of use to both clinicians and researchers in the field of autism.

Prior work analyzing thousands of ADOS score records found 
non-obvious issues with the statistical foundations used to validate 
this test. While there are theoretical requirements of normality and 
homogeneous variance in the signal detection theory used to validate 
the ADOS (Somoza and Mossman, 1991; Hollander and Pena, 2004), 
as these assumptions are required for independence between bias and 
sensitivity (Torres et al., 2020b), and to decrease false positives, the 
empirical data across thousands of records violate these assumptions 
(Torres et al., 2020b). New methods have then been proposed to help 
reduce the number of tasks (Bokadia et al., 2020), while also utilizing 
motor signatures to identify females (Torres et al., 2013b, 2016a, 2017; 
Bokadia et al., 2020). Several studies related to the sense of agency 
have addressed interactions in the context of human–computer 
interfaces (Weiss et al., 2014; Cornelio et al., 2022). However, there are 
no means to define naturalistic socio-motor agency during physical 
dyadic interactions and to identify agency in tasks that enhance 
autonomy in autism (Torres et al., 2013c). Furthermore, no means to 
implement these tasks using artificial intelligence (AI) and machine 
learning (ML) methods have been proposed. Such approaches would 
help us speed up, automate, and scale the assessment process, 
particularly doing so with respect to currently underdiagnosed 
females (D'Mello et al., 2022). Moreover, the automated approaches 
could help us bring the diagnosis to rural and underserved areas, thus 
helping us diversify our research pool and enrich our therapies.

We reasoned in the present study that the digital ADOS (Bokadia 
et al., 2020), i.e., the ADOS that is digitally recorded while the child 
and clinician interact, could leverage the validity of this test as the gold 
standard for clinical and research use while providing a streamlined 
version of it that could help us (1) identify objective biometrics of 
socio-motor agency and (2) automate the process of identifying 
socially compliant tasks [as defined by the ADOS test (Lord et al., 
2000; Gotham et al., 2007; Torres et al., 2013a,b)] using methods from 
artificial intelligence (AI) and machine learning (ML).

While in current diagnostic criteria, socially compliant tasks are 
defined as those that are expected based on some set of rules imposed 

by some sector of society, in our approach, socially compliant tasks 
are those that provide a sense of agency to the child that is being 
diagnosed during a social interaction situation. More precisely, 
we here define social agency as the balance between autonomy and 
control during a social exchange. We define autonomy as the ability 
of the child to lead the conversation as much as the clinician does, 
rather than always following the lead of the clinician. We  define 
control as the ability of the child to effectively predict the 
consequences of impending social actions and overall behaviors, 
based on high levels of motor control. The latter means high signal-
to-noise ratio and low randomness in the information being 
exchanged. Both concepts are illustrated in Figure 1 through the 
evolution of a dyadic interaction. We further develop the concept in 
the Methods section of the article.

Socio-motor agency can be  impeded if neurodevelopment 
undergoes a different maturation path (Torres et al., 2013a, 2023; 
Brincker and Torres, 2013). If the child, for example, has excessive 
motor noise and motor randomness in its performance, the predictive 
ability required for self-motor control will be compromised (Torres 
et al., 2013a), and with it, the overall control ability will be altered. 
This alteration will also in turn affect the clinician’s perception of the 
child’s nuanced micro-motions underlying social behaviors, thus 
biasing the assessment (Torres et al., 2013a; Bokadia et al., 2020; 
Brincker and Torres, 2013). Indeed, in autism, there is mounting 
evidence that motor control is fundamentally different from 
neurotypical development (Torres and Donnellan, 2015; Torres and 
Whyatt, 2018; Nayate et al., 2005; Fournier et al., 2010), a fact that has 
been supported across multiple systems. These include the brainstem 
(Torres et al., 2023), the cerebellum (Frosch et al., 2022; Allen et al., 
2004; Sivalingam and Pandian, 2024; D'Mello and Stoodley, 2015), 
subcortical structures (Chukoskie et  al., 2013), the oculomotor 
system (Ziv et al., 2024), the reaching and grasping system (Torres 
et al., 2013a), the gait and balance (Vilensky et al., 1981; Accardo and 
Barrow, 2015; Wu et al., 2024; Hallett et al., 1993; Bermperidis et al., 
2021), among others.

Under such circumstances, socio-motor agency can be impeded, 
as can be the rating of the child by the clinician. Therefore, we propose 
that the tasks that manifest excess random noise of the joint dyadic 
motor patterns (lower control of the dyad) and/or excess lead of the 
clinician within the dyad (lower autonomy of the child) are inevitably 
bound to bias the clinician’s scoring toward a deficit model of autism. 
In contrast, the tasks that manifest high dyadic control and autonomy 
of the child are bound to boost social agency, according to our 
biometric definition. These tasks can provide a more appropriate 
model of readiness potential for social exchange.

The current ADOS is a criterion test that has not characterized 
neurotypical ranges of observed social behaviors. Furthermore, since 
motor control physiology is not part of the diagnostic criteria of autism, 
the test says nothing about neuromotor development. However, the 
physiology of neuromotor development in formative years provides 
basic building blocks of social–emotional and communication 
exchange. Here, we characterize normative data on physiological aspects 
of motor control. To that end, we study the ADOS exchange patterns in 
neurotypicals of different ages and provide a new characterization of 
differences in neuromotor development specific to the social 
communication criteria that the ADOS offers. The new proposed model 
can also increase the odds of doing such characterization in a fairer, less 

https://doi.org/10.3389/fnhum.2024.1442799
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Bermperidis et al. 10.3389/fnhum.2024.1442799

Frontiers in Human Neuroscience 03 frontiersin.org

biased manner. In this sense, the child is offered a chance to succeed at 
the exchange. In turn, the clinician can presume competence and 
identify areas of strength to recommend treatments more appropriately. 
Such treatments would be  grounded on the non-obvious, nuanced 
aspects of behaviors occurring at a micro-level that escape the naked eye 
of an observer, in addition to the unambiguous aspects of behavior that 
such inventories use today. These nuances can be quantifiable with 
biosensors that read out continuous biorhythmic activities from the 
nervous system with sub-second resolution. At the same time, they 
would be informed and guided by clinical criteria.

We here introduce a theoretical framework grounded on 
empirically derived power (scaling) laws of human ontogenetically 
orderly maturation on a schedule (Torres et  al., 2013a). This 
framework connects stochastic analysis of human biorhythmic (time 
series) data with information-theoretical metrics. We define new truly 
personalized computational indexes of dyadic control, autonomy, and 
socio-motor agency from biosensors’ digital data using as guidance 
the digitized ADOS-2. Then, we identify socially compliant tasks, i.e., 
ADOS-2 tasks with balanced socio-motor agency, thus streamlining 
the digital ADOS-2. Finally, we propose new ways to help automate 
and speed up autism screening and detection based on these socially 
appropriate tasks identified from the motor variability of the 
interactive dyad, complementing those from the child’s or the 
clinician’s performance alone.

2 Methods and analyses

2.1 Participants

This study was approved by the Rutgers University Institutional 
Review Board in compliance with the Helsinki Act. A total of 29 
children, including 19 males and 10 females spanning 4–15 years of 
age, and two adult clinicians participated in the study (see Table 1). 
Children participated in multiple sessions over the span of 2½ years 
with one clinician per session and were administered a specific 
module per session, i.e., a specific subset of ADOS tasks, in accordance 
with their age, level of development, and spoken language. They were 
recruited as a random draw of the population, with neurotypicals and 
autistics signing up for the study through our IRB-approved flyers.

2.2 Raw data acquisition

Digital data were acquired during each session using light 
wearable sensors (APDM Opals, Portland, OR, United States). Six 
sensors were used, two on the left and right wrist and one on the torso, 
both on the child and clinician. The sensors continuously and 
synchronously recorded triaxial accelerometry and gyroscopic data at 
a sampling frequency of 128 Hz. The recording environment followed 

FIGURE 1

Digitally characterizing socio-motor synergies, rapport, and turn-taking during an ADOS-based social interaction is used here to develop the concept 
of socio-motor agency through the digital lens. (A) Snapshots of the interaction between a child and clinician wearing six biosensors, three on each 
body, synchronously registering motion at 128  Hz. Clinician-led interaction and note-taking while rating the interaction. (B) Sample standardized 
micro-movement spikes (MMS) derived from angular speed capturing approximately 11.7  s of social exchange. (C) Frequency histograms of the MMS 
peaks (one frame) from each sensor on the child and clinician. (D) Pairwise comparison of the histogram evolution using the Earth Movers’ distance 
similarity metric. Entries reflect the 6  ×  6 matrix (child and clinician, three sensors at the torso, right and left wrist of each) as in (A). Off-diagonal entries 
are the shared dyadic space, while entries next to the diagonal are the child’s or clinician’s activities in standalone mode. Blue-to-yellow color EMD 
scale ranks from most to least similar spike coincidence patterns. Star marks the maximal similarity.
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the standardized ADOS requirements using similar table and sitting 
arrangements for the clinician–child dyad. The two clinicians were 
unaware of the goals of the study.

2.3 Data type: the micro-movement spikes 
derivation

The micro-movement spikes (MMS) are a data type that 
we invented (Torres et al., 2013a) to create a standardized time series 
representing the moment-to-moment fluctuations in signal amplitude 
and timing relative to an empirically estimated mean while scaling 
out allometric effects. Allometric effects are due to anatomical 
disparities across participants (Lleonart et  al., 2000). Anatomical 
disparities influence the kinematic parameters, and as such, confound 

the results from the analyses (Torres et  al., 2018). The MMS can 
be obtained from any biorhythmic activity registered with biosensors 
or cameras, consisting of peaks and valleys changing over time. For 
example, they can be  time series of triaxial acceleration from 
accelerometers (inertial measurement units) or from triaxial angular 
velocity obtained with gyroscopes. In the present study, we focus on 
the latter. Scalar values of angular speed from orientation data that 
the gyroscopes recorded were acquired using the Euclidean norm 
(Equation 1) of the coordinate components of motion as measured by 
the sensors:

 
2 2 2
x y zV V V V= + +  (1)

From here onward, all analyses refer to the scalar value V, the 
angular speed in deg/s.

TABLE 1 Participants’ information.

Record 
number

Participant ID Age Sex Visit 1 
module 

(total score)

Visit 2 
module 

(total score)

Visit 3 
module 

(total score)

Visit 4 
module 

(total score)

1 NT01 8 F 3 (0) – – –

2 NT02 10 F 3 (0) – – –

3 NT03 9 F 3 (2) – – –

4 NT04 12 F 3 (2) – – –

5 NT06 7 M 3 (2) – – –

6 NT08 9 F 3 (0) – – –

7 NT09 7 F 3 (1) – – –

8 NT10 11 M 3 (1) – – –

9 NT11 15 M 4 (2) – – –

10 NT12 11 F 4 (1) – – –

11 NT13 13 M 4 (0) – – –

12 EP01 4 M 3 (10) 2 (7) 3 (9) 2 (8) *X

13 EP02 8 M 3 (9) 2 (8) *X – –

14 EP03 10 M 3 (12) 2 (13) 3 (24) *X 2 (21) *X

15 EP04 13 F 3 (7) 4 (8) *X 3 (11) *X 4 (8) *X

16 EP05 6 M 3 (9) 2 (7) 3 (8) *X –

17 EP07 11 M 3 (12) 2 (9) *X 3 (18) *X 2 (13) *X

18 EP09 5 M 1 (18) *X 1 (16) – –

19 EP10 9 M 1 (13) 1 (17) – –

20 EP13 6 M 3 (17) – – –

21 EP14 14 M 1 (8) 2 (10) 1 (14) 2 (15) *X

22 EP15 10 M 1 (17) 1 (15) *X 1 (26) 1 (21) *X

23 EP16 4 M 3 (11) 2 (11) 3 (22) *X 2 (20) *X

24 EP17 11 M 1 (16) 1 (18) *X 1 (18) 1 (19) *X

25 EP18 9 F 3 (10) 2 (11) 3 (16) 2 (10)

26 EP19 7 M 3 (8) *X 2 (8) *X 3 (8) –

27 EP20 7 M 3 (11) 2 (11) *X 3 (17) *X 2 (16) *X

28 EP21 11 F 3 (11) 2 (9) *X 3 (8) *X 2 (11) *11

29 EP22 4 M 1 (26) 1 (24) *X – –

*X denotes that the participant came for the visit, but his/her data could not be used either because it was not available/lost/corrupted or the information available was incomplete. NT stands 
for neurotypical participant, and EP stands for expected ASD participant. The latter were confirmed by the clinician to have an ASD diagnosis at the end of the session.
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To scale out allometric effects, we  normalize motion data 
fluctuations (peaks and valleys) (using Equation 2) as relative 
deviations from the empirically estimated mean activity of the series. 
To that end, we use maximum likelihood estimation (MLE), and 
upon testing various families, we  obtained the shape and scale 
parameters of the continuous Gamma family of probability 
distribution functions. From these empirically estimated parameters, 
we obtain the moments and use the Gamma mean to shift and center 
our data around the estimated mean. Then, we  obtain the local 
absolute deviations from the empirically estimated Gamma mean. 
We scale the mean-relative deviations to the [0,1] interval according 
to the local minima average:

 min tomin

PeakNormPeak
Peak Avg

=
+

 
(2)

Here, 0 values represent 0-deviations from the empirical mean of 
the session. They are “quiet moments” relative to the person’s mean. 
They are the baseline value of the individual and provide a 
personalized signature that changes over time or with the context. For 
this reason, we focus on the relative deviations from this individual’s 
baseline. Values away from 0 value represent activity above the 
person’s baseline mean within the given situation. The normalized 
peak series of MMS (Torres et al., 2013a; Wu et al., 2018) conserve the 
temporal structure of the original speed/acceleration time series but 
are normalized (Torres et  al., 2018). This normalization provides 
standard ranges for each person and permits comparison of motor 
biorhythmic patterns across individuals, independent of their age 
differences and corresponding disparate anatomical lengths. 
Supplementary Figure S1 provides the pipeline to compute the MMS.

2.4 The gamma process of the MMS

The normalized angular speed MMS is best fit (in the MLE sense) 
by the continuous Gamma family of probability distributions (Torres 
et  al., 2013a; Torres, 2011a). Furthermore, the parameters of the 
Gamma distribution, shape k, and scale θ have been found across 
multiple studies from our laboratory, including the present one (see 
Results), to follow a scaling power law of the form described in 
Equation 3:

 ( ) ( )logbk a k a blogθ θ ε≅ → = + +  (3)

where ε is a small error term and b < 0. This power law for the 
standardized MMS time series reveals a maturation process of the 
motor code for voluntary (Torres et al., 2013a, 2016a) and involuntary 
(Torres et al., 2020a) motions. This law is very important because it 
provides us with a quantitative framework to interpret fluctuations in 
biorhythmic data that range from random to predictive. Furthermore, 
they offer a form of ground truth to quantify deviations across the 
human lifespan. Because of this tight linear relation of the log scale 
and log shape, knowing one helps us infer the other with high certainty.

Importantly, the continuous Gamma family of probability 
distributions has the first (mean) and second (variance) moments 
expressed in terms of the shape and scale described by Equation 4).

 
2 2,k kµ θ σ θ= =  (4)

Then, using Equation 4, the noise-to-signal ratio (NSR) of the 
MMS reduces to the Gamma scale parameter as in Equation 5:

 

2 2kNSR
k

σ θ θ
µ θ

= = =
 

(5)

The Gamma scale parameter in Equation 5 fully characterizes the 
noise of the motor patterns of the interactive dyad (or of the 
participant), i.e., in relation to the level of fluctuations of angular 
speed during the ADOS activities.

Empirical estimation of these parameters in thousands of 
participants over more than a decade of work involving humans along 
the lifespan, and across disorders of the nervous system, has revealed 
an interpretation for the Gamma log–log parameter plane. 
Distributions that fall along high NSR regimes are also close to the 
memoryless random regime of the special exponential distribution 
case (when k = 1). Points in mid-NSR correspond to heavy-tailed 
Gamma distributions. Then, low NSR (or high signal = 1/NSR) are 
congruent with symmetric shapes (Gaussian-like) distributions. High-
signal Gaussian regimens are highly predictable in contrast to high-
noise memoryless random exponential regimes. As such, this 
parameter plane is empirically interpretable. Supplementary Figure S2 
shows the Gamma process interpretable parameter spaces.

2.5 Quantifying motor control from the 
perspective of an agent

Noise-to-signal ratio measures the degree of motion variability 
away from mean activity. Low regimes of NSR characterize steady and 
smooth motion, akin to goal-oriented behavior, as experienced from 
the perspective of the agent/child. On the other hand, high NSR 
regimes indicate unpredictable and random motion. This is so because 
of the scaling power law, since knowing one parameter infers the 
other. At high NSR, the tendency of the distributions is toward the 
memoryless exponential, representing randomness. In that sense, the 
high NSR is a proxy for low motor control. In contrast, high signal (or 
low NSR) infers the existence of predictable motor patterns toward the 
Gaussian regimes of the Gamma process. Because the NSR is 
calculated on the standardized MMS, motor noise does not depend 
on the anatomy of the individual as it is scaled by the mean amplitude 
of motion. This enables us to plot all participants across different ages 
on the same parameter space.

2.6 An information theoretic approach to 
the analyses of the MMS

The presence of MMS peaks indicates an outburst of activity away 
from the individual’s baseline. This is informative of motor activity 
within a given context, which in this case was maintained similarly 
across participants, as per ADOS requirements. When we  also 
consider the temporal distribution of MMS peaks, a train of such 
spikes can be viewed as a representation of information regarding 
human motion variability through time. Considering multiple 
sensors sampling in synchrony, the MMS spikes carry spatiotemporal 
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information about the bursts of distributed bodily activity in the 
person’s motor system.

Following our argument, we redefine socio-motor agency as the 
balance between motor control and motor autonomy, using these 
physiologically grounded biosensor data. Signal-to-noise ratio 
characterizes the ability of an agent to (internally) control their own 
motor behavior. Entropy rate characterizes the ability of the agent to 
motorically act autonomously (while minimizing external control by 
another agent) in a social interaction.

Finally, using transfer entropy, we can quantify the amount of 
causal influence from the clinician to the child and vice versa, without 
the need to use any model or make any other assumptions. Figure 2 
depicts these proposed concepts in schematic form.

The main concepts and formulas that we introduced to characterize 
control and autonomy can be summarized in Table 2, and we refer the 
reader to the Supplementary material where we further expand on 
these concepts and define the clinically relevant parameters as well.

For more in-depth details on information theoretical concepts, 
formulations, and models that were used in this study, please consult 
Chapter 1 of the Supplementary material.

3 Results and discussion

3.1 Age-dependent dyadic motor control 
separates neurotypical (NT) from children 
with autism spectrum disorders (ASD)

The empirically estimated Gamma parameters localized each 
child–clinician’s dyadic interaction for each task on the Gamma 

parameter plane with 95% confidence intervals (Figure 3A). These 
points represent the empirical probability density function (PDF) of 
their joint dyadic interaction. When we plot the full scatter estimated 
from each task in the ADOS for all children, a tight linear relation 
emerged whereby the log–log plot follows a scaling power law of the 
form bk aθ≅ . [see Methods for a more in-depth analysis of the power 
law and the micro-movement spikes (MMS) time 
series transformation].

This relationship, first described as a maturation law in humans’ 
voluntary decision-making, mediated by pointing motions (Torres 
et al., 2013a), is reproduced here for gyroscopic data reflecting joint 
dyadic angular speed, such that as the Gamma scale value decreases, 
the Gamma shape value increases. Because knowing one, we  can 
predict the other with high certainty, we can then reduce these two 
parameters of interest to one parameter summarizing these motor 
signatures of the interacting dyad. We  can also do so for each 
individual signature, i.e., those of the child and those of the clinician 
in standalone mode.

Importantly, the continuous Gamma family of probability 
distributions has the first (mean) and second (variance) moments 
expressed in terms of the shape and scale as in Equations 4, 5:

The Gamma scale parameter in Equation 5 fully characterizes the 
noise of the biorhythmic motor patterns of the interactive dyad, i.e., 
in relation to their joint level of fluctuations of angular speed during 
the ADOS activities.

Prior research from our lab concerning autonomic (Elsayed and 
Torres, 2023), involuntary (Torres and Denisova, 2016), automatic 
(Bermperidis et al., 2021), and voluntary movements (Torres et al., 
2013a; Wu et al., 2018) and research from other labs involving the 
oculomotor systems (Ziv et al., 2024) has consistently shown across 

FIGURE 2

Digitization of the Autism Diagnostic Observation Schedule (ADOS): Angular speed samples (128  Hz) from wearable sensors on the wrists and torso of 
the child and clinician are normalized and binarized to obtain discrete sequences of 0’s and 1’s. Entropy rate estimates measure the unpredictability of 
the underlying binary processes to characterize the agents’ autonomy in the dyadic social interaction. The analysis is performed on data from time 
windows of ~7.8  s, which proved optimal to attain tight 95% confidence intervals.
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levels of functionalities and systems that high noise levels and 
randomness correlate with levels of autism severity. Specifically, high-
signal Gaussian regimens are highly predictable in contrast to high-
noise memoryless random Exponential regimes.

The Gamma parameter plane, which is empirically interpretable, 
provides criteria for the locations of the Gamma distribution shape 
and scale parameters. They characterize the signatures of individual 
participants and change in an ontogenetically orderly manner whereby 
a decrease in the NSR is accompanied by a decrease in randomness 
(away from the memoryless exponential distribution at shape = 1), and 
this decrease, in turn, corresponds to human 
neurodevelopmental maturation.

The stunting of maturation of the human nervous system has then 
been well characterized by high NSR and random fluctuations 
previously found across different ages in ASD (Torres et al., 2013a). In 
this sense, we  equate high SNR = 1/NSR with an index of 
controllability. As per the scaling power law, high SNR of the MMS is 
equated with high predictability of the person’s self-referenced, self-
generated motor code. Our lab has proposed that this motor code 
represents a proxy of kinesthetic reafference, i.e., the continuous 
stream of re-entrant motor activity from the periphery, serving as an 
index reflecting the quality of the motor feedback to the central 
controller of the nervous system (Torres et al., 2013a; Brincker and 
Torres, 2013).

Then, as this motor code is shared with another agent during 
social dyadic interactions, the distributions of the joint dyadic 
interactions of the participant and the clinician for the 26 participants 
(11 neurotypically developing NT and 15 ASD) can be appreciated in 
Figure 3A following a power law. These distributions are derived from 

the MMS that fluctuations in angular speed produced in the dominant 
hand (see Methods; Figure 2).

Furthermore, Figure 3B shows that the log (SNR) = −log(NSR) 
(denoted as the index of control) of the interacting socio-motor dyad 
has an age-dependent pattern. In NT children, as the age increases, 
control tends to slightly increase, i.e., a slight positive trend is reflected 
in the slope of the line fitting the (blue NT scatter), NT: 
intercept = 3.0271 p = 0.0067, slope = 0.0786, p = 0.362. In contrast, as 
ASD children age, control tends to decrease, i.e., a strong negative 
trend is quantified in the slope of the line best fitting the red ASD 
scatter: intercept = 5.5317, p = 5.65 × 10−12, slope = −0.1074, p = 0.0463.

In Figure  3C, we  compare the two groups by localizing each 
participant on the Gamma moments space spanned by the empirical 
mean, variance, and skewness, whereby each point represents the 
empirically estimated moments of the Gamma PDF of joint dyadic 
activity for each child–clinician pair. This result demonstrates a 
tendency of the joint dyad moments to separate NTs from ASD 
participants, as they interact with an adult clinician, expressing 
marked differences between males and females.

To better appreciate the sex differences, we obtain pairwise the 
transfer entropy (TE) from child to clinician and from clinician to 
child. See Methods for an extended definition, but recall that TE is the 
reduction in uncertainty of predicting the future of X when 
we consider the process Y. In Figure 3D, we can see for each matrix 
the pattern that emerges when considering the time series data from 
each of the six sensors attached to the child’s and clinician’s two hands 
and trunk. The cross terms in the off-diagonal entries of the matrix 
(top right-hand entries 1,4 to 1,6; 2,4 to 2,6; 3,4 to 3,6; and bottom 
left-hand entries 4,1 to 6,1; 4,2 to 6,2; and 4,3 to 6,3) represent the 

TABLE 2 Glossary of main concepts, formulas, and their respective domains.

Concept Equation Range

Control 1
NSR

, 
2 2kNSR

k
σ θ θ
µ θ

= = =

Micro-movement sequence

( ), ∞0 +  Memoryless exponential, low signal to 
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1 2 1 2

1 2

log, , , a , , ,
, , ,

N N

N
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X X X

= − … …
…
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T T

T
= …
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Autonomy Entropy rate of micro-movement sequence

Socio-motor agency (Control, Autonomy)

Local conditional mutual information ( ) ( )
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| ,

; | log
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Novel definitions are shown in bold.
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dyadic cases of child to clinician and clinician to child, respectively. In 
the shared entries of the matrix, we see that in ASD, males show a 
decrease in TE values while females show an increase. In the context 
of the ADOS, females evoke a reduction in the clinician’s uncertainty 
predicting the impending females’ motions, i.e., perhaps an inherent 
bias that partly accounts for the disparate ratio of approximately 4–5 
males per female diagnosed with ASD (D'Mello et al., 2022). We will 
further explore these differences to try and understand the interplay 
between the NSR as an index of motor controllability (predictability) 
and the overall sense of socio-motor agency in each of the ADOS 
tasks, for males and females.

In the diagonal sub-matrices (top left-hand entries 1,1 to 1,3; 2,1 
to 2,3; 3,1 to 3,3; and bottom right-hand entries 4,4 to 4,6; 5,4 to 5,6; 
and 6,4 to 6,6), we represent the patterns within the individual’s body 
parts. There we appreciate higher values of TE from child to child in 
both ASD males and females, with ASD females having higher TE 
than ASD males. As with the shared dyadic activity, here in the 

individual patterns, the highest differences for clinician to clinician 
can be appreciated in the ASD females.

3.2 Quantifying dyadic social agency 
reveals differences between NT and ASD

High levels of NSR in the MMS fluctuations from the angular 
speed coincide with memoryless random regimes of motor patterns—
well characterized by the exponential distribution previously found in 
autistic individuals (Torres et al., 2013a; Torres, 2011b). It has been 
proposed that under such random and noisy motor code, it is difficult 
to have high-quality motor feedback contributing to a predictive code. 
Such predictive code would be necessary to compensate for sensory-
motor and inertial time delays inherent in the nervous system (Torres 
et al., 2013a; Brincker and Torres, 2013, 2018; Torres, 2011b; Mohamed 
Thangal and Donelan, 2020).

FIGURE 3

Summary of stochastic characterization of micro-movement spikes, MMS, derived from ADOS-driven dyadic interactions, using angular speed 
registered from the right (dominant) wrist. Activity encompasses the entire ADOS session. Filled markers represent first visits to the clinician; unfilled 
markers are subsequent visits. (A) Empirically estimated Gamma Shape and Scale (NSR) for each participant using Modules 1, 3, and 4 of the ADOS test 
as a backdrop behavioral assay. The size of the marker is proportional to the age of the participants. Empirical Gamma plane of individual children and 
clinicians separating young from older children and adults in an interpretable map of human neuromotor maturation. (B) Child’s negative Gamma scale 
parameter (−log NSR  =  log SNR) denotes control as a function of age. Observe (cyan line) that after school age, there is a decreasing trend of SNR with 
age for ASD in contrast to the opposite trend for NT (green line). (C) Parameter space spanned by the empirically estimated Gamma mean (x-axis), 
standard deviation (y-axis), and skewness (z-axis) derived in (A). Marker size is proportional to age. (D) Quantification of transfer entropy for social 
dyads involving clinician and child obtained for males and females in the NT and the ASD groups, using six sensors, three on the clinician and three on 
the child, outputting time series of angular speed motion on the left and right wrists and the trunk of each social agent in the dyad. Off-diagonal 
entries represent joint dyadic activities.
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In a dynamic dyadic social interaction such as that taking place 
during the ADOS, it is then difficult to exert control over the 
interaction because presses by the clinician and overtures by the child 
are not occurring at the expected timely rates. This temporal mismatch 
in autism alone can bias the rating by the clinician in ways that differ 
between NT and ASD but also may differ between males and females. 
Here, we equate high NSR with low predictive control and posit that 
the type of socio-motor agency required in a naturalistic social 
interaction will be impacted by poor controllability levels on one side 
of the dyad. We then question whether dyadic-based control (i.e., 
shared by the child and clinician) is differentially impacted in 
ASD participants.

Another aspect of dyadic social agency is motor autonomy. As 
mentioned earlier, motor autonomy is defined here as the ability of the 
child to lead the conversation as much as the clinician does, rather 
than always follow the lead of the clinician. An obvious way to 
quantify the degree to which the clinician is leading the exchange 
would be by using some form of causal analysis between data recorded 
on the clinician and data recorded on the child. As our main approach, 
however, we choose to quantify autonomy in ways that depend on data 
recorded from wearable sensors on a single agent which as we will 
show, is intuitive and can be  applied in a clinical setting, to help 
digitize the ADOS.

We introduce (behavioral) spike trains from the MMS derived from 
the time series of angular speed. We use entropy metrics to examine the 
degree to which the spikes behave randomly or deterministically (i.e., 
containing periodic, systematic patterns). To that end, we use entropy 
rate, a metric well suited to interrogate the stochastic regimes of spike 
trains (Delgado-Bonal and Marshak, 2019; Lizier, 2014).

From the MMS derived from time series of angular speed, 
recorded either from the left or the right hand of the child, we derive 
binary sequences whereby a sequence of 1’s corresponds to bouts of 
activity and 0’s to “quiet” sampling periods, when no significant change 
above the person’s average activity occurs in the angular speed profile. 
Another way to view these binary sequences is as the manifestation of 
an underlying “alphabet” that characterizes the predictability of the 
motor code. Zeros and ones will appear with some probability, which 
we expect to change at some time scale due to the non-stationary 
nature of human motion. But if we restrict ourselves to small time 
windows (~7.8 s, determined as optimal for empirically estimated 
confidence intervals, upon sampling different sizes), this time window 
is small enough that the process can be viewed as stationary yet large 
enough to contain a satisfactory number of samples, lending statistical 
power to our empirical estimation per window. As such, 7.8 s is our 
unit of time for the spike trains that we derived. Using this MMS per 
unit of time as our data type, we can then measure the degree of 
randomness of the child’s motions by estimating the entropy rate (see 
Methods). Furthermore, we then compare it to transfer entropy (TE) 
obtained from the child and clinician, a causal metric that can inform 
us of who leads the interaction for any given task.

We argue that a suitable scale of motor autonomy is one in which, 
at one extreme, a high degree of randomness is a measure of a system 
at its highest degree of motor autonomy. This is the type of state where 
the system is uncontrollably “hidden” from the controller. There is no 
opportunity to control the person. At the other end, the lowest degree 
of randomness leads to a systematic, deterministic pattern, highly 
controllable. While in the former, the child’s system with excessive 
autonomy prevents social exchange with the clinician in that the 
clinician cannot control the child, in the latter, the clinician can 

absolutely control the child. Either extreme is detrimental to the 
development of rapport or turn-taking in a social exchange. A happy 
medium is one in which, while the child preserves a degree of autonomy 
that enables a balanced social exchange, the clinician also partakes in a 
give-and-take interaction rather than leading the child most of the time.

We test our new hypothesis that motor autonomy relates to 
measures of entropy by comparing TE (a measure of causality) from 
the child to the clinician with entropy rate, a measure spanning a scale 
from totally random to totally deterministic states of the spike-based 
code. We show in Figure 4A an age-dependent trend spanning two 
scatters. In older neurotypical children, the scatter aligns such that as 
the child’s entropy rate (denoting our scale of motor autonomy) 
increases, so does the TE, denoting a causal lead of the child over the 
clinician. In contrast, a second scatter emerges for younger children, 
whereby the trend is less visible, indicating that these children’s index 
of motor autonomy is not as evident during the exchange and the 
causal lead (TE), denoting the child’s lead over the clinician’s lead, is 
less evident. We  can appreciate the shift in this metric of motor 
autonomy in Figure 4B, where the histogram of the ASD children is 
shifted to the left, indicating lower density values than NT children.

Since the left hand is not the dominant hand in these children, 
we plotted the histograms pertaining to the left hand as well (Figure 4A, 
left hand and Figure 4C, right hand) to see if these effects consistently 
emerged. We see in Figure 4B that across multiple time windows, the 
pdf for the neurotypical group is shifted to the right, meaning that on 
average, NTs have higher values of autonomy than ASDs. Since 
autonomy also varies throughout sessions, plotting the autonomy 
variability (variance of this index over the mean of this index) for 
different participants in Figure 4D shows that for the ASD group, child 
and clinician variability is higher than most NTs. This variability index 
tends to separate ASD from NT participants, particularly for later visits 
(as the child aged, over 2 years and a half that the study spanned).

3.3 Age-dependent motor autonomy 
across children versus clinician’s motor 
autonomy robustness

As we saw earlier, the SNR (1/NSR) of the control index has a 
trend with age that differs between the two groups. NT children show 
increasing control with age, whereas ASD children show a decreasing 
trend. Similarly, here we ask if the index of motor autonomy also 
changes with age. To that end, we examine this index as a function of 
age across the children. We  also examine it for the mature adult 
clinician across the children’s ages.

We find that the child’s index of autonomy for both NT and ASD 
increases with age in all cases (Figure 5A). This result reveals that the 
ability of the ASD child to actively participate in a dyadic interaction 
is a human socio-motor developmental trait that improves with age. 
In contrast, Figure  5B shows that the clinician’s autonomy is 
independent of the child’s age. In this case, the adult clinician shows 
no discernable trend.

3.4 Indexes of autonomy and control are 
not equivalent

The child’s index of motor autonomy and the variability of this 
index extracted from the sensors in both hands are linearly correlated 
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(Figure 5C). In the case of the index of motor control, however, there 
is higher variability of the mean motor autonomy index across subjects 
when we use data from the left-hand sensor (as shown in Figure 5D, 
where separation of the NT from ASD is evident). For this reason, 
we  focused our analysis on the non-dominant, left-hand motions. 
Furthermore, the index of motor autonomy derived from the left-hand 
motions as well as its index of motor control are positively correlated 
for small values of motor control index but negatively correlated for 
higher values. This is shown in Figure 5E. In other words, autonomy 
and control are not equivalent metrics. This can be further appreciated 
in Figure 5D (motor autonomy variability) versus Figure 5F (index of 
motor control).

3.5 Male versus females respond differently 
to ADOS tasks—the case of ASD females

In addition to the quantification of indexes of motor control and 
motor autonomy as components of socio-motor agency, we rendered 
it important to consider the heterogeneity of tasks in the ADOS’ 
modules 1, 3, and 4 used here across children with different levels of 

spoken language. We grouped tasks into three main categories: Socio-
Motor, requiring high motoric components (frequent movements and 
gestures); Abstract, tasks more “mental” in nature, requiring 
abstraction, theory of mind, and other cognitive components; 
Emotional, tasks that elicit feelings and emotional reactions, strongly 
visibly impacting the child’s emotional states.

We calculated the average indexes of motor autonomy and motor 
control across all participants, derived from samples corresponding to 
the different ADOS tasks. Then, we assessed potential differences 
between ASD and NT participants, focusing on the comparison of 
males versus females. We found that ASD males respond with lower 
index of motor autonomy than do NT males. In contrast, ASD females 
versus NT females, manifest very modest differences, inclusive of 
three tasks with no significant differences [Social Difficulties and 
Annoyance, Loneliness (both Emotional type tasks), and Construction 
Task (Socio-motor type task)].

It is therefore clear that ADOS tasks inherently bear a lack of 
differentiation between NT and ASD females, unlike their male 
counterparts, for which the differences are large. This can be appreciated 
in Figures 6A,B (females) and Figures 6C,D (males), where we color 
code the task type and code it numerically according to the name of the 

FIGURE 4

Scales of socio-motor agency according to index of autonomy. (A) Average transfer entropies between child and clinician taken over windows of  
~7.8-s duration, per participant (filled-in markers are first visit to the clinician, unfilled markers are subsequent visits) versus autonomy (Ap Ent) reveal 
higher autonomy index in NT, a trend that is also quantified in (B). As the child’s autonomy decreases, the CL to CH TE (measured in left hand) 
increases. Adding the CL past activity does not contribute more information about the CH state than looking at the CH past activity alone. (C) This is 
also the case for the right hand. (D) Autonomy variability (variance over the mean) throughout a session is higher for the ASD group, including both the 
child and the clinician involved.
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task (the Methods section describes the ADOS tasks included from 
each module). Modest differences were observed between females.

Notice that despite the non-significance in differences of 
emotional and socio-motor tasks, emotional tasks have broader spread 
in ASD females along the index of motor control than do NT females. 
In contrast, the index of motor autonomy has comparable spread for 
both. As socio-motor agency is defined as the ratio of index of motor 
autonomy/index of motor control, this implies that across these ADOS 
emotional tasks, NT females have more socio-motor agency than ASD 
females. In contrast to females, a statistically significant difference 
between the two male groups was observed for all tasks (according to 
non-parametric Kruskal–Wallis and t-test). ASD males shift 
significantly to lower values of the index of motor autonomy across all 
tasks, but visibly socio-motor tasks are deeply affected.

3.6 Motor controllability of an agent in a 
dyadic social interaction is inversely 
proportional to motor autonomy: 
leveraging socio-motor agency to protect 
the agent

In the Methods section, we  defined what transfer entropy 
( ),Y XT k l→  between two processes X and Y is:

 ( ) ( ), 1, ,Y X Y XT k l E t n k l→ →=  +    (6)

 
( ) ( ) ( )( )11, , ;| |l k

Y X n n nt n k l i y x x→ ++ =

Equivalently, TE can be  seen as the difference between the 
conditional entropy rate (which is equal to entropy rate for 
stationary processes) Xh  of process X and the generalized entropy 
rate ,X Yh  of X conditioning on the source Y (Prokopenko 
et al., 2013):

 ( ) ,,Y X X X YT k l h h→ = −  (7)

With:

 
( )( ) ( )1 1, log |k k

X n n n nh p x x p x x+ += −∑
 

(8)

 
( ) ( )( ) ( )( ), 1 1, , log |, |,k l l

X Y n n n n n nh p x x y p x x y+ += −∑
 

(9)

The generalized entropy rate measures the uncertainty in 
predicting the future values of X, given its history and the past values 

FIGURE 5

Non-equivalence of the index of motor autonomy and the index of motor control. Plots reflect the average child and clinician index of motor 
autonomy for left-hand motions versus age as well as right-versus left-hand index of motor autonomy, index of motor autonomy variability, and index 
of motor control. (A) Child index of motor autonomy is positively and linearly correlated with age. (B) There is no trend between the clinician index of 
motor autonomy across children’s ages. (C) Equivalence of index of motor autonomy derived from the left hand versus the right-hand motions. 
(D) Index of motor autonomy variability also correlates between the two hands and separates NT (blue) versus ASD (red). (E) No definite relationship 
between index of motor control and index of motor autonomy is observed; however, for small values of motor control index there seems to be a 
positive trend with autonomy, which then becomes negative for high values of motor control. (F) Left-hand motions have higher variability in the index 
of motor control than do right-hand motions. Notice the independence from (C), representing autonomy.
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of Y. Transfer entropy is the reduction in uncertainty of predicting the 
future of X when we consider the process Y. If we call ,Y Xh  uncertainty, 
then Yh  is what we already defined as motor autonomy and X YT →  is 
the transfer entropy.

We chose embedded history of length 20 for TE and for the entropy 
rate of our processes, we used a template (embedding) length equal to 
the average distance between two spikes to ensure that in the 
reconstructed space, the coordinates of a point in time include both 
zeros (“quiet moments”) and activity spikes and that the system does not 
bounce back and forth from a single coordinate of zero components. 
The embedding delay was chosen using average mutual information.

If we plot the child or clinician autonomy with respect to the 
log(NSR) and the spike rate, we see in Figure 7 that the relationship 
between entropy rate, noise, and spike rate is rather complex. It also 
differs between NT and ASD; more data are needed to get a clear 
picture, but we can see that there is a small positive trend with respect 
to noise and spike rate. Nonetheless, this shows that the processes 
cannot be treated as an independent and identically distributed i.i.d. 
random process.

Now that we  have established the speed/peak activity 
independence and the positive correlation between entropy rate and 
NSR or spike rate, we are ready to study how TE behaves in the shared 
space of the child–clinician dyad.

We find that CL CHTE →  decreases when the child exhibits high 
motor autonomy and increases when the clinician has higher motor 

autonomy and vice versa for CH CLTE → . In fact, this relationship is 
well characterized by linear relationships between transfer entropy 
and the entropy rates (autonomies), as the fitted linear surfaces 
indicate in Figure 8.

In this sense, we  can safely conclude that by manipulating 
standardized human biorhythmic time series derived from human 
movements, either by increasing the NSR or by increasing peak 
activity, we can increase autonomy and reduce the controllability of 
human agents by other humans or by artificial agents, including those 
potentially created by AI. We return to this point in the concluding 
discussion and future work section of the article.

3.7 Validation of the digitization of the 
ADOS: automated, streamlined, and 
scalable screener of socio-motor agency

To make our basic scientific results actionable, we need to validate 
our digital data with clinical criteria, a paradigm that we have coined 
clinically interpretable digital biomarkers. In this model, the objective 
digital indexes that we used to define socio-motor agency as the motor 
autonomy-to-motor control ratio are examined in relation to the 
ADOS clinical scores that a trained (accredited) human rated during 
the session (while being naïve to the goals of the research). We employ 
a machine learning technique, support vector machine (SVM), to 

FIGURE 6

Differences between males and females in average index of autonomy versus control. Filled circles code non-significant differences at the 0.05 level, 
while non-filled circles denote significant differences between NT and ASD participants. (A) NT females. (B) ASD females. (C) NT males. (D) ASD males.
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classify the digital data as a function of the clinical score. Then, 
we apply tools from signal detection theory, specifically the receiving 
operating characteristic curve, ROC, to assess the validity of 
our classifier.

Each of the 26 participants with the full ADOS session (digital and 
clinical) produces on average between 50 and 60 min of time series 
digital data from biosensors registering motion at 128 Hz. We used the 
left-hand wrist sensor in these analyses, as we showed that it is highly 

correlated with the right wrist, yet more variable, thus expanding our 
sampling space. As mentioned, upon exploration of several time 
windows to segment the data, sweeping across the time series and 
tasks while maximizing statistical power in each locally stationary 
segment, we arrived at 7.8-s windows as optimal.

The data were validated using the leave-one-person-out cross-
validation (LOOCV) method. As features for our classifier, we used 
motor autonomy (entropy rate), motor control (NSR), Poisson binary 

FIGURE 8

Linear relationships between transfer entropy and the entropy rates (autonomies) for child and clinician differentiating between NT and ASD 
participants. (A) Linear relationships between transfer entropy and the entropy rates (autonomies) for child and clinician. (B) Different linear 
relationships for NT and ASD participants.

FIGURE 7

Non-i.i.d. process revealed by the relationship between autonomy, NSR, and spike rate for clinician (A) and child (B) for the Gamma and binary 
components of the MMS, relative to the process entropy.
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micro-movement spike rate, transfer entropy, and the embedding 
delay of the data, which is the time scale at which deterministic 
properties arise and characterize the dynamical behavior of motion 
(for more information, see Methods). Two classifiers were used, one 
trained on female participants and the second one trained exclusively 
on male participants. When trying to digitally diagnose autism in one 
participant, we trained our classifier on the data from the remaining 
male or female participants and then tested how accurately the trained 
model predicted the participant class (NT vs. ASD). This method 
avoids overfitting and trains models that can diagnose autism in novel 
participants, thus automating the screening process.

Digitizing the ADOS in this way makes the diagnosis of autism 
more inclusive of females, historically underdiagnosed by a test that 
we objectively showed has biases toward males across all tasks (Torres 
et  al., 2020b). A larger sample size and a longitudinal study are 
required to validate our model at scale. Yet, as shown in Figure 9A, 
there is no confusion of our biometrics about the clinician’s ADOS 
scores, which classify ASD males with 100% accuracy and perform 
remarkably well for ASD versus NT females. Indeed, Figure  9B 
confirms the validity of these biometrics for clinical use with an area 
under the ROC curve of 80%. Supplementary Figure S3 shows the 
set-up following standardized guidelines and materials from the 
official ADOS kit used in the research-grade version of the test.

4 Conclusion and future research

In this proof-of-concept work, we use the ADOS test as a backdrop 
to study social interactions between children and adult clinicians with 

the purpose of defining new ways to automate and speed up the autism 
screening process while leveraging the clinical validity of this test. To 
that end, we explored a new concept of socio-motor agency by defining 
a ratio of two indexes of motor autonomy and motor control. Motor 
autonomy was defined as the non-parametric entropy rate spanning 
from totally random to totally deterministic behavior of standardized 
micro-movement spike trains. These were derived from nuanced 
fluctuations in motion data that contain goal-directed segments of 
behavior interspersed with spontaneously occurring, more ambiguous, 
transient segments that are known to interconnect the goal-directed 
ones (Torres, 2011a, 2013). Motor control was defined with an eye for 
feedback-based predictability in terms of the NSR, empirically 
estimated from such spike trains as well. High regimes of NSR 
correspond to the memoryless exponential distribution regimes, 
denoting noisy feedback giving rise to high uncertainty (poor 
predictability and randomness) in the motor (reafferent) code.

We reasoned that these binarized sequences of spikes bear a motor 
code whereby the observer may or may not be able to predict the 
consequences of the observed actions by the agent and therefore 
be unable to control the observed agent. At high randomness, then, the 
observed agent affords more autonomy than at deterministic ranges. At 
deterministic ranges, with high regularity, the observer can predict and 
control the actions of the observed agent. At higher NSR, the agent has 
lower self-control. This is so because the kinesthetic reafferent feedback 
from the motions is noisy, and with such poor signal quality, it is 
difficult to predict a desired outcome and plan the action consequences 
to compensate for sensory transduction, transmission, and motor 
integration delays inherent in the person’s system. As predicting his/
her/their motor action consequences can then be compromised by 

FIGURE 9

(A) Support vector machine (SVM) classifiers were trained on all subjects except one and tested on the remaining subjects of the same sex (leave-one-
person-out cross-validation [LOOCV]). Therefore, each of the 26 subjects was digitally diagnosed with a classifier trained on a different dataset, which 
ensured zero overfitting and bias. Training and testing features were the entropy rate, the signal-to-noise ratio, transfer entropy, Poisson rate, and the 
embedding delay (the time scale at which a dynamical system behaves in the most deterministic way) calculated on normalized speed samples of 
~7.8-s duration windows. Here, we report the percentage of time windows per subject that gave a positive diagnostic label and plot them versus the 
ADOS scores, as determined by the clinicians. (B) We use the positive rate scores as a metric used to diagnose ASD and report the receiver operating 
characteristic curve (ROC curve), which shows the true positive and false positive rates of the digital diagnostic tool we developed for different 
thresholds. The area under the curve (AUC) is 0.8, which indicates great performance.
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noise in the motor code, the child is more controlled by the clinician. 
The observer clinician can exert higher control over the observed agent. 
In this sense, the child’s socio-motor agency may also be compromised. 
This is the case whether the child/adult is autistic.

4.1 Key distinction between indexes of 
autonomy and control

It is important to distinguish between two levels of autonomy and 
control, defining the index of socio-motor agency. One is defining 
these components with respect to the self. In this case, we refer to the 
standalone analysis of the person’s time series biorhythmic data. The 
other one is in a social context, obtaining these indexes in relation to 
another agent who is interacting with the person.

In the case of self, self-autonomy is defined in relation to the 
systems’ autonomic, reflexive, and involuntary functions that attain a 
level of autonomous functionality and lend independence and self-
reliance to the person’s nervous system. We  defer this level of 
description and quantification for a different manuscript in this 
research topic (by Torres EB, Gaining Insights into the Autistic Inner-
experience Through a Personalized Digital Lens). In the case that 
we characterize here within a social context involving another agent, 
autonomy is defined in relation to the amount of control that the 
external agent can exert over the person. In this sense, the use of the 
entropy rate as a proxy of the amount of autonomy that the person’s 
system has ranges from totally deterministic (the person’s rhythms are 
fully predictable and, as such, controllable by an external agent) to 
totally random (chaotic) and, as such, unpredictable and 
uncontrollable by an external agent. To further distinguish the index 
of autonomy from the proposed index of control, we  verified 
experimentally that autonomy, as we define it, is directly related to 
predictive causality, as it is measured by the transfer entropy between 
the two biorhythmic time series—the person’s and the external agent’s 
causal influences on each other.

The case of the index of control is strictly defined at the individual 
(self) level. This biometric index is defined as the inverse of the 
empirically estimated noise-to-signal ratio (NSR) that we  have 
examined across the human lifespan. Self-control undergoes an 
ontogenetic maturation process on a schedule (Torres et al., 2013a) 
well characterized by the shape and the scale parameters of the 
continuous Gamma family of probability distributions. Empirically, 
in human maturation, the ranges of these parameters span from the 
memoryless exponential in early ages (toddlers) to skewed 
distributions with heavy tails (school age) to the symmetric Gaussian 
(from college age onward). As the shape increases value with 
maturation and age, the NSR decreases. In old age and pathologies of 
the motor systems, the shape value declines back to exponential 
ranges and the NSR increases with different rates in disorders of the 
motor systems [e.g., Parkinson’s disease and neuronopathy due to 
deafferentation (Choi and Torres, 2014)]. As there is a scaling power 
law, linearly co-relating, on the log–log Gamma parameter plane these 
distribution parameters, we  can see that knowing the shape 
(exponential to skewed to Gaussian) helps us accurately infer the scale, 
which in the Gamma case is the NSR. The shape systematically 
increases as the NSR systematically decreases. As such, we can define 
control in terms of the inverse of the NSR, i.e., the signal-to-noise ratio 
(SNR), and speak of predictability ranges spanning from memoryless 

random (no priors, just in the here and now) to Gaussian priors 
helping a predictive code.

To avoid any confusion between the control index defined by the 
NSR and the autonomy index, entropy rate (randomness), 
we underscore that ER is examined in relation to TE between the 
person’s and the external agent’s biorhythmic time series. We note that 
the NSR measures the variability of the person’s motions relative to the 
(empirically determined) baseline mean, given a situation or context. 
That is, this is a personalized measure of the person’s motions relative 
to the person’s baseline contextual variability. In contrast, entropy rate 
measures the empirically determined randomness of the person’s 
motions relative to an external agent, explicitly in the time domain. 
Although in the standalone (self) case of the micro-movement spikes, 
the NSR also informs or the levels of randomness/predictability of the 
biorhythmic code (Brincker and Torres, 2013), the two metrics, 
defining control and autonomy, are not generally equivalent concepts, 
as one can appreciate in Figure 5F.

Underlying both indexes and the ratio of motor autonomy to 
motor control are then discrete pockets of information making 
up a continuous stream of dyadic motor code, contributed by 
both social agents. Thus, we  can infer the existence of an 
underlying shared alphabet in the motor code that manifests 
during dyadic social interactions of the type studied here. Agents 
with discrete motor signatures that appear more random are thus 
harder to control and behave more autonomously and 
independently than agents with systematically predictable 
motions sharing their codes.

4.2 Some notes on dyadic exchange and 
clinical applications

In addition to describing new biometrics of shared socio-motor 
agency in dyadic social interactions, our analyses showed ways to 
streamline the ADOS test, thus making it less taxing on the child and 
the clinician. A handful of tasks affording more socio-motor agency 
to the child can indeed uncover the social readiness potential of the 
child rather than biasing the diagnosis by the clinician toward a deficit 
model. Along those lines, using these newly defined indexes of dyadic 
motor autonomy and motor control, we demonstrated fundamental 
differences across the tasks for males and females, thus confirming 
that despite previously quantified differences in motor control 
separating males and females at the voluntary (Torres et al., 2013b) 
and involuntary (Torres et al., 2016a, 2017) levels, the ADOS remains 
biased toward males.

The proposed digital indexes of shared socio-motor agency, used 
within the context of an unbiased ML classifier, could detect the 
differences between males and females for both the NT and ASD 
randomly chosen participants. While the proposed indexes speak of 
motor physiology underlying socio-motor agency during social 
interactions, psychological constructs of social interactions and 
communication defining the ADOS test were also leveraged by the 
presented ML methods. This digitized, automated version of the test 
resembles the type of scenario that a clinician faces at the clinic on any 
given day. Namely, a random arrival of a case that the clinician may 
see for the first time. In that sense, the leave-one-person-out classifier 
provides robust digital screening of autism and may be a way, in future 
research, to scale our pilot study to encompass larger numbers of NT 
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and ASD participants across ages and sexes and do so longitudinally 
as well. This type of approach combining traditional psychological and 
newly emerging physiological motor criteria of autism could help us 
close the gap between disparate literatures of autism spanning several 
decades (Whyatt and Torres, 2018).

Future longitudinal studies of autism with an eye for the 
evolution of the neuromotor code and its impact on social perception 
and cognition will require the type of normalization that 
we  introduced earlier with the MMS (Torres et  al., 2013a) and 
further used here in the dyadic context, namely, scaling out 
allometric effects due to anatomical differences across participants 
(see also Torres et al., 2016a,b, 2020a; Caballero et al., 2020). This 
step is crucial in any study that involves biorhythmic motions, 
whereby kinematic analyses will be impacted by such anatomical 
differences. This is so because kinematic parameters such as speed, 
acceleration, distance, etc. are impacted by the limb sizes and masses 
in ways that confound results and interpretation of such studies 
(Torres et al., 2018). It will be particularly important to consider 
these caveats present in all current studies of kinematics that do not 
account for allometric differences during the very early 
neurodevelopment when the rate of bodily growth is highly 
non-linear and accelerated (Torres et  al., 2016b). These rates of 
changes in anatomical growth produce different ranges of values in 
such kinematic parameters and impact the empirical distributions of 
the values associated with natural behaviors such as those examined 
here (Torres et al., 2016b, 2018).

4.3 Implications of socio-motor agency 
metrics for AI and privacy protection

The theoretical considerations at the intersection of stochastic 
analyses and information-theoretic approaches with non-linear 
dynamics offer the MMS and Gamma analyses as a viable way to 
obtain the personalized signatures of socio-motor autonomy and 
socio-motor control and tweak the NSR to mask the spike trains 
derived from the person’s physiological biorhythmic activity. This 
ability to separate the binary spike rate code from the Gamma 
process, denoting levels of randomness versus predictability, offers 
the possibility of creating a device that alerts the persons involved in 
the dyadic exchange to balance their autonomy and control and to 
attain socio-motor agency. By enhancing autonomy and avoiding 
excessive external control by the other agent, be that agent another 
human or an AI-driven one, the person can be protected from excess 
control. This approach will be critical to revamp autism therapies 
with an emphasis to respect the child’s autonomy and support the 
bottom-up development of autonomous motor control. The 
maturation of bottom-up autonomous motor control (building 
blocks of the person’s psychological sense of autonomy) is a necessary 
pre-requisite for the further neurodevelopment of top-down 
cognitive control. Without considering and balancing the orderly 
maturation rates of these two building blocks of socio-motor 
behavior, therapies in autism are bound to stunt the natural 
development of socio-motor agency and likely cause trauma to the 
nascent nervous system.

We propose that this methodology can also be used to protect our 
privacy more generally from surveillance systems, as ultimately these 

systems rely on biometric data, which we can now, using the present 
personalized methods, manipulate to hide our fingerprint-like 
bio-motor signatures from an external agent trying to control us. This 
solution to the controllability issue can then be  extended from 
individuals to dyads, from dyads to social groups, and from social 
groups to society. In this sense, socio-motor agency can serve as a 
foundation for societal agency, now quantifiable using the methods 
that we offer in this study.

4.4 Limitations

Our study has a modest number of participants. Although it 
provides proof-of-concept that we  can digitize natural dyadic 
interactions, it will be necessary to reproduce our study with a larger 
N. To that end, we provide our code and data samples for independent 
reproducibility by other groups with access to more participants.

In summary, we  found that variability in the dyadic index of 
motor autonomy is more pronounced in ASD than in NTs, across a 
broad range of ages from 4 to 15 years old. Furthermore, we found 
that the dyadic NSR, indicative of socio-motor control, increases with 
age. This result is consistent with prior work on individuals across 
ages and sex (Torres et al., 2013a,b). In contrast, both ASD and NT 
showed increases in the motor autonomy index with age, an indicator 
that regardless of the human condition, whether developing along a 
neurotypical trajectory or along the trajectory toward autism 
spectrum disorders, respecting the child’s autonomy will 
be necessarily our best ally when designing future treatments that 
unveil the child’s social readiness potential. We  would not have 
known this had we treated the ADOS as the criterion test that it is 
(i.e., exclusively based on children with neurodevelopmental 
differences), rather than treating it as a normative test (i.e., including 
NT controls as well, to define normative ranges and quantify 
similarities and departures from it).

We have uncovered new indexes of shared, dyadic motor 
autonomy and motor control, objectively defined socio-motor agency, 
and provided new means to automate its digital screening with already 
routinely used clinical tools. This study offers novel ways to scale our 
clinical science and make it actionable, diverse, and inclusive at more 
than one level.
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