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Brain-computer interfaces (BCI) enable users to control devices through
their brain activity. Motor imagery (MI), the neural activity resulting from an
individual imagining performing a movement, is a common control paradigm.
This study introduces a user-centric evaluation protocol for assessing the
performance and user experience of an MI-based BCI control system utilizing
augmented reality. Augmented reality is employed to enhance user interaction
by displaying environment-aware actions, and guiding users on the necessary
imagined movements for specific device commands. One of the major gaps
in existing research is the lack of comprehensive evaluation methodologies,
particularly in real-world conditions. To address this gap, our protocol combines
quantitative and qualitative assessments across three phases. In the initial
phase, the BCI prototype’s technical robustness is validated. Subsequently, the
second phase involves a performance assessment of the control system. The
third phase introduces a comparative analysis between the prototype and an
alternative approach, incorporating detailed user experience evaluations through
questionnaires and comparisons with non-BCI control methods. Participants
engage in various tasks, such as object sorting, picking and placing, and playing a
board game using the BCI control system. The evaluation procedure is designed
for versatility, intending applicability beyond the specific use case presented. Its
adaptability enables easy customization to meet the specific user requirements
of the investigated BCI control application. This user-centric evaluation protocol
o�ers a comprehensive framework for iterative improvements to the BCI
prototype, ensuring technical validation, performance assessment, and user
experience evaluation in a systematic and user-focused manner.
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1 Introduction

Brain-computer interfaces (BCI) allow users to operate a
device with their brain activity. This enables intuitive control for
applications where classical control modalities such as mouse and
keyboard are impractical due to either the environment or the
user. For example, BCI can be used to enable individuals who
would otherwise not be able to interact with their environment,
such as patients suffering from locked-in syndrome, to operate
assistive devices (Saeedi et al., 2017; Kuhner et al., 2019). These
types of applications aim to improve the autonomy of the user
and subsequently improve their quality of life by making them less
dependent on caregivers for daily activities that require reaching,
grasping, and placing objects in the environment. One such
application involves physically assistive robots that assist paralyzed
individuals in performing daily tasks such as eating, drinking, and
interacting with objects in their environment (Selvaggio et al.,
2021). To optimally assist users, BCI control systems should
provide a good user experience by minimizing the required mental
effort and avoiding frustration with a reliable and user-friendly user
interface (UI).

BCI control is achieved by measuring brain activity and
decoding the user’s intent from the acquired brain signals.
Decoding the user’s intent from brain signals is typically
accomplished by using machine learning (ML) methods that are
trained on data of users performing a specific task while their neural
activity is measured (Lebedev and Nicolelis, 2017). During real-
time decoding, the ML model’s output is subsequently translated
into a command or action for the specific device or software
targeted by the BCI system, such as a physically assistive robot.
Figure 1 shows an overview of the typical pipeline for BCI control
of robotic devices.

One of the most commonly used recording methods for
BCI is the electroencephalogram (EEG), which non-invasively
measures the electrical activity at the surface of the scalp. EEG
is a favored choice for BCI due to its portability, relative
affordability, and high temporal resolution compared to alternative
non-invasive brain measures such as functional near-infrared
spectroscopy or magnetoencephalography (Gu et al., 2021). There
are multiple paradigms of the EEG signal that can be used
for BCI control (Abiri et al., 2019). One common paradigm is
motor imagery (MI), the mental activity that occurs when a
person imagines performing a movement without executing it
(Singh et al., 2021). Conventionally, MI is defined as “the mental
simulation of an action without the corresponding motor output”
(Decety, 1996).

There are three discernible approaches to simulating a
movement to generate MI. The first approach involves imagining
the sensation of performing the movement, termed kinesthetic MI
(Cumming and Ste-Marie, 2001). Alternatively, the movement can
be simulated by visualizing it either from one’s own perspective
(internal visual MI) or by picturing someone else executing the
movement (external visual MI) (Cumming and Ste-Marie, 2001).
The main advantage of usingMI is that it is a spontaneous modality
that can be initiated by the user at any time. By associating different
actions with specific imagined movements, a BCI control system
can be devised. While MI has the advantage of being a spontaneous

paradigm, usingMI for BCI control applications comes with several
challenges (Singh et al., 2021).

One important challenge is that EEG is a noisy signal that
is sensitive to movement-induced artifacts (Gorjan et al., 2022).
Additionally, EEG is a non-stationary signal with a large inter- and
intra-individual variability (Saha and Baumert, 2020). Therefore, to
be able to decode EEG reliably, decoding pipelines usually need to
be customized to the current user by acquiring sufficient calibration
data and identifying the settings of the decoding pipeline, such as
which sensor locations to use or which frequencies to filter out of
the EEG signal, that are optimal for a specific individual (Dillen
et al., 2023). Furthermore, MI consists of consciously generating
neural activity that usually occurs unconsciously while performing
amovement. Consequently, the users themselves typically also need
training to learn to consistently generate the correct signals to
enable reliable decoding (Roc et al., 2021). Thus, an approach is
necessary for mutual training of the user and the ML models, but
this is a lengthy process that necessitates several training sessions
(Hehenberger et al., 2021). These limitations restrict the number of
movements that can be used for MI-based BCI control systems and
raise the barrier of entry for new users, resulting in a suboptimal
user experience.

Each step of the BCI pipeline offers multiple opportunities
to improve MI-based control. Sophisticated EEG pre-processing
methods can be employed to ensure that the signal contains as few
artifacts as possible (Saba-Sadiya et al., 2021; Gorjan et al., 2022).
Some research attempts to increase the number of commands by
using advanced MLmethods such as deep learning that can classify
multiple imagined movements (Al-Saegh et al., 2021). Others aim
to reduce the amount of data that is necessary to train user-
specific decoding models, which is especially challenging for data-
hungry deep learning models, by using transfer learning (Wan
et al., 2021). However, these methods are usually computationally
complex, introducing additional processing and increased power
consumption which are not practical for real-time applications,
especially if the decoding should take place on embedded hardware,
which is preferable for real-world applications (Belwafi et al., 2017).

A strategy that shows particular promise without relying on
complex and potentially computationally expensive methods is
shared control (Philips et al., 2007; Tonin et al., 2010). By using
shared control, the high-level control system can be simplified
while still retaining the ability to operate in complex environments.
A shared control system can propose actions based on the current
state of the device that is being controlled and the environment,
which can be deduced from sensors such as depth cameras (Xu
et al., 2019). The number of actions, and therefore the number
of MI classes that need to be decoded, can be restricted in this
way. Combining this with systems that can also deduce the user’s
current object of focus, for example with eye tracking, can even
further restrict the number of action choices by only proposing
actions related to the object that the user is currently focusing on
(Xu et al., 2022). Moreover, this approach can be complemented
with advanced methods for pre-processing and decoding to yield a
robust and user-friendly BCI control system (Choi et al., 2023).

However, current research is often limited in its evaluation
procedures. Most studies are limited to offline validation of the
classification accuracy of their decoding method or a technical
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FIGURE 1

The BCI decoding pipeline for high-level robot control based on the classification of neural activity.

evaluation that shows that the developed control system works
as intended (Rashid et al., 2020). Few studies that propose a
new BCI control system evaluate their prototype outside of the
lab or assess the user experience of their approach. Those that
do are often not representative of real-world conditions (Dillen
et al., 2022). Usability, determined by the efficiency, effectiveness,
and user experience of the control system, is seldom evaluated
(Ortega-Gijon and Mezura-Godoy, 2019). This leads to limited
applicability in real-world conditions and a lack of knowledge of
the user requirements for such a system. Taking a user-centered
approach should be a central part of the evaluation to guarantee
that the control system fulfills the user’s needs and provides optimal
usability (Kübler et al., 2014; Garro and McKinney, 2020).

Moreover, no standard evaluation procedures exist for
comparing the performance and user experience of different
control system designs, nor for assessing the added value of BCI
compared to non-BCI alternatives. For instance, eye tracking can
be used to operate an assistive robotic arm (Cio et al., 2019). With
this method, users select commands by focusing their gaze on a
menu item in a graphical UI or an object in the environment for
a specified duration, prompting the assistive robot to take action.
However, eye tracking has drawbacks, such as causing eye strain
and requiring constant use of glasses, which can potentially cause
eye strain and render the control system unusable if the user has
an eye infection. Additionally, in tasks requiring the operator to
maintain a fixed gaze, such as assembly tasks, eye tracking is at a
disadvantage because the user must look away to select an action.
Quantitative measures are essential to determine whether BCI
offers similar or better usability when compared with eye tracking
or if the evaluated prototype shows improvements over previous
designs.

The primary research question of this study is whether
using BCI enhances the usability of a shared control system
that integrates augmented reality (AR) and eye tracking. The
main goal of this user evaluation is to measure the control
system’s performance and user experience, with a secondary aim
of identifying potential design improvements to further enhance
usability. Due to the lack of comparable studies, no target metrics
exist to gauge improvement over the current state-of-the-art in
usability. Therefore, we initially use eye tracking to establish a

usability benchmark that our BCI control system aims to surpass.
Quantitative measures that can be used to compare usability
outcomes meaningfully are suggested to ensure standardized
results that can be compared with future studies that use this
protocol. The presented protocol will be used in upcoming
user studies to evaluate a previously developed BCI prototype.
This evaluation procedure is intended to help BCI researchers
focus on prototype design and gain new insights from these
evaluations, ultimately speeding up progress toward practical real-
world applications.

2 Methods and analysis

2.1 Research design

The study consists of three distinct phases with an initial
technical validation of the prototype (Phase 1), followed by two
user studies with healthy individuals that aim to assess the user
experience of our proposed BCI control system (Phase 2 and Phase
3). The user studies are designed according to the principles of
empirical evaluation in the field of human-computer interaction
(MacKenzie, 2012). New participants are recruited for each phase
and the goals of each phase are distinct.

The participants in this study are able-bodied participants who
have no prior experience using a BCI control system. Detailed
inclusion and exclusion criteria for participants and a priori sample
size analyses for each phase are described in Section 2.2. There is no
blinding of either participants or research staff, and all participants
perform all tests. The order of the tasks is randomized within each
session to ensure that the influence of previous experience and
fatigue resulting from previous tasks does not affect the overall
results. Regular breaks between tasks are included in the procedure
to ensure that participants stay motivated and to minimize the
effects of fatigue on their task performance.

A detailed schedule with timing estimates for each session in the
different phases, based on durations observed in pilot experiments,
is provided in Section 2.3.4. Details on the hardware and software
used are discussed in Section 2.3.1. Table 1 provides an overview
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TABLE 1 Description of the di�erent phases of the study.

Phase Phase 1: validation Phase 2: pilot user study Phase 3: full user study

Goal Validate the first prototype and
ensure that it works as
intended

Test evaluation protocol and iterate
design of control system

Evaluate the user experience of the control system

Environment Fully simulated with AR Initially simulated with AR and using
the real robot for the last session

Real interactions with the physical robot and objects

Sample size 3 5 20

Sessions • Familiarization and
calibration (2–3 h)

• First test with simple
pick-and-place task (2 h)

• Familiarization, calibration and
pre-study questionnaires (2–3 h)

• Activities of daily living tasks followed
by system customization (2 h)

• Activities of daily living tasks followed
by user experience questionnaire (2 h)

• Familiarization, calibration, and pre-study
questionnaires (2–3 h)

• Activities of daily living tasks and user training (2 h)
• Activities of daily living tasks followed by user
experience questionnaire (2 h 30 min - 3 h)

Main outcome Working BCI control
prototype

Final evaluation procedure and
improved control system

Final proof-of-concept user experience assessment

of the different phases, their goal, the evaluation environment, the
sessions that each participant completes, and their main outcome.

Phase 1 is the validation phase as its main goal is to validate
that the current BCI control system prototype works as intended.
This phase is restricted in the number of participants and only
part of the procedure is performed. User experience and system
performance outcomes are subsequently used to improve the
control system for the next phase. For Phase 2, the full procedure is
executed to assess the initial user experience and identify potential
further improvements in both the control system and evaluation
environments. Finally, Phase 3 consists of a full-scale user study
with a real robot being used in a real environment. In this phase,
more tasks are performed and the BCI control system is compared
with an eye-tracking-based control system.

2.2 Participants

The participants of this study are all able-bodied individuals
who are recruited for the specific purpose of this study. They have
no prior experience with an MI-based BCI control system as we
want to assess the experience of first-time users. Recruitment is
achieved using posters, flyers, and social media posts that call for
participants. The recruitment period for the first phase started on
the 4th of December 2023 and ends whenever the necessary number
of participants is attained. If participants drop out, a replacement
will be recruited as necessary. The inclusion and exclusion criteria
for prospective participants are shown in Table 2.

New participants are recruited for each phase to evaluate
the experience of users who are not yet familiar with BCI and
enhance the control system between phases. Each phase uses a
more comprehensive procedure than the previous one, allowing
for a global analysis of all participants using metrics common
across phases. In Phase 1, a sample size of 3 is used for initial
technical validation to ensure the system functions as intended.
This small sample size is sufficient for verifying the feasibility of
the control system, ensuring that successful task completion is not
due to random chance. Phase 2 involves five participants, enabling
validation of the procedure and further technical validation of the
system. Since statistical comparison of outcomes is not required

TABLE 2 Participant inclusion and exclusion criteria.

Inclusion Exclusion

Injury before the start of the
experiment

Able-bodied participants Illness within a week before the start
of the experiment

Aged between 18 and 60 years Serious mental and physical
disabilities

All sexes will be included The participant does not understand
Dutch, French, or English

Previous experience with BCI control
systems

at this stage, five participants provide a good balance between
assessment thoroughness and time efficiency. The chosen sample
sizes were determined based on best practices in literature (Kübler
et al., 2014; Dillen et al., 2022; Xu et al., 2022).

Determining the optimal sample size for Phase 3 is challenging
without prior knowledge of the standard deviations of quantitative
measures. However, we can estimate it based on established
usability engineering guidelines (Nielsen, 1994; Sauro and Lewis,
2016). Consequently, a sample size of 20 in Phase 3 is chosen to
balance medium risk and fair precision, resulting in a 20% margin
of error at a 90% confidence level. For metrics common to both
Phases 2 and 3, combining data from both phases results in a total
sample size of 25.

2.3 Experimental procedure

2.3.1 Hardware and software
The hardware and software requirements for this study were

previously determined during the design phase of the protocol. The
following hardware recommendations are provided as guidelines,
and any equipment with equivalent capabilitiesmay be utilized. The
software described has been previously implemented and tested. It
may be refined if new requirements are identified during the initial
piloting stages (Phases 1 and 2) of the study.
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The control system under investigation combines AR and eye
tracking withMI BCI. Using spatial awareness and object detection,
the developed control system can propose context-aware actions to
the user when they look at an object to provide a shared control
strategy that enables complex actions while minimizing the number
ofMI classes that need to be decoded. Possible actions are displayed
as holographic menus floating around the object, indicating which
movement the participant should imagine to trigger the action.
AR is also used to show virtual objects and display a simulated
robot arm that is overlayed on top of real-world environments to
enable a simplification of the required software components and
faster iteration of prototypes. Two variants of the control system
are available. The BCI variant uses eye tracking for selecting an
object to interact with and BCI to select an action based on the
currently selected object. Alternatively, the eye tracking variant uses
eye tracking to select the action to perform in addition to the object
to interact with.

Hence, an AR head-mounted display that supports these
features is required. For this study, HoloLens 2 is used as
holographic overlays are less intrusive, and the software
development tools for HoloLens are the most mature among
existing AR displays. The Unity 3D development platform (https://
unity.com/) is used to develop the AR environment necessary for
the experiments. Unity was chosen for its intuitive interface and
extensive toolset for AR development. To facilitate the integration
of AR-related components the Microsoft Mixed Reality Toolkit
(https://learn.microsoft.com/en-us/windows/mixed-reality/mrtk-
unity/mrtk2/?view=mrtkunity-2022-05) is used.

The implemented environment simulates the robot and handles
the logic related to the evaluation tasks. It also handles displaying
the UI on top of the real world. Using a simulated environment
facilitates keeping track of the state and position of the robot
and interactive objects. Figure 2 shows examples of the UI during
an evaluation task for the BCI and eye tracking control system
variants, respectively.

Two devices are used for EEG acquisition in this study. To
simulate commercial application scenarios and provide affordable
options for individuals, we consider using an EEG device like the
OpenBCI system (https://openbci.com/; OpenBCI, USA) with a
passive gel-based EEG cap. The OpenBCI system offers a sampling
rate of 250 Hz for 16 EEG channels and features open-source
hardware and software, facilitating the integration of custom
components with the control system. This device is utilized in Phase
1 to demonstrate the feasibility of using a consumer-grade device
for BCI control, which is more representative of the type of device
that would be used in real-world conditions.

To ensure high-quality EEG data suitable for further analysis,
the Smarting ProX device from mBrainTrain (mbt, Serbia) is used.
This device employs active wet electrodes and provides 64 channels
with a sampling rate of up to 4,000 Hz. The Smarting ProX device is
chosen for Phases 2 and 3 to ensure that the recorded EEG data can
be thoroughly analyzed in subsequent investigations, focusing on
MI patterns, fatigue-related markers, and visual processing evoked
potentials.

The robot arm that is used in this protocol should be a
collaborative robot that has built-in security measures to avoid
potentially dangerous actions when a human is nearby. For
this study, the Research series of robotic arms developed by

Franka Robotics (https://www.franka.de/) is chosen. This robot is
preferred due to its good safety rating, robust performance, and
high versatility. The robot is operated with the robot operating
system (ROS; https://www.ros.org/) by using pre-programmed
scripts related to the evaluation task. Robot simulation is handled
by a custom environment in Unity using the official URDF
model published by the Emika company (https://github.com/
frankaemika/). This allows for a direct translation of simulation to
real-world robot control as the controller interface is the same for
both the simulated and real robots.

To implement the software that handles training, testing, and
loading the necessary ML models and other decoding pipeline
components, the Python programming language (Van Rossum
and Drake, 2009) is used. Python is preferred due to its free
and open-source availability and widespread use in both ML and
robotics programming. It has a wide variety of software libraries
that facilitate the development of software that is necessary for this
study. EEG processing is handled by the MNE library (Gramfort
et al., 2013) and ML components are based on the Scikit-learn
library (Pedregosa et al., 2011). Both libraries are chosen for their
status as defacto options for their respective purposes. The real-
time decoding and communication with other components is also
implemented in Python using ZeroMQ (Akgul, 2013) for sharing
messages between the system components. ZeroMQ is ideally
suited for this purpose because it is lightweight, does not require
external software, and provides a wide variety of clients in different
programming languages, such as C#, the programming language
that is used for scripting in Unity.

2.3.2 Questionnaires
At the beginning of each session, participants complete

questionnaires aimed at capturing potential confounding factors.
During their initial visit, they fill out a questionnaire specifically
designed to evaluate physiological factors that could influence MI
activity. This questionnaire seeks information on the participant’s
age, sex, weight (in kilograms), height (in meters), and handedness.

To assess the aptitude of a participant at generating MI, the
Motor Imagery Questionnaire version 3 (Malouin et al., 2007,
MIQ-3) is used. For this questionnaire, participants perform a
predefined set of MI tasks and rate how difficult they perceive
performing MI to be for the given task. Participants complete this
questionnaire at the beginning of their first session in all phases.
Upon completing this questionnaire, the participant is also asked
whether they prefer kinesthetic, internal visual, or external visual
MI. Subjective mental fatigue is assessed with a visual analog scale
(M-VAS) and physical fatigue is also assessed with a VAS (P-VAS).
The participant is asked to indicate their fatigue levels on the scale
at the beginning of each session and the end of the session to
assess howmuch fatigue was induced using our control system. The
indicated measure is then converted to a discrete scale from 0 to
100, enabling the quantitative comparison of the perceived level of
fatigue induced by using our control system. Subjective fatigue was
chosen as an outcome measure due to its potential impact on user
experience.

During Phase 3, participants also indicate their fatigue levels
between tasks involving the different system variants. Starting from
Phase 2, the participants also fill in the Profile of Mood state
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FIGURE 2

Example of the UI for when using the (A) BCI or (B) eye tracking control system variant.

(McNair et al., 1971, POMS) questionnaire at the beginning of
each session to evaluate their current mood state. The POMS
questionnaire consists of a list of 32 mood states where the
participant has to indicate whether they currently experience the
mood. The scale for the questionnaire for each mood state ranges
from 0 to 4. This questionnaire was selected for its ability to
quickly assess the current mood of the participant, which could
be a confounding factor for MI decoding performance and thus
influence the user experience.

At the end of each session, user experience is evaluated
using the user experience questionnaire plus (Meiners et al.,
2023, UEQ+), which is a modular extension of the well-
established UEQ questionnaire (Laugwitz et al., 2008). This
questionnaire provides quantitative outcomes for the subjective
user experience component of usability, complementing
the objective metrics that are presented in Section 2.4.
Additionally, a semi-structured interview allows participants
to give additional feedback. The questions that are used in
this interview can be found as Supplementary material to this
article. To ensure accurate transcripts of the user’s responses,
this interview is recorded with an audio recording device. If
participant responses reveal major flaws in the design of the
BCI control system or identify additional requirements, this
feedback can be used to improve the control system between
phases.

To enable comparison of the control system variants with and
without BCI control, participants fill in the UEQ+ questionnaire
for both variants separately. For more in-depth insights into the
perceived differences in user experience between system variants,
the interview will also include additional questions explicitly
relating to the differences between the systems and the participant’s
preferences. Participants will also get the opportunity to suggest
improvements at this stage.

2.3.3 Tasks
At the start of each session, EEG data of users imagining the

movements are acquired to train the ML models that decode user

intention. Henceforth, these data will be denoted as calibration
data. Three types of tasks are requested from the user to gather
calibration data.

Baseline: During a baseline run, the participant performs
naturally occurringmovements such as turning their head, blinking
their eyes, and looking in different directions. The requested
actions also include imagining the movements that will be used
in the subsequent tasks. Possible movements include flexing the
left hand or the right hand, pushing the tongue against the
front teeth, and curling the toes of both feet. A randomized
sequence consisting of each action repeated multiple times is
requested. Each trial of a baseline run follows the procedure shown
in Figure 3.

A run consists of five repetitions (called trials) of each baseline
action. Each trial within a run starts by showing the participant a
fixation cross, which they must fixate with their gaze while avoiding
blinking and head- or eyemovement. After 3 s, a textual cue appears
at the center of the fixations cross instructing the participant which
action they should perform. After 1.5 s, the fixation cross turns
green, indicating that the participant should perform and maintain
the requested action. A stop cue is given after 2.5 s by having the
fixation cross turn red, indicating that the participant can stop their
action. Finally, a break of randomized duration between 3 and 4 s
precedes the next trial.

Movement execution: For this task, the participant is asked
to execute movements while their signals are being decoded. The
requested movement is communicated by an audiovisual cue. One
run of this task consists of several cues with breaks in between,
which are presented in randomized order. After the stop cue,
feedback is given on whether the decoded movement matches
the requested one. Feedback is communicated audiovisually in
the form of text stating “match” or “mismatch” and a sound
cue that indicates if the decoded movement matches the cue.
At the end of each run, a score is shown with text stating
the percentage of successfully decoded movements. Feedback is
provided by an EEG decoding model that is trained with EEG
data from the baseline run without feedback. Figure 4 shows the
procedure for a single trial within a run and an example of
textual feedback.
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FIGURE 3

Timing of events for a single trial of a baseline EEG acquisition run.

FIGURE 4

Timing of events for a single trial of an EEG acquisition run with textual feedback.

Identically to the baseline acquisition, the trial starts with a
fixation cross. After 2 s, a cue is shown next to the cross for 2
s. When the fixation cross disappears, the participant holds the
movement for 3 s. When the stop cue is displayed, the preceding
4 s of EEG data are sent to the decoding pipeline. A duration of 4 s
was chosen for the decoding window to include motor preparation
that occurs during the 1 s before the start cue is given. When
the decoding result is ready, the participant receives feedback on
whether the decoded movement matches the requested one. This
step does not have a fixed time as we do not know exactly how long
it takes to decode the movement. This depends on the hardware
that is used for decoding and if any other software is running during
the run. In the implementation that is used for our experiments,
an upper limit of 3 s is set for decoding, as this is twice the
longest decoding time encountered during the development of our
decoding pipeline. Finally, a break of randomized duration between
3 and 4 s is given, followed by the next trial.

Motor imagery: For the MI task, the participant must imagine
the requested movement instead of performing it. They also
receive feedback on the correspondence between the decoded
movement and the requested one, similar to the feedback provided

for the executed movement task. The timings and procedure
are the same as those used for movement execution runs
(see Figure 4).

After completing the calibration tasks, the participant uses
the system to complete tasks that are intended to assess the
user experience and effectiveness of the proposed control system.
To assess the added value of BCI, participants use one of the
two variants of the control system to complete these tasks. The
following tasks are performed to illustrate activities of daily living
(Edemekong et al., 2024). The first two tasks are selected for their
relevance in daily activities while the third task serves to motivate
the participant through gamification.

Object sorting: This task is a simplified representation of daily
tasks where objects need to be sorted, such as sorting laundry
or garbage. The task was chosen due to its simplicity while still
reflecting activities that paralyzed persons can not perform without
assistance (Wilson et al., 2018). The participant is seated in front of
a table with a robot arm attached to it and different colored baskets
to their left, right, and front. At a fixed position in front of them,
a cube of a specific color appears. Before the run, the participant
is instructed to put the cube in the basket that matches the color
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of the cube. This is repeated 20 times with the cube color being
randomized for each repetition.

Drinking from a glass:Drinking is one of the more challenging
daily activities that require close collaboration between the human
and the assistive robot (Edemekong et al., 2024). It mandates
precise control of the robot and adds the challenge of avoiding
spilling the liquid from the glass. For this task, the user sits at a table
with a robot arm, several bottles containing different liquids, and
several empty glasses with different shapes in front of them. They
are instructed to complete several different scenarios that require
them to fill specific glasses with specific liquids by following a fixed
set of steps. For example, they need to use the control system to fill
one of the glasses with orange juice and tell the robot to bring it to
them so they can drink from it until it is empty and then tell the
robot to put it in the dishwasher. The participant must complete a
scenario 20 times, with the choice of the scenario being randomized
at each repetition.

Playing a board game: Games allow paralyzed persons to
entertain themselves while keeping their minds active. It is also
more pleasurable for participants of the experiment and adds an
element of competitiveness that could motivate participants to try
their best at using the control system (Rapp et al., 2019). In this
scenario, users are seated in front of a table and play a board game,
such as chess for example. Starting from an initial game state, they
can choose their moves and must reach a predefined end state. At
the end of the session, they will also receive the opportunity to play
a full game against an AI opponent.

2.3.4 Session overview
The procedure for Phase 1 consists of a validation experiment

that follows the timeline presented in Figure 5. Timing estimates
are provided for each step. Breaks are not shown on the timeline
but are implicitly included in each task. Note that questionnaires
at the beginning of the sessions and the equipment setup can be
completed in parallel.

Phases 2 and 3 consist of a full-scale user study that is more
comprehensive than in Phase 1. The goal of this user study is to
assess the user experience of the final control system prototype.
The glass drinking and game tasks are introduced in addition to
object sorting and participants now have to attend three sessions.
Participants also use the alternative control system that uses eye-
tracking only. The session structure is the same for both phases.
Note that the order of the activities of daily living tasks with and
without BCI in session 3 is interchangeable to avoid biasing the
participant’s judgment based on their previous experience with the
other control system variant. The timings are shown in Figure 6.

2.4 Outcomes

The primary outcomes of this study are the objective system
performance and subjective user experience. The metrics provided
are designed to facilitate quantitative comparisons between BCI
system prototypes and are commonly employed in user studies
(Ortega-Gijon and Mezura-Godoy, 2019; Dillen et al., 2022) and
ML benchmarks (Powers, 2008). Qualitative outcomes are intended

to complement these metrics and guide future developments by
identifying additional requirements.

Objective measures for the effectiveness of the system include
the error rate when classifying movements (or inversely classifier
accuracy) and the success rate of completing a task. Some tasks
require the participant to complete the task within a limited amount
of time and consider the task failed when this time runs out. For
these tasks, the success rate is computed as

success− rate =
nc

nr

where nc is the number of completed runs and nr is the total
number of runs performed. The classifier accuracy is represented
by measures such as balanced decoding accuracy, Cohen’s Kappa,
and F1 score. The formula used for computing balanced accuracy
is

balanced − accuracy =
1

2
(

TP

TP + FN
+

TN

TN + FP
)

where TP is the number of true positives, FN is the number of false
negatives, TN is the number of true negatives and FP is the number
of false positives. Cohen’s Kappa measures the agreement between
two raters where one is a random classifier, i.e., 0.50 for a binary
classifier, and our decoding pipeline (McHugh, 2012). The metric
can be computed with the following formula

κ =
2× (TP × TN − FN × FP)

(TP + FP)× (FP + TN)+ (TP + FN)× (FN + TN)

where TP is the number of true positives, FN is the number of
false negatives, TN is the number of true negatives and FP is the
number of false positives. The F1 score is the harmonic mean of the
precision and recall (Powers, 2008) computed as

F1 =
2× TP

2× TP + FP + FN

where TP is the number of true positives, FN is the number of
false negatives, and FP is the number of false positives. To measure
efficiency, the task completion time and information transfer rate
are used. The information transfer rate represents how fast users
can achieve a specific goal based on the number of MI classes, the
decoding time, and decoding accuracy. The definition and formula
for this measure are presented in Sadeghi and Maleki (2019).

The main subjective measure of user experience is the UEQ+
questionnaire score. By aggregating these responses average scores
for each aspect that is evaluated by the UEQ+ questionnaire can
be obtained. Using the UEQ+ results from both control system
variants enables the comparison of the overall difference in user
experience by looking at the aggregated score. To investigate
differences in specific areas of user experience, such as efficiency
or dependability, specific scores of questionnaire items related to
these aspects can be compared between the eye tracking and BCI
system variants. Additionally, the responses from participants for
the semi-structured interview provide further qualitative insights
into the participant’s perception of the control system.

Frontiers inHumanNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1448584
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Dillen et al. 10.3389/fnhum.2024.1448584

A

B

FIGURE 5

Phase 1 timelines for (A) session 1 and (B) session 2.

The secondary outcome measures of this study relate to
confounding factors that might influence the usage of the proposed
control system. The outcome of the MIQ-3 questionnaire provides
insights into the aptitude for MI of the participant by giving a score
for MI proficiency that is calculated from the perceived difficulty
values for each task. The POMS questionnaire outcomes will allow
us to investigate whether the user’s mood state will influence system
performance and overall user experience by identifying correlations
between mood states and BCI system performance. Additionally,
physiological factors could show a large influence on the system
performance or user experience outcomes. A strong influence
of these factors suggests that further investigating the effects of
strongly confounding factors could be worthwhile.

Finally, the recorded EEG data can be used for further
investigation of the effects of using our control system on neural
activity. Changes in EEG signals over sessions such as increased
signal amplitude or stronger event-related synchronization or
desynchronization could indicate training effects for MI aptitude.
Alternatively, changes in EEG data during system usage can be
associated with fatigue or a decrease in focus.

2.5 Data management

The EEG data are recorded as lab streaming layer (LSL
Contributors, 2023) data streams using the LabRecorder
application. The data are stored as Extensible Data Format
files and organized using the Brain Imaging Data Structure format

for the folder structure and file names (Gorgolewski et al., 2016).
The recordings are stored on an access-controlled network attached
storage which is only accessible to members of the research group.
Only researchers who are directly involved in the project can view
the dataset.

Questionnaire responses and outcome data are collected and
managed using REDCap electronic data capture tools hosted at UZ
Brussel (Harris et al., 2009, 2019). REDCap (Research Electronic
Data Capture) is a secure, web-based software platform designed
to support data capture for research studies, providing (1) an
intuitive interface for validated data capture; (2) audit trails for
tracking data manipulation and export procedures; (3) automated
export procedures for seamless data downloads to common
statistical packages; and (4) procedures for data integration and
interoperability with external sources.

Personal information is processed according to the General
Data Protection Regulation of the European Union. Any
information linking the study outcomes to an individual is stored
in an encrypted format and only accessible to researchers who are
approved by the ethical committee. The data retention period for
this dataset is 25 years. The anonymized data are available upon
reasonable request.

2.6 Data analysis

To guarantee the adequacy of the obtained EEG data, an
examination of visually evoked potentials (VEPs) is conducted
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C

FIGURE 6

Phase 2 and 3 timelines for (A) session 1, (B) session 2, and (C) session 3.

when various cues are presented. The selection of VEP is based
on its well-known characteristics and distinct patterns in the EEG
signal (Creel, 2019). If the VEP is clearly discernible in the occipital
sensors (EEG channels O1 and O2), the signal is deemed to be
of satisfactory quality. Additionally, the data quality assessment
features of the PyPREP pipeline (Appelhoff et al., 2022) are used
to ensure that the other EEG sensors are also of sufficient quality.

Subsequently, the EEG data are used to train ML pipelines
for MI decoding. Based on markers that are recorded during the
experiment, windows of EEG data are extracted that correspond
to an MI class of interest. After acquiring 15 examples for each
imagined movement, the ML pipeline is trained on the resulting
dataset. The number of samples per class was determined in
previous research as the minimal amount required for training
an ML pipeline while minimizing the time that is taken for
the acquisition of calibration data (Dillen et al., 2023). These
pipelines are used to classify imagined movements from EEG

signals in real-time. Candidate pipelines include using Common
Spatial Patterns (Congedo et al., 2016) for feature extraction and
linear discriminant analysis (McLachlan, 1992) for classification
or deep learning approaches. The deep learning approaches under
consideration are the Shallow ConvNet that was created by
Schirrmeister et al. (2017) and the EEGNet model from Lawhern
et al. (2016).

The average classification accuracy of the MI decoding models
is compared with a Wilcoxon signed rank test after performing 100
different cross-validation splits. This ensures that any differences
in performance between decoding pipelines with different settings
are statistically significant and that results are not due to random
chance in the way the dataset was split into training and test
data. The comparison between control system variants uses the
quantitative outcome measures from questionnaires and system
performance metrics. Here, for each measure under analysis, a
Shapiro-Wilk test is first used to verify if the data is normally
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distributed. If the data are normally distributed, a paired samples
t-test is used to investigate if average outcomes are significantly
different between control system variants. When the data are not
normally distributed, the test of choice is theWilcoxon signed-rank
test.

The assessment of the influence of confounding factors is
achieved by first splitting the outcome data into groups based on the
value of the factor under investigation. The normality of the data
distribution is first verified with a Shapiro-Wilk test. For normally
distributed data, an independent samples t-test is used to compare
the outcomes between groups. When the data are not normally
distributed, the Wilcoxon rank-sum test is used. If the differences
between groups based on a chosen factor are statistically significant,
further investigation of the impact of this factor in future work is
warranted.

3 Discussion

The goal of this study protocol is to evaluate the real-world
usability of a non-invasive MI-based BCI control system prototype
utilizing AR and eye tracking. Additionally, the protocol aims to
assess the added value of using BCI as a control method for assistive
robots, in comparison to a control system based solely on eye
tracking. Most BCI research limits itself to the offline evaluation
of decoding pipelines or simply validates the technical feasibility
of the developed application (Dillen et al., 2022). However, a user-
centered approach that follows best practices of human-computer
interaction research, is necessary to ensure that the BCI application
is usable in real-world use cases (Dix, 2008; Garro and McKinney,
2020).

The majority of non-invasive BCI control systems employ a
graphical UI that is displayed on a computer screen (Yang et al.,
2018; Kuhner et al., 2019; Jeong et al., 2020). However, previous
research has shown that the inclusion of AR in a BCI control
system can result in a system that is more mobile and allows
the superposition of the UI on top of the real environment while
providing real-time feedback to the user (Si-Mohammed et al.,
2020; Sanna et al., 2022). Furthermore, combining eye tracking
with BCI provides an intuitive multi-modal UI (Xu et al., 2022).
Thus, our control system provides a shared control AR UI that
integrates BCI and eye tracking as interaction modalities and uses
spatial mapping and object detection to propose environment-
aware actions.

The user study protocol presented in this publication evaluates
the usability of the system by assessing the user experience of our
BCI control system and comparing the system performance with
alternative control strategies that do not use BCI. This allows for the
assessment of the added value of combining AR with BCI and eye
tracking in a shared control system. Building upon well-established
guidelines for quantitative user studies (Sauro and Lewis, 2016), the
protocol takes an iterative approach that expands the user study in
each consecutive phase and facilitates improvements to the design
of the control system between each phase. The protocol is intended
to be versatile and enable the evaluation of a wide variety of BCI
applications that involve the control of an electronic device. Using
this protocol should allow researchers to focus on the technical
aspects of BCI control systems under development.

One notable limitation of this study is its inadequacy to confirm
whether the usability outcomes that are observed in able-bodied
individuals extend to other target populations. Additionally, the
study, although representative of daily activities, falls short of
ensuring direct applicability to real-world scenarios. To address
these limitations in future research, it is crucial to conduct a
user evaluation specifically tailored to other target populations,
employing the same protocol. Moreover, conducting follow-up in-
field user studies will be essential to validate the control system
more comprehensively by providing users with extended, long-
term access.

The current experimental procedure can also easily be modified
or expanded. Including more alternative control systems, such as
steady-state visually evoked potential BCI or electromyography-
based control for example would enable an extensive benchmark
of different alternatives to identify the most suited approach for
a specific use case. Introducing additional tasks such as assembly
or 3D environment navigation could strengthen the significance
of findings on the differences in performance outcomes and
ensure that the system can optimally assist users in their daily
lives. Additionally, the same procedure could be used to target
BCI applications that are intended for healthy individuals such
as control of a virtual avatar or human-robot collaboration in
industrial settings.

Another future perspective includes a detailed investigation of
confounding factors. This opens up the possibility of designing
system variants that account for differences between individuals
or designing custom systems for different population groups
depending on these factors. For example, if low MI aptitude is
found to hinder usability, the system could switch to a different
EEG paradigm such as steady-state visually evoked potential, which
relies on induced neural responses rather than the user’s focused
mental activity, for participants with low MI aptitude. Another
possibility could be to automatically select the optimal decoding
model based on specific user attributes if it is found that this
improves real-time MI decoding accuracy.

4 Ethics and dissemination

The protocol is approved by the Medical Ethics Committee
of UZ Brussel and VUB (BUN1432023000232) and adheres to
the principles of the Declaration of Helsinki for medical research
involving human participants (World Medical Association, 2013).
There are no additional ethical considerations for this study.
Participants provide their written informed consent before starting
their first session.

The findings of this study will be disseminated through journal
articles focused on the specific outcome measures. Two articles
are currently planned: one will address the objective performance
of effectiveness and efficiency to validate the BCI control system,
while the other will discuss user experience outcomes and
compare results between the eye-tracking and BCI system variants.
Additionally, VUB and CY universities will issue a press release to
promote the research to a wider audience. Finally, demonstration
videos and pictures will be produced for further dissemination on
social media and university news channels.
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