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For the electroencephalogram- (EEG-) based motor imagery (MI) brain-
computer interface (BCI) system, more attention has been paid to the advanced 
machine learning algorithms rather than the effective MI training protocols over 
past two decades. However, it is crucial to assist the subjects in modulating 
their active brains to fulfill the endogenous MI tasks during the calibration 
process, which will facilitate signal processing using various machine learning 
algorithms. Therefore, we  propose a trial-feedback paradigm to improve MI 
training and introduce a non-feedback paradigm for comparison. Each paradigm 
corresponds to one session. Two paradigms are applied to the calibration runs 
of corresponding sessions. And their effectiveness is verified in the subsequent 
testing runs of respective sessions. Different from the non-feedback paradigm, 
the trial-feedback paradigm presents a topographic map and its qualitative 
evaluation in real time after each MI training trial, so the subjects can timely 
realize whether the current trial successfully induces the event-related 
desynchronization/event-related synchronization (ERD/ERS) phenomenon, and 
then they can adjust their brain rhythm in the next MI trial. Moreover, after each 
calibration run of the trial-feedback session, a feature distribution is visualized 
and quantified to show the subjects’ abilities to distinguish different MI tasks 
and promote their self-modulation in the next calibration run. Additionally, if 
the subjects feel distracted during the training processes of the non-feedback 
and trial-feedback sessions, they can execute the blinking movement which will 
be captured by the electrooculogram (EOG) signals, and the corresponding MI 
training trial will be abandoned. Ten healthy participants sequentially performed 
the non-feedback and trial-feedback sessions on the different days. The 
experiment results showed that the trial-feedback session had better spatial 
filter visualization, more beneficiaries, higher average off-line and on-line 
classification accuracies than the non-feedback session, suggesting the trial-
feedback paradigm’s usefulness in subject’s self-modulation and good ability to 
perform MI tasks.
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1 Introduction

A brain-computer interface (BCI) system can directly build a 
two-way communication path between a subject’s brain and an 
electrical device without the participation of motor muscles (Wolpaw 
et al., 2002). Among various BCI paradigms, motor imagery (MI) has 
been paid great attention due to its ability to improve motor functions 
for patients with motor nerve disorder (Mane et al., 2020). Moreover, 
because of high temporal resolution and reliable safety, 
electroencephalography (EEG)-based MI-BCI has been widely 
studied in real-time applications.

Nevertheless, EEG signals are of non-stationarity, low spatial 
resolution, and poor signal-to-noise ratio (SNR). Furthermore, it is 
tough for patients and even healthy subjects to execute MI tasks since 
they can naturally control their limbs with their peripheral nerves but 
hardly know how to imagine the movements of their limbs. 
Statistically, about 30% of subjects fail to reach a benchmark 
classification accuracy (CA) of 70% in real-time BCI control. This 
phenomenon is coined as BCI illiteracy (Vidaurre and Blankertz, 
2010). Moreover, MI-BCI is an asynchronous system, which 
spontaneously initiates a manipulation at any time without any 
external stimuli. Therefore, a long MI training is needed to collect 
amounts of steady and reliable brain signals for a subject-specific 
classifier, which unfortunately might cause the subject’s fatigue and 
the experimental results’ degeneration. Consequently, it is a challenge 
to shorten the MI calibration time without sacrificing the performance 
of EEG-based MI-BCI.

Many advanced machine learning algorithms have been ventured 
into investigating how to find a way out of this dilemma, such as semi-
supervised learning (Ko et  al., 2020; Zhang et  al., 2023), transfer 
learning (Wan et  al., 2021; Wu et  al., 2022), and semi-supervised 
transfer learning (Zhao et  al., 2019; Gao and Sun, 2022). Despite 
sophisticated machine learning algorithms, their performance 
partially relies on the quality of available samples. An efficient training 
procedure is helpful to generate a labeled set with good between-class 
discrepancy. To tackle this problem, Jeunet et al. (2016) called for 
updating the standard BCI training protocol, which has been widely 
used in MI-BCI over a long period of time. In traditional Graz training 
protocol, subjects repeatedly and passively perform left-hand and 
right-hand MI tasks instructed by the auditory and visual cues to 
collect amounts of labeled data (Pfurtscheller et al., 1993). The whole 
calibration process is short of involvement, feedback, and adjustment, 
resulting in a bad experience sense for the subjects.

To solve this problem, there exists many variants of standard 
training protocol. To increase the subject’s interest, the dull arrow cues 
on the computer screen were replaced by the vivid visual cues, such as 
a yellow spaceship navigating through a galaxy (Abu-Rmileh et al., 
2019), a moving hand which can write Chinese characters (Qiu et al., 
2017). Questionnaire can not only obtain the subject’s feedback on the 
experiment but also foster the subject’s involvement, whose role has 
been always underestimated. Ahn et al. (2018) pointed out that the 
subject’s self-predicted BCI performance in pre-task questionnaire 
showed a high positive correlation with the actual accuracy, suggesting 
that the subject’s initiative can influence the experimental results. 
However, questionnaire cannot provide further feedback about 
subject’s MI-BCI skill. CA, the commonly used metric of BCI 
performance, is traditionally applied to the testing runs. Thus, CA is 
not the most suitable metric to quantify MI-BCI skill during the 

calibration phase. Lotte and Jeunet (2018) defined the binary class 
distance/stability of EEG samples to assess the progress or 
retrogression of subject’s MI-BCI skill in different calibration runs. 
Nevertheless, such subjective feedback (questionnaire) and objective 
feedback (CA and class distance/stability) cannot provide real-time 
information to help the subjects realize self-modulation in the 
training phase.

Based on event-related desynchronization (ERD)/event-related 
synchronization (ERS) phenomenon (Pfurtscheller et  al., 2000), 
Hwang et  al. (2009) presented a real-time brain activation map 
during the calibration process. However, the subjects might 
be confused by the complex topographic map since it was difficult 
for them to correctly activate all electrodes. Bai et al. (2014) provided 
a more concise perspective in which the cortical ERD features of 
four electrodes (C1, C2, C3, and C4) were presented in the form of 
four column panels. Each panel included a blue bar representing the 
real-time EEG activity and a red bar denoting the baseline EEG 
amplitude. Nevertheless, this training protocol lost the ERD 
characteristics of other electrodes over the sensorimotor area. Due 
to the importance of class discrepancy, Duan et al. (2021) exhibited 
an online data visualization where the EEG distribution in 
Riemannian geometry appeared on a computer monitor. However, 
it is challenging to remain the valuable information of high-
dimensional EEG data on a two-dimensional screen. Vasilyev et al. 
(2021) modified the training protocol in which the subjects were 
presented with the classification result of current EEG trial in real 
time. Mladenović et al. (2022) provided three MI training protocols 
with different feedback for comparison: no bias feedback, positive 
bias feedback, and negative bias feedback, in which the classifier 
result was not biased, positively and negatively biased in real time, 
respectively. Nevertheless, these training protocols overly relies on 
the classifier output.

Recently, many external devices have presented various feedback 
to improve the subject’s self-modulation in the MI-BCI system. 
Proprioceptive feedback provided by the two orthoses can facilitate 
MI-related operant learning (Darvishi et  al., 2017). Vibration 
stimulation accompanied with the traditional visual cue of the MI task 
promoted the activation of sensorimotor rhythm (Zhang et al., 2022). 
Tactile feedback was given by a force sensor in an MI-based robot 
control system or a neurofeedback training system (Xu et al., 2020; 
Marcos-Martínez et  al., 2021). Immersive feedback can increase 
feedback visualization through the virtual reality device (Škola et al., 
2019; Choi et al., 2020; Achanccaray et al., 2021). Multisensory (such 
as audio, visual, tactile) feedback can further boost the training effect 
(Wang et al., 2019; Li et al., 2022). Nevertheless, their corresponding 
methods generally divided the whole MI training process into two 
phases. The former phase was used to train the initial classifier without 
feedback, while the latter phase was used to assist the subjects to adjust 
themselves with such embodied feedback. Therefore, it is still difficult 
for these methods to enhance the quality of the initial training samples.

Inspired by such studies, we aimed to provide prompt feedback to 
help the subjects timely realize whether their EEG signals conformed 
to the ERD/ERS feature during the whole calibration phase. Thus, 
we proposed a trial-feedback paradigm in which a topographic map 
and an objective evaluation were simultaneously given after each MI 
training trial to foster the subject’s self-modulation. Furthermore, 
we presented a run evaluation after each calibration run to assess the 
subjects’ abilities to distinguish different classes. To investigate the 
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effect of our trial-feedback paradigm, we designed the non-feedback 
session and the trial-feedback session for comparison. Both sessions 
included the electrooculogram (EOG), calibration, and testing runs. 
The goal of EOG run was to collect the signals from electrode Fp2 
triggered by the blinking movements. In the subsequent calibration 
runs, the EOG signal from the subject can be  translated into a 
command of accepting or refusing the current training trial, leading 
to the improvement of the subject’s involvement. The differences 
between the calibration runs of two sessions lied in whether there 
were prompt feedback and run evaluation. The testing runs were used 
to testify the training samples’ quality and the classifier’s performance. 
Moreover, concise questionnaires were given to record the subject’s 
pre- and post-experimental status.

Our contributions can be outlined as follows. First, we visualized 
and evaluated the subject’s MI-BCI skills using prompt feedback and 
run evaluation. Secondly, we utilized the EOG signals to enhance the 
subject’s involvement in the MI training process. Thirdly, we arranged 
a complete MI experiment including the calibration and testing runs 
to testify the effectiveness of MI training. Finally, we summarized the 
pros and cons of our trial-feedback paradigm and identified the future 
areas of improvement in MI-BCI experimental design.

2 Methods

2.1 Subjects

Ten healthy subjects (S1–S10, 1 female and 9 males, aged 22–43 
years, mean 24 ± 6.8) participated our MI experiment. Five subjects 
(S6–S10) had no MI experience before this study. All subjects signed 
an informed consent in accordance with the Declaration of Helsinki 
before participating the experiment. The experimental procedure was 
approved by the ethics committee of Jiangxi Agricultural University. 
All subjects were right-handed with normal neurological examinations 
and finished the whole experiment in a quiet room.

2.2 EEG acquisition

EEG signals were collected with a g. Hlamp amplifier at 256 
sampling rate. The neural activities were recorded through 21 
electrodes over the sensorimotor cortex using a 64-electrode cap 
following the 10–20 international system. EOG signals were acquired 
by Fp2 at the prefrontal cortex to improve the subject’s involvement. 
In Figure 1, all selected electrodes are marked in green, referenced to 
the right ear and grounded to AFz.

2.3 Experimental design

To explore the role of feedback, the non-feedback and trial-
feedback sessions were developed for comparison and were sequentially 
executed on different days for each subject. Each session consists of one 
EOG run, six calibration runs, and four testing runs. The EOG run was 
performed before the calibration runs to acquire the EOG features of 
subject’s blinking movements. The calibration runs of different sessions 
were conducted to collect training data using corresponding 
paradigms. During the calibration run, if the subject felt distracted, he/
she could mark the current trial as dissatisfied one by blinking. 
Additionally, a run evaluation was performed after each calibration run 
of the trial-feedback session. To evaluate the effect of training, a simple 
brain-controlled Belly-Worship snake game, with a snake moving right 
or left, was played in the subsequent testing runs. The experimental 
design on different sessions is shown in Figure 2.

As illustrated in Figure  2, we  additionally performed a run 
evaluation which aimed to visualize and quantify the subject’s 
competency after each calibration run of trial-feedback session. 
Moreover, the trial-feedback session provided prompt feedback after 
each MI training trial. To investigate the impact of the size of training 
set on the model, the first two and last two testing runs were executed 
after the three and six calibration runs, respectively. More details can 
be seen in the following sections.

FIGURE 1

The selected electrodes in our MI experiment.
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2.4 EOG run

In our MI experiment, EOG signals were utilized to enhance the 
subject’s involvement because of their high SNR. In the traditional MI 
paradigm, the subject cannot do anything if he/she feels distracted, 
which may lead to the degeneration of the model. Inspired by active 
learning (Tharwat and Schenck, 2023), our subjects could mark the 
distracted trials unsatisfied by blinking during the calibration run. 
Thus, the EOG run was used to collect EOG features of blinking and 
unblinking movements. Each EOG run consisted of 20 trials of 6 s 
each. The timing scheme of a trial in the EOG run is shown in 
Figure 3.

The timing scheme included the preparation, blinking movement, 
and rest phases. After 2 s of preparation and a short beep, a picture 
with two eyes opening or blinking randomly appeared on the screen 
for 2 s, directing the subject to execute the desired eye task.

Because of stronger eye movement, the blinking movement 
usually has a higher amplitude than the unblinking one. The peak of 
2-s data epoch was thus regarded as the feature of blinking trial. The 
outliers of blinking trials were detected depending on the median 
value of the blinking features. The blinking trials with higher (>2 × 
median) or lower (<median/2) features were removed. The mean of 
remaining blinking features was used as the threshold of blinking 
movements in the calibration run.

2.5 Calibration run

2.5.1 Time scheme
In the calibration run, we designed the non-feedback and trial-

feedback paradigms for comparison. In Figure 4, the timing scheme 
of a trial in the calibration run for different paradigms is composed of 
the preparation, motor imagery, confirmation, and rest phases.

At the beginning of a trial (t = 0 s), a baby blue arrow on the left 
or a light red arrow on the right reminded the subject to prepare the 
left-hand or right-hand MI task without collecting the neural signals. 
After 2 s and a short beep, a blue or red arrow appeared on the screen 
for 4 s while the brain activities evoked by the left-hand or right-hand 
MI task were recorded from 21 electrodes. During the 2-s confirmation 
phase, the EOG signal was acquired from Fp2 to detect whether the 
subject executed blinking movement due to distraction. In the rest 
phase, the arrows on the two sides became grey.

No feedback was further provided for the non-feedback paradigm 
whereas a topographic map with a “good” or “fight” hint was presented 
on the screen to evaluate the current MI training trial for the trial-
feedback paradigm. There was adequate time for the subjects to think 
about how to adjust their MI behavior in the next MI task.

2.5.2 Prompt feedback mechanism
In our experiment, the subject-selected imagery movements of 

limbs, such as throwing the balls, grasping the mobile phone, cutting 
the paper, etc., are allowed for all paradigms. As shown in Figure 4, for 
the trial-feedback paradigm, a topographic map with an objective 
evaluation appears in the rest phase, which can assist the subjects to 
understand whether the current imaginative behavior is good or bad, 
thereby helping them adjust their attention or the amplitudes of their 
imagination movements.

Such topographic map was presented by modifying a bbci 
toolbox which can be found at: https://github.com/bbci/bbci_public. 
This toolbox can present the topographic map per MI class, which 
shows the average amplitudes of selected electrodes on a given 
temporal interval. To provide prompt feedback, our topographic 
map can show the topographic map per MI trial with a slight 
modification to this toolbox.

To encourage subject, we extracted three temporal segments [(0.5, 
1.5), (0.5, 2.5), and (0.5, 3.5)] from the 4-s MI execution time interval, 
then correspondingly generated three topographic maps, and finally 
selected the most representative map to show on the screen 
accompanied with an objective evaluation.

To show the ERD/ERS feature, the i-th EEG trial X Xi i
Nt∈( )× 21  

was transformed into Xi  Xi
Nt∈( )× 21  after executing local average 

reference, computing the envelop curve of oscillatory signals, and 
subtracting a baseline, where Nt  is the number of sample points of 
Xi . Then, the average amplitude over the k-th ( k∈ 1 2 3, , ) temporal 

segment at the electrode j (j∈ =J J, [FC5, FC3, FC1, FCz, FC2, FC4, 
FC6, C5, C3, C1, Cz, C2, C4, C6, CP5, CP3, CP1, CPz, CP2, CP4, 
CP6]) was calculated as R

N
Xj

k
t t i

t j

k

= ∑1
 , where Nt1

= (1.5 − 0.5) × 

256, Nt2
=  (2.5 − 0.5) × 256, Nt3

=  (3.5−0.5) × 256, and Xi
t j  is the 

amplitude of the t-th sample point of Xi  at electrode j. Consequently, 
three topographic maps were obtained using 21 electrodes’ R j

k .
Next, the representative topographic map was selected depending 

on the number of correctly activated electrodes. In our experiment, 
except for FCz, Cz, and CPz, the remaining electrodes on the 
sensorimotor area were further grouped into left and right sets: J1 = 
[FC5, FC3, FC1, C5, C3, C1, CP5, CP3, CP1] and J2 = [FC2, FC4, 
FC6, C2, C4, C6, CP2, CP4, CP6]. Based on the characteristics of 
ERD and ERS, for the left-hand MI trial, the average amplitudes of 
electrodes on the left cortex should be larger than zero and those on 
the right cortex should be less than zero. On the contrary, for the 
right-hand MI trial, the average amplitudes of electrodes on the right 
area should be positive and those on the left area should be negative. 
However, due to BCI illiteracy, it is difficult for each electrode to 
be correctly activated. Therefore, we counted the number of correctly 
activated electrodes for three topographic maps as below.

FIGURE 2

The experimental design on different sessions.
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ALGORITHM 1 : The representative topographic map 
selection

Input: the average amplitudes of all electrodes from three 
topographic maps: R j

k  ( k∈[ , , ]1 2 3  and j J∈ ).
Output: the K -th representative topographic map.
Initialize: bestMetric =  0, flag =  0;
for k  = 1 to 3 do
if the i-th trial belongs to the left-hand MI type then
Count the number of correctly activated electrodes on the left 

cortex: N sum R j Jl
j
k= >( ) ∈( )0 1 ;

Count the number of correctly activated electrodes on the right 
cortex: N sum R j Jr

j
k= <( ) ∈( )0 2 ;

if Nl > 0  and Nr > 0  then metric = +N Nl r ; flag =  1;
elseif Nl > 0  and flag ==  0 then metric =  Nl ;
end if

elseif the i-th trial belongs to the right-hand MI type then
Count the number of correctly activated electrodes on the left 

cortex: N sum R j Jl
j
k= <( ) ∈( )0 1 ;

Count the number of correctly activated electrodes on the right 
cortex: N sum R j Jr

j
k= >( ) ∈( )0 2 ;

if Nl > 0  and Nr > 0  then metric = +N Nl r ; flag =  1;
elseif Nr > 0  and flag ==  0 then metric =  Nr ;
end if
end if
if metric >  bestMetric then bestMetric =  metric; K k= ; end if
end for
if bestMetric ==  0 then select the second topographic map by 

default: K = 2 . end if
In Algorithm 1, if the k-th map has the correct ERD/ERS 

phenomenon on the left and right cortices, i.e., Nl > 0  and Nr > 0 , 

FIGURE 3

Timing scheme of a trial in the EOG run.

FIGURE 4

Timing scheme of a trial in the calibration run for different paradigms.
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this map will be selected with higher priority. Otherwise, if the k-th 
map only has ERS feature on the left or right cortex, i.e., Nl > 0  or 
Nr > 0 , this map will be  chosen with lower priority. Finally, 
we  chose the best map with maximum number of correctly 
activated electrodes to show.

After selecting the suitable topographic map based on the number 
of correctly activated electrodes, an objective evaluation was presented 
by comparing the selected map’s two topographic values: TopoVal1  
and TopoVal2  (1 meant right-hand MI type and 2 was left-hand 
MI type).

evaluation

cc

=

( ) == ∈’ ’good if TopoVal ,TopoVal TopoVal and ,max 1 2 1 22

1 21 2

[ ]( )
( ) ≠ ∈[ ]( )’ ’fight if TopoVal ,TopoVal TopoVal and ,max c c

,,




  

(1)

where

TopoVal

(

1

1
1

1

2

2

=

+ ∈
∈

∈

∈

∈

∑ ∑j J
j
K

j J
j
K

j J
j
K

j J
j
K

R

R

R

R
j J R

min max
if then jj

K
j
Kj J R< ∈ >0 02, ),if then

 (2)

∈ ∈

∈∈

=

+ ∈ > ∈ <
∑ ∑

1 2

21

2

1 2

TopoVal

(if 0,if 0).
ma

th
x m

en th
in

en

j j
K Kj J j J j j

K Kj j
K K

j Jj J

R R
j J R j J R

R R
 (3)

In our study, the ERD/ERS phenomenon was further evaluated 
using topographic value ( TopoVal  for short). In Equation 2, 
we assume the i-th trial to be right-hand MI type and calculate its 
TopoVal , i.e., TopoVal1 . Likewise, in Equation 3, we also suppose 
this trial to be  left-hand MI type and compute its TopoVal , 
i.e., TopoVal2 .

In Equation 1, for the i-th trial belonging to class c, if the true 
class’s TopoVal , i.e., TopoValc , is greater than the opposite class’s 
TopoVal , it is considered to have normal ERD/ERS characteristic and 
is given a “good” evaluation. Otherwise, it is thought to have weak 
ERD/ERS feature and is encouraged with a “fight” hint.

Obviously, if the correctly activated electrodes have deeper color, 
the topographic map has more apparent ERD/ERS phenomenon. On 
the contrary, if the wrongly activated electrodes have deeper color, the 
map has weak ERD/ERS characteristic. The color depth of activated 
electrodes was measured as follows. In Equations 2 and 3, for all 
electrodes evoking ERS feature, we  calculate ∑ /maxj j

K Kj j
R R , 

where R j
K > 0 . Likewise, for all electrodes triggering ERD 

characteristic, we compute ∑ /minj j
K Kj j

R R , where R j
K < 0 .

Let us give two examples to better understand in Figure 5. In the 
left subfigure, the left-hand MI trial’s TopoVal , i.e., TopoVal2 , is 
obviously larger than the opposite class’s TopoVal , i.e., TopoVal1,  
thus this trial is a good one. However, in the right subfigure, after 
calculation, the right-hand MI trial’s TopoVal , i.e., TopoVal1 , is less 
than TopoVal2 , which suggests that more electrodes are 
wrongly activated.

It was noted that such evaluation cannot be  translated into a 
command to retain or abandon the current trial due to the lack of 
understanding of overall feature distribution.

2.5.3 Signal processing
In our experiment, the same signal processing methods were used 

in the calibration runs of different sessions since we  focused on 
different paradigms.

We sequentially performed data preprocessing, artifact removal, 
feature extraction, and classification algorithm after three or six 
calibration runs.

First, all raw EEG signals from each calibration run were band-
pass filtered between 0.1 and 30 Hz with an eighth order Butterworth 
filter, and notch filtered between 48 and 52 Hz. Each MI training trial 
was extracted from the time interval between 0.5 and 2.5 s after the 
arrow visual cue onset.

After preprocessing, if the peak amplitudes of EOG signals 
captured in the confirmation phase were greater than the threshold 
of blinking features, the corresponding MI trials would be marked 
as dissatisfied ones and removed from the training set. Let the size 
of the remaining training set be  Nremove dis_  ( ≤_ 20).remove disN  
Then, the EEG training trials with excessive variance were also 
deleted using the “Artifact Rejection” function from the bbci 
toolbox. The procedure of the artifact rejection can be summarized 
as below.

ALGORITHM 2 : Remove the training trials with excessive 
variance

Input: the remaining set after removing dissatisfied 
trials: TRremove dis_ =  X Xi i

i

Nremove dis

| ∈{ }×
=

512 21

1

_ .

Output: the final training set: TR X Xfinal i i
i

N final

= ∈{ }×
=

| 512 21

1 .
Initialize: N Nfinal remove dis= _ , TR TRfinal remove dis= _ ;
for i  = 1 to Nremove dis_  do
Calculate the variance σ σi i ∈( )1×21 for the i-th trial Xi ;
end for
for j  = 1 to 21 do
if more than 10% of trials have small variances ( <0.5 ) at the 

j-th electrode then
for i  = 1 to Nremove dis_  do
remove the j-th entry of σ i  and then obtain new 

variance  σ σi i
N

ee N∈ ≤( )1 1× 2,  ;
end for
end if
end for
do
Concatenate the remaining trials’ σ i  and obtain a new 

vector Var ;
Compute the threshold: 
threshold percentile Var

percentile Var percenti
= ( ) + ×
( ) −

,
,

90 3
90 lle Var,10( )( ) ;

for each trial from TR final  do
if its variance is greater than threshold  then
Remove that trial from TR final ;
N Nfinal final= −1 ;
end if
end for
if no trial is removed due to excessive variance then
break;
end if
while (true)
In Algorithm 2, percentile Var t,( )  returns the t -th percentile of 

Var . For example, percentile Var,50( )  returns the median of Var .
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Then, Riemannian alignment (RA) (Zanini et al., 2018; He and 
Wu, 2019; Xu et al., 2021) and common spatial pattern (CSP) method 
(Ramoser et al., 2000) were successively executed to extract valuable 
feature vectors. More details can be found as below.

For each calibration run, the Riemannian mean MR  can 
be defined as

 
M P MR

M
i
N

i F
final= ( )( )=

−∑argmin 1
1 2

|| log || ,
 

(4)

where Pi  is the covariance matrix of Xi , and || . ||F  performs the 
Frobenius normalization operation.

The i-th trial Xi  can be aligned using the Riemannian mean MR  
to shorten the inter-run differences as

 
X X Mi i R= −( )1 2/ .  (5)

After performing RA for each calibration run, the CSP feature 
extraction algorithm was executed. Let Pi  be covariance matrix of the 
i-th aligned trial Xi  from three or six training sets. Then, the average 
covariance matrix from class c can be computed as

 
c

c i
N

iN
Pc=

=∑1
1
 ,

 
(6)

where Nc  is the number of all training trials from class c 
(c∈ [1,2]).

To maximize the discriminability of two populations of EEG 
signals, the Rayleigh quotient can be maximized by

 
Wp

T

T= argmax
ω

ω ω

ω ω




1

2
,

 
(7)

where Wp  is the projection matrix and .( )T  is the transpose 
operation. In Equations 4–7, we obtained the CSP projection matrix 
after performing RA and CSP methods. In our study, the CSP spatial 
filters Ws  were extracted from the first three rows and the last three 
rows of Wp . The first three spatial filters can maximize the variance 

of class 1 while minimizing the variance of class 2. Likewise, the last 
three spatial filters can yield the high variance of class 2 and the low 
variance of class 1. Then, the six-dimensional feature vector Fi  was 
the logarithm of the variance of Xi  after projection onto Ws .

Finally, these low-dimensional CSP feature vectors from the three 
or six calibration runs were used to construct the subject-specific 
linear discriminant analysis (LDA) hyperplane (Lotte et al., 2007). The 
normal vector w of the hyperplane can be defined by

 
w

T
=

( ) + ( )







 −( )
−

cov cov
,

 
 1 2

1

1 22
 

(8)

where c  is the c-th class feature set with Nc  size, cov c( )  
computes the covariance matrix of c , and c is the mean of the 
c-th class feature set.

The bias of the hyperplane can be given by

 
b w= − +( )1

2 1 2  .
 

(9)

In Equations 8 and 9, the normal vector and bias of the LDA 
hyperplane can be obtained. Then, the LDA model ( ) = +( )i if F sign wF b  
can be used to judge the class of the Feature Fi .

2.6 Run evaluation

A run evaluation was provided after each calibration run of trial-
feedback session. For the trial-feedback session, a run evaluation, in 
which the CSP feature distribution was visualized and quantified, was 
conducted after each calibration run. As mentioned above, each 
aligned MI training trial can be transformed into a six-dimensional 
CSP feature. Then, the first and last elements of all CSP features, 
which were optimal to discriminate two populations of EEG trials, 
were projected into a two-dimensional screen. Figure 6 shows an 
example of CSP feature distribution.

The CSP feature distribution can be quantified by class distance 
(CD for short). Motivated by the domain transferability in (Zhang 
and Wu, 2020), we adopted the within-class matrix Sw  and between-
class matrix Sb  to measure the aggregating ability of each class and 

FIGURE 5

A left-hand MI trial’ prompt feedback and a right-hand MI trial’ prompt feedback.
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the discriminating ability of binary classes, respectively. In 
Equations 10–12 Sw , Sb , and CD can be calculated as follows:

 
S Iw c c c

Tc= −








=∑ 1

2 F
N
FN1

c
,
 

(10)

 
Sb c c c c

T
= −( ) −( )=∑ 1

2 N F F F F ,
 

(11)

 
= 1 1/ ,b wCD S S

 (12)

where c  denotes the c-class CSP feature set from one 
calibration run, c  is the size of c , I  means an c
-dimensional identity matrix, 1N N NR

c
c c∈ ×  is an all-one 

matrix,  c  and   denote the mean of the c-class feature set and 
the mean of all feature sets, respectively, || . ||1  performs the 
normalization computation.

2.7 Testing run

With the aim of investigating the effect of the size of training set, 
two models were trained using the trials from the first three and six 
calibration runs, respectively. They were separately applied to the first 
two and last two testing runs. Five testing trials per MI task type were 
performed in each testing run. The timing schedule of a trial in the 
testing run is shown in the Figure 7.

At the beginning of a trial, a green food randomly appeared 
on the left or right side of the screen to promote the subject to 
make preparation. After 2 s and a short beep, the subject 
concentrated on performing the assigned MI task for 4 s. During 
the phase of visual feedback and rest, the 4-s testing trial was 
processed as follows. First, the EEG testing trial was band-pass 
filtered between 0.1 and 30 Hz with an eighth order Butterworth 
filter, notch filtered between 48 and 52 Hz, and segmented 
between 0.5 and 2.5 s from 4-s data epoch. Then, this trial was 
aligned using all training trials’ Riemannian mean. Next, the 
aligned trial was converted into corresponding CSP feature vector 
using the spatial filters mentioned above. Finally, the feature 
vector was input to the LDA model and translated into a command 
that drove the blue snake to move left or right.

2.8 Questionnaire

In our study, we designed different questionnaires to strengthen 
subject’s involvement and feedback. Each subject should fill in 
questionnaires regarding individual pre/post-experimental status after 
completing all MI tasks. For the calibration process of the trial-
feedback session, the post-questionnaire was provided to the subject 
prior to the run evaluation. Except for the expected CA, the number 
of blinks, and the number of naps, most pre/post-experimental status 
were quantified with a Likert scale ranging from 1 to 5. Table 1 lists 
the questionnaire in detail.

3 Experimental results

In our study, we aimed to improve the MI training paradigm for 
subject’s self-modulation. In the proposed trial-feedback paradigm, 
we  only provided the on-line qualitative evaluation for each MI 
training trial, rather than the on-line quantitative evaluation. Thus, it 
was difficult to quantitatively measure the effect of self-modulation in 
real time. In the following, various metrics can reflect the result of 
self-modulation.

For the non-feedback and trial-feedback sessions, we  first 
evaluated each subject’ MI-BCI performance in the training process. 
Two metrics were used to assess the subject’s ability to distinguish the 
different MI task types: class distance (CD) and off-line classification 
accuracy (CA). The CD value was obtained in the feature extraction 
phase, whereas the CA value was calculated in the subsequent feature 
learning phase. Moreover, the first and last CSP spatial filters were 
utilized to show the subject’s ability to control the cerebral rhythm. 
Then, we testified the effectiveness of our proposed paradigm in the 
testing procedure using on-line classification accuracy (CA). Finally, 
a subjective report collected in the training and testing runs was 
shown to reveal the subject’s feelings on different sessions.

3.1 Training process evaluation

3.1.1 Class distance results
In Table 2, we present 10 subjects’ CD values in the calibration 

processes of different sessions to measure the distinctiveness between 
the left-hand and right-hand CSP features from six calibration runs. 
The superscript of CD represents certain session (non-feedback and 
trial-feedback are abbreviated as Non and Trial, respectively). And the 
subscript cal of CD means the calibration process. It was noted that 
the CDcal

Non  values were not given to the subjects and were calculated 
just for comparison. Ten subjects were further divided into the trained 
and untrained groups to compare the two groups’ performance across 
different paradigms. The bold-faced number shows the best result.

As shown in Table 2, the trained subjects performed better than 
the untrained subjects on average in the calibration processes of two 
sessions, indicating the usefulness of MI experience. In addition, the 
CD differences between the calibration processes of different sessions 
were not significant according to a paired samples T-Test (p = 0.7520). 
The average CD value over 10 subjects for the non-feedback paradigm 
was slightly higher than that for the trial-feedback paradigm. However, 
four out of five trained subjects obtained greater CD values for the 
trial-feedback paradigm than for the non-feedback paradigm, three 
out of five untrained subjects yielded better CD values for the 
non-feedback paradigm than for the trial-feedback paradigm.

In terms of the CD metric, the trial-feedback paradigm did not 
exhibit obvious advantage over the non-feedback paradigm. In our 
opinion, the CD metric can only reflect the overall CSP feature 
distribution, whereas the off-line CA value can further evaluate the 
differences between two classes of CSP features.

3.1.2 Off-line classification accuracy
The off-line CA was computed by adopting 10 × 10-fold cross 

validation on available training data from six calibration runs for 
each subject.
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The average off-line CA values of each subject, each group, and all 
subjects in the calibration processes of different sessions are shown in 
Figure 8.

Results showed that only subject S9 performed slightly better for the 
non-feedback paradigm than for the trial-feedback one. Subjects S3, S4, 
and S6 achieved the greater improvement via trial-feedback paradigm 
(increased by over 10%). It indicated that the trial-feedback paradigm 
was helpful for most subjects to distinguish different MI tasks. A paired 
T-Test showed that the average off-line CA values across 10 subjects 
were significantly different between two paradigms (p = 0.0068). 
Compared to the slight CD differences between different paradigms, the 
obvious off-line CA differences were more valuable since the two-class 
CSP features were further recognized by the classifier.

In addition, the improvement (trial-feedback vs. non-feedback) 
in the trained group was much better than that in the untrained group 
(11.11% vs. 6.42%). Moreover, the average off-line CA value of the 
trained group for the non-feedback paradigm was slightly higher than 
that of the untrained group for the trial-feedback paradigm, further 
suggesting the usefulness of MI-BCI experience. Nevertheless, the 
average off-line CA value of the trained group for the trial-feedback 
paradigm was not high enough. The possible explanation was the 
small-sized training set.

3.1.3 Visualization of spatial filters
The CD and off-line CA metrics can only show the subject’s ability 

to distinguish different MI tasks, whereas the visualization of CSP 
spatial filters can further reflect the subject’s ability to perform 
MI tasks.

Since the CSP spatial filters can improve the SNR of EEG data, 
they are useful in the neurophysiological understanding of ERD/ERS 
phenomenon (Ramoser et al., 2000). Among all spatial filters, the first 
and last filters are the most representative ones. In Figure  9, 10 
subjects’ first and last spatial filters extracted from the training trials 
of the two different paradigms are topographically mapped onto a 
scalp using the regularized CSP (RCSP) toolbox (Lotte and 
Guan, 2011).

As mentioned above, class 1 and class 2 correspond to the right-
hand and left-hand MI tasks, respectively. Therefore, the first filter 
displays the ERS phenomenon over the right hemisphere and the ERD 
feature over the left cortex. On the contrary, the last filter associates 
with the ERD/ERS phenomenon over the opposite sensorimotor areas.

As shown in Figure 9, for subjects S1, S2, S3, S6, S7, and S8, the 
first and last filters appear as messier in the non-feedback paradigm 
than in the trial-feedback paradigm. In general, the ERS phenomenon 
seems to be more obvious due to the brighter color. Results showed 
that, for subjects S1, S3, S7, and S8, the CSP filters obtained the 
apparent ERS characteristic in the trial-feedback paradigm, with large 
weights over the expected sensorimotor areas. However, the remaining 
subjects did not show clear ERD/ERS phenomenon in the 
two paradigms.

3.2 Testing process evaluation

In the testing procedure, a simple brain-controlled Belly-Worship 
snake game was designed to evaluate the effectiveness of different MI 
paradigms. To reduce the subject’s burden, only four testing runs of 
10 MI trials each were required to be executed. Two different models 

trained on the first three and six calibration runs were separately 
applied to the first two and last two testing runs. The on-line CA was 
acquired by counting the correctly identified testing data from each 
testing run. The on-line CA values of the four testing runs from the 
different sessions and their averages for each subject, each group, and 
all subjects are shown in Figure 10. A red dashed line represents the 
benchmark CA of 70%.

As depicted in Figure  10, in the first two testing runs, the 
benchmark CA has been reached or exceeded five and eight times for 
the non-feedback and trial-feedback sessions, respectively, while in 
the last two testing runs, the classification performance is equal to or 
greater than this threshold two and six times for the non-feedback and 
trial-feedback sessions, respectively. Unfortunately, about a quarter [(5 
+ 8 + 2 + 6 = 21)/(2 sessions × 4 runs × 10 subjects = 80) = 26.25%] of 
testing runs met BCI benchmark CA. As shown in the last subfigure, 
the average on-line CA value of the first two runs in the two sessions 
[(49% + 53% + 59% + 63%)/4 = 56%] is slightly lower than that of the 
last two testing runs in the two sessions [(46% + 56% + 66% + 60%)/4 
= 57%]. Furthermore, most subjects could not always keep good 
mental states. Only subjects S5 and S10 obtained growing on-line CA 
values in the four testing runs of the trial-feedback session.

Besides, in terms of different paradigms, only subjects S1 and S9 
obtained the better average CA values for the non-feedback session 
whereas the other subjects performed better for the trial-feedback 
session. On average, the trial-feedback paradigm showed its superiority 
in the testing process. In the trained group, the average on-line CA of 
the non-feedback session (54%) was lower than that of the trial-
feedback session (64.5%). In the untrained group, the non-feedback 
session had the average on-line CA (48%) merely around the chance 
level, while the trial-feedback session obtained a significant 
improvement of 24%. The CA differences between the 40 (4runs ×  
10subjects) testing runs from different sessions were obvious according 
to the paired samples T-Test (non-feedback vs. trial-feedback: p 
< 0.005).

The Pearson correlations between the average off-line CA and the 
average on-line CA for 10 subjects in the non-feedback and trial-
feedback sessions were (r = 0.7239, p = 0.0179, N = 10) and (r = 
0.3246, p = 0.3602, N = 10), respectively.

FIGURE 6

The example of CSP feature distribution.
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TABLE 2 Ten subjects’ CD values in the calibration processes of different sessions.

Trained Untrained All

S1 S2 S3 S4 S5 Mean S6 S7 S8 S9 S10 Mean Mean

CDNoncal
0.46 0.89 1.19 0.46 1.18 0.84 0.89 0.78 0.50 0.56 0.98 0.74 0.79

CDTrialcal
0.51 1.26 0.69 0.59 1.31 0.87 0.46 0.49 0.88 0.60 0.78 0.64 0.76

The bold values mean the better CD results.

3.3 Subjective report

Apart from those objective metrics, we also included a subjective 
report that reflected 10 subjects’ feelings on different processes of 
different sessions. In our study, we did not investigate the relationship 
between the individual pre-experimental status and the MI-BCI 
performance. Instead, we focused on individual replies to the post-
experimental status except for the number of blinks and the number 
of naps.

A questionnaire (Qn for short) value is the average of all post-
experimental status mentioned above. For example, subject S1’s 
Qncal

Non  is the average of Qn values of all calibration runs in the 
non-feedback session. To study subjective feelings, 10 subjects’ Qn 

values in the different processes of different sessions are shown in 
Table 3.

All post-experimental status related to the Qn value are based on 
a 1–5 Likert scale to indicate very good, good, so-so, bad, or very bad 
status. Obviously, the smaller Qn value reflects the better post-
experimental status.

As listed in Table 3, in terms of the average Qn value, a paired 
T-Test showed that there were not apparent differences between 
different processes of different sessions across 10 subjects ( Qncal

Non  vs. 
Qncal

Trial : p = 0.1540, Qntest
Non  vs. Qntest

Trial : p = 0.0894). However, the 
trial-feedback session took an advantage over the non-feedback 
session in the trained and untrained groups. Compared with the 
calibration and testing processes of the non-feedback session, subjects 

FIGURE 7

Timing schedule of a trial in the testing run.

TABLE 1 Questionnaire about individual pre/post-experimental status.

Occasion Question and its possible values

Before the first calibration run Sleep duration(h = hours): 1 (>8 h), 2 (7 ~ 8 h), 3 (6 ~ 7 h), 4 (5 ~ 6 h), 5 (<4 h)

Did you drink coffee? 1 (no), 5 (yes)

Did you drink alcohol? 1 (no), 5 (yes)

How do you feel now? 1 (very good), 2 (good), 3 (so-so), 4 (bad), 5 (very bad)

Healthy condition: 1 (very good), 2 (good), 3 (so-so), 4 (bad), 5 (very bad)

The expected CA: 0% ~ 100%

After each calibration run How do you feel now? 1 (very good), 2 (good), 3 (so-so), 4 (bad), 5 (very bad)

Attention state: 1 (very high), 2 (high), 3 (so-so), 4 (low), 5 (very low)

Is MI training easy? 1 (very easy), 2 (easy), 3 (so-so), 4 (hard), 5 (very hard)

Number of blinks: <=number of trials

After each testing run Attention state: 1 (very high), 2 (high), 3 (so-so), 4 (low), 5 (very low)

Is MI testing easy? 1 (very easy), 2 (easy), 3 (so-so), 4 (hard), 5 (very hard)

Number of naps: <=number of trials
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S1, S3, S6, and S9 obtained the lower Qn values in the corresponding 
processes of the trial-feedback session.

Interestingly, for different sessions, the average Qn values in the 
untrained group were always lower than those in the trained group. 
The untrained subjects S6, S7, and S9 expressed their good post-
experimental status (Qn < 3) in the different processes of different 
sessions. However, no trained subjects’ Qn values were less than 3. The 
possible explanation was that the untrained subjects felt more relaxed 
than the trained subjects. Overall, the average Qn values of the 
calibration runs were usually less than those of the testing runs, 
indicating that the subjects felt more nervous in real-time 
BCI application.

4 Discussion

4.1 Superiorities

In our study, we aimed at improving the MI training procedure to 
help the subject modulate the brain activity. To investigate whether the 
subject was executing MI tasks well, based on the literature from 
Hwang et al. (2009), the topographic map closely related to the ERD/
ERS phenomenon was selected as an important part of our prompt 
feedback. However, different from their study, in our trial-feedback 
paradigm, the optimal map was chosen from three maps with different 
temporal segments for real-time display depending on the number of 
correctly activated electrodes. Additionally, an objective evaluation of 
the current training trial was conducted based on the ERD/ERS 
phenomenon, which helped to understand the complex map. Bai et al. 
(2014) demonstrated the ERD/ERS characteristics of four electrodes 
on the four panels. However, we showed the ERD/ERS features of 
more electrodes through one topographic map, providing a simpler 
and richer perspective. Duan et al. (2021) provided an on-line data 

visualization, while we visualized and quantified a feature distribution 
after each calibration run of the trial-feedback session, facilitating the 
comparison between different calibration runs. Unlike Mladenović 
et al. (2022), our prompt feedback did not rely on the classification 
output, making it applicable from the beginning of calibration process. 
In contrast to Darvishi et al. (2017) and so on, our training protocol 
was easy to implement without using expensive external devices.

In our work, we  focused on comparing the trial-feedback 
paradigm with the non-feedback paradigm. Such comparison was 
meaningful since the non-feedback paradigm was similar to the 
commonly used traditional MI paradigm. Thus, we designed the trial-
feedback session and the non-feedback session. Each session included 
one EOG run, six calibration runs to use the paradigm, and four 
testing runs to evaluate the paradigm. Moreover, 10 subjects were 
divided into the trained and untrained groups to investigate the role 
of MI experience.

As mentioned above, the subjects could explore their own 
imagination movements. For the non-feedback paradigm, the subjects 
knew nothing about the quality of their MI training trials during and 
after the calibration run. And they reported that they rarely adjusted 
their MI behaviour during the training process due to lack of feedback. 
However, for the trial-feedback paradigm, the subjects knew whether 
their current trial conformed to the ERD/ERS phenomenon via the 
on-line topographic map and corresponding evaluation. So, they 
could remain or modulate their imagination movements after 
receiving a “good” hint or a “fight” hint. They could adjust their mental 
strategies by improving their concentration or the amplitudes of 
imagination movements. However, the subjects might feel frustrated 
by a “fight” hint. Thus, all subjects were encouraged to calmly face the 
“fight” evaluation. In the following, various objective and subjective 
metrics were used to assess the subject’s MI-BCI skills in the different 
processes of different sessions for investigating the role of feedback 
and the result of self-modulation.

FIGURE 8

Average off-line CA values of each subject, each group, and all subjects in the calibration processes of different sessions.
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To study the impact of different paradigms on the calibration 
process, we first analysed the CD metric, the off-line CA metric, and 
the CSP spatial filter visualization as follows.

The CD and off-line CA values were used to evaluate the subject’s 
MI-BCI ability to distinguish the different MI tasks during the 
calibration runs. The CSP feature distribution was quantified by 
calculating the CD value. In Table 2, six out of 10 subjects obtained 
better CD values in the trial-feedback paradigm than in the 
non-feedback paradigm, suggesting the usefulness of the prompt 
feedback and the run evaluation. However, the CD differences 
between the calibration processes of two sessions were not obvious. 
The possible reasons were the following. First, the subjects were always 
instructed how to imagine the movements of limbs rather than how 
to make the two-class MI trials far from each other. Secondly, the CSP 
feature distribution associated with the CD value was only given after 
the calibration run of the trial-feedback session, resulting in delayed 
self-modulation of the subjects. Additionally, in Figure 8, nine out of 
10 subjects achieved greater average off-line CA values in the trial-
feedback paradigm than in the non-feedback paradigm. Compared to 
the slight CD differences, the obvious off-line CA differences may 
be attributable to the effective classifier being able to recognize and 
amplify the differences between two categories of CSP features. 
Moreover, the trained group exhibited better average CD and off-line 
CA values in the trial-feedback paradigm than in the non-feedback 
paradigm. Nevertheless, on average, the untrained group achieved 
higher CD value and lower off-line CA value in the non-feedback 
paradigm than in the trial-feedback paradigm. We inferred that the 
artifacts from the training sets of the untrained subjects might increase 
the CD values and decrease the off-line CA values. Overall, the CD and 
off-line CA results showed that subjects could adjust themselves well 
in different MI tasks using the prompt feedback and the run evaluation.

The CSP spatial filter visualization was used to assess the subject’s 
MI-BCI ability to perform the assigned MI tasks. The CD and off-line 
CA metrics can only reflect the aggregating extent of each class and 
the discriminating extent of two classes, while the topographic maps 

of the first and last CSP spatial filters can present the neurophysiological 
evidence of the subject’s imagination movements. In Figure 9, three 
trained subjects (S1, S2, and S3) and three untrained subjects (S6, S7, 
and S8) obtained messier maps of filters in the non-feedback paradigm 
than in the trial-feedback paradigm, suggesting that some trained and 
untrained subjects cannot execute the MI tasks well without real-time 
feedback. Furthermore, two trained subjects (S1 and S3) and two 
untrained subjects (S7 and S8) exhibited the obvious ERS feature in 
the trial-feedback paradigm, indicating the prompt feedback was 
useful in improving the subject’s self-modulation. Interestingly, in 
Figure 8, for the trial-feedback paradigm, these four subjects (S1, S3, 
S7, and S8) obtained the higher off-line CA values in their trained or 
untrained group, demonstrating a positive relationship between the 
ability to perform the MI tasks and the ability to distinguish different 
tasks. However, owing to the subject’s BCI illiteracy behaviour, the 
other subjects did not acquire obvious ERD/ERS feature in the two 
paradigms. In terms of the CSP filter visualization, our trial-feedback 
paradigm did not show significant superiority over the non-feedback 
one. Nevertheless, the former was helpful for most subjects to improve 
the ERD/ERS phenomenon. Thus, the subjects could achieve positive 
self-modulation with the help of prompt feedback.

To our knowledge, many similar studies have only designed the 
calibration process (Abu-Rmileh et  al., 2019; Duan et  al., 2021; 
Mladenović et al., 2022). In our study, additional testing process was 
further utilized to investigate the effectiveness of training process. 
Next, we discussed the subjects’ performance in the testing runs of 
different sessions using the on-line CA values. Due to the use of the 
same signal processing algorithms, the performance differences were 
mainly correlated with the quality of the training and testing samples, 
as well as their similarities. We found that the testing process had a 
strong correlation with the training procession due to the positive 
Pearson correlations between the average on-line CA values and the 
average off-line CA values across 10 subjects. The on-line CA 
differences between the testing runs of different sessions were 
statistically significant. Eight out of 10 subjects achieved higher 

FIGURE 9

Ten subjects’ topographic maps of the first and last spatial filters under the two different paradigms.
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on-line CA values in the trial-feedback session than in the 
non-feedback session on average. Both the trained and untrained 
groups achieved great improvements in the trial-feedback session. It 
indicated that our improved training protocol could foster the 
subjects’ performance in real-time BCI application. However, the 
subjects could not always perform MI tasks well in the different 
testing runs of the two sessions. Subjects reported that the consecutive 
successful or unsuccessful MI tasks might promote or degenerate 
their subsequent experimental status. Thus, the subject’s unsteady 
mental state was the major reason for instable on-line CA values. 
Besides, EEG non-stationarity, muscular artifacts, environmental 
noises might cause inter-run variability. Additionally, after a short 
calibration process, some subjects can sometimes achieve the 
benchmark CA of 70% in the first two testing runs. We deduced that 
those testing samples might close to the training samples with the 
same class. Nevertheless, the subjects performed better in the last two 
testing runs than in the first two testing runs on average, indicating 

the necessity of more training trials. In our study, we  always 
mentioned that the subjects could modulate their brain activities 
during the calibration process of the trial-feedback session. In fact, 
under the prompt of classification output, the subjects could also 
adjust their neural rhythm during the testing processes of different 
sessions. However, the subject’s self-modulation in the testing process 
could not improve the robustness of the classifier. Therefore, it is of 
importance to enhance the quality of MI training trials through 
subject’s self-adjustment.

Then, we analyzed the subjective metric Qn which revealed each 
subject’s the post-experimental status after different processes of 
different sessions. Lower Qn value represented more positive 
experimental feeling of the subject. In Table 3, the trial-feedback 
session shows the lower Qn values than the non-feedback session on 
average from the calibration procedure to the testing procedure, 
indicating that subjects prefer our improved training protocol and 
subsequent testing results. However, the Qn differences between the 

FIGURE 10

The on-line CA values of the four testing runs from different sessions, and their averages for each subject, each group, and all subjects.

TABLE 3 Ten subjects’ Qn values in the calibration and testing processes of different sessions.

Trained Untrained All

S1 S2 S3 S4 S5 Mean S6 S7 S8 S9 S10 Mean Mean

QnNoncal
3.67 3.00 3.00 3.83 3.00 3.30 2.28 2.56 3.00 2.06 3.00 2.58 2.94

QnTrialcal
3.00 3.00 3.00 3.83 3.00 3.17 2.00 2.72 3.00 1.44 3.00 2.43 2.80

QnNontest
3.25 3.25 3.58 4.25 3.00 3.47 2.58 2.75 3.00 2.00 3.00 2.67 3.07

QnTrialtest
3.00 3.25 3.08 4.50 3.00 3.37 2.00 2.67 3.00 1.33 3.00 2.40 2.88

The bold values represent the better Qn values in the certain process of different sessions.
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calibration procedures of different sessions were not significantly 
obvious than those between the corresponding testing procedures 
according to the paired T-Test. The possible reasons were the 
following. First, during the training procedure, for the non-feedback 
paradigm, without any feedback, the subjects were unaware of the 
quality of their MI tasks, so most subjects had neutral attitudes, 
whereas for the trial-feedback paradigm, the subjects timely received 
a good or bad feedback on their current MI trials, resulting in their 
emotional fluctuations. Secondly, although the two sessions had the 
same testing paradigm and signal processing algorithms, the effective 
training in the trial-feedback session helped to increase the on-line 
CA values of corresponding testing process and thus promoted the 
positive feelings of the subjects. Four out of 10 subjects showed the 
lower Qn values in the calibration and testing processes of the trial-
feedback session than in the corresponding processes of the 
non-feedback session, further indicating a close correlation between 
the calibration and testing processes.

In summary, the experimental results showed that our trial-
feedback paradigm was superior to the non-feedback paradigm. With 
the help of prompt feedback and run evaluation, self-modulation was 
effective for most subjects. Moreover, the trained subjects can execute 
the assigned MI tasks better than the untrained subjects.

4.2 Limitations

In our experimental design, the following limitations will 
be improved in our follow-up work.

First, only 10 subjects were involved in our experiments, thus our 
study was still preliminary. More subjects will be  included in our 
experiments to ensure the generalizability of our training protocol. 
Although five subjects had MI experience, they were far from experts. 
Their training effects still had reference significance. Nonetheless, 
more non-experienced subjects will be involved to better evaluate the 
impact of our training protocol on improving the MI-BCI 
performance. Besides, only one female subject participated our 
experiments. It will be beneficial to recruit more females to balance 
the gender distribution and investigate gender-related differences in 
the MI-BCI results. In a word, to promote the MI-BCI system out of 
laboratory, more inexperienced subjects and female subjects will 
be recruited in the future to collect more opinions on the different 
paradigms, find the optimal imagination movements that match the 
ERD/ERS features, and analyze more general problems.

Secondly, our prompt feedback and run evaluation should 
be  improved. In our training protocol, the prompt feedback only 
evaluated the current training trial’s ERD/ERS feature but did not 
show whether the current trial was close to or far away from the 
existing trials with the same class. In contrast, Duan et al. (2021) 
presented a real-time EEG data distribution in Riemannian geometry 
but did not utilize the ERD/ERS feature of MI-BCI. Thus, the 
combination of on-line global feature distribution and real-time 
ERD/ERS visualization will be considered. In addition, some novices 
reflected that the topographic map was abstract, but the objective 
evaluation was clear. Furthermore, some experienced subjects 
suggested that we  should add quantitative evaluation to better 
understand current trial. Therefore, the topographic map closely 
related to the ERD/ERS feature may be quantified and replaced by a 

smiling face or a crying face with varying degrees in our future study. 
As for the run evaluation, although a global CSP feature distribution 
was shown on the two-dimensional screen after each calibration run, 
such distribution always looked messy due to BCI illiteracy and CSP 
features’ dimensionality reduction, thereby causing the negative 
experience for the subject. To make the distribution clearer, we will 
accumulate MI training trials after each calibration run and use 
existing MI training trials to generate the CSP feature distribution. In 
short, more research will be explored for informative, user-friendly 
real-time feedback and run evaluation.

Finally, our signal processing algorithms should be  also 
improved. In our study, the optimal topographic map was selected 
from three maps with different time intervals during the 
calibration runs of trial-feedback session. However, the time 
interval between 0.5 and 2.5 s was set by default during the 
corresponding testing runs. In future, the time interval with best 
ERD/ERS phenomenon will be automatically chosen in the testing 
procedure. Furthermore, since the subjects’ MI-BCI abilities might 
fluctuate throughout the session due to their unstable mental and 
fatigue status, the classifier should be regularly updated to guide 
the subjects in adjusting their experimental status. She et al. (2019) 
and Liu et al. (2020) pointed out that the semi-supervised machine 
learning algorithms can foster the subject learning capacities. 
Thus, in future, we will explore adaptive semi-supervised machine 
learning methods by simultaneously utilizing the valuable labeled 
and unlabeled samples.

5 Conclusion

It is well known that MI is a complex mental task owing to the 
lack of natural control. Therefore, we  design the trial-feedback 
paradigm to assist the subjects to better perform MI tasks using 
prompt feedback. In the trial-feedback paradigm, we  explore a 
topographic map and its objective evaluation to visualize and 
evaluate the subject’s MI-BCI skill in real time. Moreover, 
we visualize and quantify the CSP feature distribution to help the 
subject understand his/her ability to distinguish the different MI 
tasks. The non-feedback paradigm is introduced for comparison. To 
observe the subject’s MI-BCI performance, we  include the 
calibration and testing runs in different sessions. Experimental 
results demonstrated that our trial-feedback paradigm can help 
subjects modulate their brain rhythm for better ERD/ERS features 
and higher classification performance.
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