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Multiple sclerosis (MS) is a chronic neuroinflammatory disease characterized by 
central nervous system demyelination and axonal degeneration. Fatigue affects 
a major portion of MS patients, significantly impairing their daily activities and 
quality of life. Despite its prevalence, the mechanisms underlying fatigue in 
MS are poorly understood, and measuring fatigue remains a challenging task. 
This study evaluates the efficacy of automated speech analysis in detecting 
fatigue in MS patients. MS patients underwent a detailed clinical assessment 
and performed a comprehensive speech protocol. Using features from three 
different free speech tasks and a proprietary cognition score, our support vector 
machine model achieved an AUC on the ROC of 0.74 in detecting fatigue. Using 
only free speech features evoked from a picture description task we obtained 
an AUC of 0.68. This indicates that specific free speech patterns can be useful in 
detecting fatigue. Moreover, cognitive fatigue was significantly associated with 
lower speech ratio in free speech (ρ  =  −0.283, p  =  0.001), suggesting that it may 
represent a specific marker of fatigue in MS patients. Together, our results show 
that automated speech analysis, of a single narrative free speech task, offers an 
objective, ecologically valid and low-burden method for fatigue assessment. 
Speech analysis tools offer promising potential applications in clinical practice 
for improving disease monitoring and management.
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1 Introduction

MS is a chronic neuroinflammatory disease characterized by demyelination and axonal 
degeneration in the central nervous system (CNS) (Soler et al., 2020) causing a variety of 
symptoms, depending on the location of the lesions. One of the most common symptoms is 
fatigue (up to 81% of MS patients are affected) (Kister et al., 2013), which describes a state of 
extreme tiredness and lack of energy. Fatigue significantly impairs the daily activities of those 
affected (Krupp et al., 1988). For many patients, fatigue is considered the most debilitating 
symptom, impacting quality of life more than physical disability and pain (Janardhan and 
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Bakshi, 2002). Due to its widespread impact on daily activities, fatigue 
leads to significant socioeconomic consequences, affecting 
employment status, capacity to work, and frequency of sick leaves 
(Oliva Ramirez et al., 2021). In addition to its personal impact, the 
socioeconomic implications of fatigue in people with MS (pwMS) 
make it a critical target for treatment. Effectively addressing and 
mitigating fatigue in MS is essential for improving patient outcomes 
and reducing the broader social and economic burden associated with 
the disease.

Current treatments for MS can reduce clinical relapses and new 
lesion formation (De Angelis et al., 2018), but they do not reverse 
existing tissue damage or effectively control chronic symptoms such 
as fatigue, which persist across different types of MS (Herring et al., 
2021). Despite its prevalence and impact, the underlying mechanisms 
of fatigue in MS are poorly understood. Recent research suggests that 
fatigue in MS likely has multiple causes, including immune activation 
and the release of proinflammatory cytokines, chronic CNS damage 
from lesions and axonal loss, altered brain activity patterns due to 
tissue loss, and altered endocrine function (Braley and Chervin, 2010). 
Secondary factors, such as depression and sleep disturbances, also 
contribute to fatigue in MS (Bhattarai et al., 2023; Ormstad et al., 
2020). Accurate measurement of fatigue is crucial for the development 
of targeted treatments, as it allows for precise identification of 
contributing factors, assessment of treatment efficacy, and the tailoring 
of interventions to address the specific needs and conditions of 
individual patients (Pinarello et al., 2023).

Despite recent developments, current fatigue assessment tools and 
strategies face several limitations, primarily concerning their ability to 
accurately capture the multifaceted nature of fatigue. Many tools rely 
heavily on patient-reported outcomes, which are susceptible to poor 
content validity, leading to type-II errors and under-detection of 
fatigue (Close et al., 2023). Additionally, there is a lack of standardized 
measures across different conditions and populations, complicating 
the comparison of results and the generalization of findings 
(Whitehead, 2009). Objective measures, such as actigraphy, are limited 
by their inability to differentiate between physical and mental fatigue, 
and fatigability, thus failing to provide a comprehensive assessment 
(Gulde and Rieckmann, 2022). Moreover, comorbidities such as sleep 
disorders complicate the accurate assessment of fatigue in pwMS 
(Paucke et al., 2018). Together with its heterogeneous etiology, the lack 
of a unified definition and the subjective nature of the fatigue, 
influenced by various psychological, social, and environmental factors, 
poses challenges in developing universally applicable and sensitive 
assessment tools.

Given the significant negative impact of fatigue on the quality of 
life in pwMS, recent efforts have focused on developing more accurate 
methods to detect fatigue, with the goal of facilitating its treatment 
(Pinarello et al., 2023). Automated speech analysis has emerged as a 
potential low-burden and non-invasive method for detecting fatigue 
in pwMS. Speech analysis methods have been effective in detecting 
fatigue in other contexts, such as COVID-19 patients, sleep 
deprivation, air traffic controllers and aviation pilots (De Vasconcelos 
et al., 2019; Elbéji et al., 2022; Gao et al., 2022; Greeley et al., 2007; 
Vogel et al., 2010; Xu et al., 2023). Interestingly, in the context of MS, 
patients report greater verbal communication impairments due to 
fatigue (Hartelius et al., 2004), and the onset of these deficits is often 
associated with fatigue onset (Blaney and Lowe-Strong, 2009). These 
findings support the hypothesis that verbal communication, and 

speech in particular, may be  significantly associated with fatigue 
symptoms in pwMS. This suggests that automated speech analysis 
tools could be used to detect fatigue.

Therefore, this study aims to evaluate the efficacy of automated 
speech analysis in identifying fatigue among pwMS, thereby 
contributing to improved disease monitoring and management  
strategies.

2 Materials and methods

2.1 Participants

A total of 297 subjects (Table  1) participated in this study, 
including 142 MS patients who received treatment at the MS Center 
Dresden (Germany) and 155 healthy controls. The control group was 
recruited via posters placed in the same center. All participants were 
18 years or older, native German speakers and provided written 
informed consent to participate in the study according to the Helsinki 
declaration (World Medical Association, 2013). Furthermore, the 
study was approved by the local ethics board of the MS Center Dresden.

2.2 Assessments and speech tasks

The assessments were performed in a fixed order with a pause 
between each scale/test. The entire assessment battery consisted of 
tests and questionnaires, as well as general clinical routine assessments 
for cognitive ability, including the Expanded Disability Status Scale 
(EDSS; Kurtzke, 1983), the Nine-Hole Peg Test (9HPT, Feys et al., 
2017), the Timed 25 Foot Walk Test (T25-FW; Motl et al., 2017), the 
Symbol Digit Modalities Test (SDTM; Benedict et  al., 2017), the 
Hospital Anxiety and Depression Scale (HADS; Spinhoven et  al., 
1997), the Quality of Life in Neurological Disorders questionnaire 
(Neuro-QoL; Cella et al., 2012) and the Fatigue Scale for Motor & 
Cognition (FSMC; Penner et al., 2009).

Moreover, all participants from both groups conducted a speech 
assessment protocol consisting of nine tasks, testing the articulatory, 
phonatory and narrative dimensions of speech. The speech assessment 
protocol was conducted on a tablet-based app, Mili, developed and 
maintained by ki elements GmbH.1 The participants’ voice was 
recorded using the tablet’s internal microphones and stored online on 
the ki:elements’ server located on the premises of the University Clinic 
Dresden. The full speech protocol consisted of the picture description 
task, a narrative storytelling task, where participants recalled a positive 
and a negative personal episode, a semantic verbal fluency task, a 
sustained phonation task (vowel ‘a’), an articulatory task (successively 
repeating the Pa-Ta-Ka syllables), the California Verbal Learning Test 
(CVLT; Delis et al., 1988) and the logical memory task of the Wechsler 
Memory Scale (LM-WMS; Wechsler, 2009). With the goal of 
maximizing ecological validity, in this study, we only focused on the 
free narrative speech tasks (i.e.: positive and negative storytelling, and 
picture description).

1 https://ki-elements.de
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All assessments were conducted in German. The speech recordings 
were performed in a quiet room at the MS Center Dresden under the 
supervision of a speech scientist. Efforts were made to maintain 
environmental conditions as consistent as possible across all participants.

2.3 Data analysis

Before extraction of speech features, all sound files were 
preprocessed. The initial step involved excluding participants who did 
not complete all the speech assessments or had at least one audio file 
shorter than 5 s (N = 25). Next, acoustic and linguistic features were 
extracted from the speech tasks. Acoustic features were extracted 
directly from the audio recordings while linguistic features were 
computed on transcripts that were automatically generated using 
google speech-to-text Automatic Speech Recognition (ASR) services. 
Transcripts were quality checked by listening to randomly selected 
recordings and comparing them to ASR transcripts. Then, features 
were extracted using the ki:elements speech processing library SIGMA 
14.0.0. Additionally, based on features extracted from the semantic 
verbal fluency task and the CVLT, the ki:elements speech biomarker 
for cognition (SB-C) was computed.

The features of the free speech tasks (positive and negative 
storytelling, and picture description) in conjunction with the SB-C 
and its subscores were used to train a support vector machine (SVM) 
classifier to discriminate between fatigued (FSMC total score ≥ 43) 
and non-fatigued (FSMC total score < 43) participants. From a total of 
362 features, we sorted all features based on mutual information and 
tested performance in 10-fold cross validation on a 10% left-out test 
set. Reported performance metrics are means over the 10 iterations. 
We varied k between 10 and 250. Then, we compared the performance 
of the different classifiers using balanced accuracy and area under the 
receiver operator curve (AUC) as a function of k to obtain the best 
tradeoff between explainability and performance. The trade-off was 
determined by visually identifying the point of inflection of 
performance as a function of k features. The number of features (k) 
was selected based on this visual inspection.

In the next step, to increase the explainability of our results, 
we selected the k features used for classification and computed their 
intercorrelations and their correlations with the FSMC (Penner et al., 
2009) to assess the association between speech features and fatigue. 
Given the non-normal distribution of some features and the potential 
non-linear relationships, we  employed non-parametric Spearman 
Rank-Sum correlations. This approach allowed us to better understand 

TABLE 1 Demographics overview of the final dataset after pre-processing.

Total HC pwMS p-value

n 297 155 142

Gender F: 205; M: 92 F: 104; M: 51 F: 101; M: 41

Age (years) 41.74 (13.55) 39.7 (14.99) 43.97 (11.41) < 0.001

Education (years) 13.44 (2.81) 13.38 (2.64) 13.51 (2.99) 0.80

EDSS 2.98 (1.52) 2.98 (1.52)

EDSS Severity subgroups 0: 155

≤ 3: 96

≤ 7: 43

≤ 10: 3

0: 155 0: 0

≤ 3: 96

≤ 7: 43

≤ 10: 3

MS Subtype RRMS: 119

PPMS: 11

SPMS: 10

CNS: 1

unknown: 1

FSMC 44.03 (20.95) 32.03 (10.67) 57.13 (21.59) < 0.001

FSMC motor 22.24 (11.09) 15.93 (5.3) 29.13 (11.66) < 0.001

FSMC cognition 22.24 (10.77) 16.29 (6.07) 28.73 (11.04) < 0.001

HADS-Anxiety 4.94 (3.64) 4.06 (2.9) 5.9 (4.1) < 0.001

HADS-Depression 3.29 (3.64), 2.04 (2.42) 4.65 (4.22) < 0.001

SDMT (number of correctly solved 

items)

23.74 (8.15) 23.74 (8.15)

9-HPT dominant hand (seconds) 23.48 (6.92) 23.48 (6.92)

9-HPT non-dominant hand 

(seconds)

23.48 (6.92) 23.48 (6.92)

T25-FW 5.04 (2.71) 5.04 (2.71)

For age, education and EDSS, FSMC, SDMT and 9-HPT, the mean (standard deviation) is reported. Group differences were computed using Kruskal-Wallis test. FSMC, Fatigue Scale for Motor 
and Cognition. HADS, Hospital Anxiety and Depression Scale. SDMT, Symbol Digit Modalities Test. 9-HPT, Nine Hole Peg Test. T25-FW, Timed 25 Foot Walking Test. RRMS, Relapsing–
Remitting MS Subtype. PPMS, Primary Progressive MS Subtype. SPMS, Secondary Progressive MS Subtype. CNS, Chronic inflammatory disease of the central nervous system.
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the connections between specific speech characteristics and the 
different dimensions of fatigue in MS patients.

Finally, to better understand the relationship between fatigue 
and other relevant symptoms we  used Spearman Rank-Sum 
correlations to test the association of fatigue and established 
neuropsychological tests and their sub-scores, including the EDSS 
(Kurtzke, 1983), 9HPT (Feys et  al., 2017), T25-FW (Motl et  al., 
2017), the SDTM (Benedict et al., 2017) and the HADS (Spinhoven 
et al., 1997). In testing these correlations, we controlled for general 
disability by using EDSS scores.

3 Results

3.1 Free speech features accurately 
characterize fatigue

To test the feasibility of using automated speech analysis to detect 
fatigue in pwMS, we focused our analysis on free speech tasks (positive 
and negative storytelling, and picture description) applied to a group 
of MS patients and a group of healthy controls (Table  1). In our 
sample, pwMS were, on average, approximately 4 years older than 
controls. Moroever, as expected (Walton et al., 2020), women were 
more prevalent in the MS group. This gender imbalance was consistent 
between groups. We employed support vector machine (SVM) models 
to predict the presence of fatigue in both pwMS and control subjects. 
To maximize fatigue detection, we started by testing a model that 
included all free speech tasks along with our proprietary cognition 
score derived from speech (SB-C), given the potential association 
between fatigue and cognitive symptoms (Guillemin et al., 2022). For 
this more complex model, we  observed an area under the curve 
(AUC) of 0.74 on the receiver operating characteristic (ROC) curve 
when using the 150 most relevant features identified through feature 
selection (balanced accuracy = 0.67). This model performed 
significantly above chance level (Figure  1A; AUC = 0.5, balanced 
accuracy = 0.5), suggesting that free speech contains relevant 

information and that features extracted from it may be relevant for 
fatigue detection.

Building on these findings, we  further explored whether a 
simplified approach, focusing on the most relevant speech features 
from the picture description task alone, could maintain high predictive 
accuracy for fatigue detection. We observed that a simplified model, 
which includes only speech features from the picture description task, 
yielded comparable results with minimal loss of performance 
(Figure 1A), suggesting that the picture description task can be useful 
in predicting fatigue in pwMS. Specifically, using speech features 
extracted exclusively from the picture description task, we found an 
AUC of 0.68 for the ROC curve with only 70 features (balanced 
accuracy = 0.62), the number of features where the model reaches 
stable levels of performance. Adding more features only marginally 
improved the model performance (Figure 1B), suggesting that a subset 
of features derived from free speech may be sufficient to detect fatigue. 
When carefully analyzing the features selected based on mutual 
information (i.e., the 27 features selected in all 10 folds of the model 
cross validation; Supplementary Table 2), we found that a significant 
portion relate to speech structure (e.g., pause duration and speech 
rate) and voice quality (e.g., pitch-related features), highlighting the 
importance of tracking these features during free speech for 
detecting fatigue.

Together, our modeling data indicate that speech features 
extracted from the picture description task are sufficient to predict 
fatigue above chance level, highlighting the utility of free speech as an 
effective tool for revealing fatigue-related alterations.

3.2 Speech ratio significantly correlates 
with cognitive fatigue

Having established that features extracted from free speech are 
relevant for fatigue detection, we sought to better understand the 
relevance of key speech features. To achieve this, we correlated 
fatigue scores (cognitive, motor, and total FSMC scores) 

FIGURE 1

(A) Receiver operating characteristic curve (ROC) for the different SVM models. Free speech includes negative and positive storytelling, and picture 
description. Performance metrics were computed based on a 10-fold cross validation strategy with a 90–10% train-test splits. Black dashed line 
represents the chance level. (B) Performance metrics for the picture description model as a function of number of features. PD, picture description; 
SB-C, speech biomarker for cognition (ki:elements). AUC, area under the curve.
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exclusively with the 27 features that were common across all 
instances of the model’s cross-validation (10 folds). Using this 
unbiased strategy, we computed correlations between fatigue and 
27 speech features derived from the picture description task 
(Supplementary Table 1).

Our results show that the overall fatigue score positively correlates 
with pause rate (adjusted p = 0.036), mean pause duration (adjusted 
p < 0.001) and its standard deviation (adjusted p < 0.001), and the 
standard deviation of the F1 relative energy (relative energy between 
the fundamental frequency [F0] and the first formant [F1]) (adjusted 
p = 0.007). Moreover, the total fatigue score negatively correlates with 
speech ratio (adjusted p < 0.001), adjective rate (adjusted p = 0.007) 
and Brunet’s index (p = 0.022) (Table 2).

When analyzing motor fatigue scores (Table 2), we found positive 
correlations with mean pause duration (adjusted p < 0.001) and its 
standard deviation (adjusted p = 0.001), and the standard deviation of 
the F1 relative energy (adjusted p = 0.004). Additionally, we found that 
motor fatigue negatively correlates with speech ratio (adjusted 
p = 0.001) and adjective rate (adjusted p = 0.015).

For cognitive scores (Table 2), mean pause duration (adjusted 
p = 0.001), its standard deviation (adjusted p = 0.005) and the standard 
deviation of the F1 relative energy (adjusted p = 0.029) positively 
correlate with cognitive fatigue. Finally, speech ratio (adjusted 
p = 0.001), number of pauses (p = 0.029), adjective rate (adjusted 
p = 0.015) and Brunet’s index (p = 0.015) negatively correlate with 
cognitive fatigue.

However, when controlling for EDSS score, only the negative 
correlations of speech ratio with cognitive fatigue (ρ = −0.283; 
p = 0.001; effect size = −0.590; adjusted p = 0.019) and overall fatigue 
(ρ = −0.264; p = 0.002; effect size = −0.547; adjusted p = 0.044) 
remained significant (Figures  2A,B). This suggests that, although 
moderate, the relationship between speech ratio and fatigue is 
independent of overall disability level, indicating that speech ratio 
might be a specific marker of fatigue, particularly cognitive fatigue, 
rather than being broadly associated with disability severity in 
individuals with MS.

3.3 Fatigue is associated with other 
symptoms

To better understand the association between clinical symptoms 
and fatigue, we performed a correlation analysis between results of all 
scales and tests, and the FSMC scores. To account for general disability 
level, we computed partial correlations, partialling out the effect of the 
EDSS score. The analysis revealed that fatigue (FSMC total score) was 
significantly associated with a number of clinically relevant symptoms, 
including mood (ρ = 0.555; p < 0.001; effect size = 1.335; adjusted 
p < 0.001), anxiety (ρ = 0.542; p < 0.001; effect size = 1.289; adjusted 
p < 0.001), lower (ρ = −0.395; p < 0.001; effect size = −0.860; adjusted 
p < 0.001) and upper extremity function (ρ = −0.478; p < 0.001; effect 
size = −1.087; adjusted p < 0.001), and cognition (Neuro-Qol 

TABLE 2 Significant correlations, based on adjusted p-values, between fatigue and picture description features.

Coefficient p-value Effect size Adjusted p-value

FSMC - total score

Mean pause duration 0.263 0.0 0.545 0.0

Pause durations (SD) 0.234 0.0 0.482 0.0

Speech ratio −0.237 0.0 −0.488 0.0

F1 relative energy (SD) 0.188 0.001 0.382 0.007

Adjective rate −0.184 0.002 −0.374 0.007

Brunet’s index* −0.161 0.005 −0.327 0.022

Pause rate 0.149 0.010 0.301 0.036

FSMC - motor score

Mean pause duration 0.248 0.0 0.512 0.0

Pause durations (SD) 0.232 0.0 0.478 0.001

Speech ratio −0.219 0.0 −0.450 0.001

F1 relative energy (SD) 0.199 0.001 0.407 0.004

Adjective rate −0.171 0.003 −0.346 0.015

FSMC - cognitive score

Mean pause duration 0.242 0.0 0.500 0.001

Speech ratio −0.234 0.0 −0.482 0.001

Pause durations (SD) 0.199 0.001 0.407 0.005

Brunet’s index* −0.171 0.003 −0.348 0.015

Adjective rate −0.174 0.003 −0.354 0.015

F1 relative energy (SD) 0.153 0.008 0.311 0.029

Number of pauses −0.155 0.008 −0.315 0.029

FSMC, Fatigue Scale for Motor and Cognition; SD, standard deviation; F1, first formant *Brunet’s index; a measure of lexical diversity.

https://doi.org/10.3389/fnhum.2024.1449388
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Dias et al. 10.3389/fnhum.2024.1449388

Frontiers in Human Neuroscience 06 frontiersin.org

questionnaire; ρ = −0.663; p < 0.001; effect size = −1.769; adjusted 
p < 0.001) (see Supplementary Table 1 for full list of correlations). 
However, we did not find significant associations between fatigue and 
processing speed (ρ = −0.085; p = 0.315; effect size = −0.171; adjusted 
p = 0.333) or memory function (ρ = −0.099; p = 0.243; effect 
size = −0.199; adjusted p = 0.272), two domains known to be affected 
in MS (Chiaravalloti and DeLuca, 2008; Langdon, 2011).

Although our analyses do not allow us to disentangle the causal 
direction of effects, the associations we  found highlight the 
multifaceted nature of fatigue in MS and its extensive impact on 
various aspects of patient well-being. Using speech analysis to assess 
fatigue over extended periods of time (i.e., longitudinally) may offer 
additional insights into the complex interactions between clinical 
symptoms and fatigue in MS.

4 Discussion

Fatigue is a pervasive symptom in pwMS, significantly impacting 
their quality of life and daily functioning (Janardhan and Bakshi, 2002; 
Krupp et  al., 1988). As a multidimensional construct, fatigue is 
commonly assessed using questionnaires that include various 
subscales targeting different dimensions of fatigue (Chalder et al., 
1993; Krupp, 1989; Penner et al., 2009; Piper et al., 1998; Smets et al., 
1995). However, these traditional methods often rely on subjective 
self-reports, which can be  influenced by various factors and lack 
standardization (Close et  al., 2023). Moreover, fatigue presents 
heterogeneously, is highly subjective, and lacks a unified definition, 
making it challenging to measure accurately. Therefore, developing 
new tools and methods to precisely measure fatigue is paramount for 
advancing treatment strategies for fatigue in MS. In this work, 
we provide evidence on the feasibility of using automated analysis 
tools to detect fatigue from free speech.

Free narrative speech has proven useful in identifying disabilities 
associated with various neurological disorders (Fraser et al., 2016; 
König et  al., 2015; Lindsay et  al., 2019; Mefford et  al., 2023) and 
psychiatric diseases (Alpert et al., 2001; Bedi et al., 2015), including in 

MS (Svindt et al., 2020, 2023). Free speech tasks, such as the picture 
description task, elicit spontaneous and natural speech patterns that 
are more reflective of everyday communication. This ecological 
validity is crucial for accurately assessing the impact of neurological 
conditions on speech and cognition. Furthermore, free speech tasks 
can capture a wide range of linguistic and paralinguistic features, such 
as speech rate, fluency, lexical diversity, and voice quality, which are 
often affected in these disorders (Fraser et al., 2016; König et al., 2015). 
However, speech protocols tend to be composed of different tasks, 
targeting different dimensions of speech. Despite their richness, 
conducting such an extensive speech protocol is time-consuming and 
cognitively demanding, particularly for populations reporting 
significant fatigue, such as pwMS. Additionally, the process of 
extracting and analyzing speech features is both lengthy and complex, 
highlighting the need for simplified assessments.

In this study, we tested the feasibility of using a single free speech 
task to predict fatigue, focusing on speech features extracted from a 
picture description task. This task has been shown to accurately 
capture relevant cognitive and linguistic markers in different diseases, 
including Amyotrophic Lateral Sclerosis, mild congitive impaiment 
and Alzheimer’s disease (e.g., Lindsay et al., 2019; Mueller et al., 2018), 
which may be associated with fatigue (Wallace and Holmes, 1993). 
The picture description task involves describing a complex image, 
which provides a rich source of linguistic data that can be analyzed for 
features such as speech rate, fluency, and lexical diversity, all of which 
have been correlated with cognitive changes (Cho et  al., 2021; 
Henderson et  al., 2023; Skodda and Schlegel, 2008). This task is 
relatively simple to implement and represents a low burden to patients. 
By concentrating on this task, we aimed to streamline the assessment 
process while maintaining accuracy in fatigue detection.

We observed that 70 free speech features, prompted by a picture 
description task, provide significant information for detecting fatigue 
in pwMS. Notably, our model achieved high accuracy levels, 
comparable to a more complex model that included three tasks and 
150 features. This finding suggests that focusing on free narrative 
speech as an assessment tool may be  sufficient, thereby avoiding 
lengthy assessment protocols and the complexity of analyzing 

FIGURE 2

(A) Scatter plot showing the partial correlation between FSMC total scores and speech ratio, with the effect of EDSS scores statistically controlled. 
(B) Scatter plot showing the partial correlation between FSMC cognitive scores and speech ratio, with the effect of EDSS scores statistically controlled. 
Blue lines represent the line of best fit, with the shaded areas indicating the 95% confidence interval.
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extensive datasets. Moreover, free narrative speech assessments could 
potentially be  conducted during face-to-face or video call 
appointments between patients and medical care providers. 
Additionally, we found that most of these features relate to speech 
structure, semantic richness, and voice quality, indicating their 
robustness as indicators of fatigue. This aligns with previous research 
showing that speech patterns change in response to fatigue and that 
they may reflect underlying cognitive and motor impairments (Blaney 
and Lowe-Strong, 2009; Hartelius et al., 2004).

Altough moderate, our correlation results further underscore the 
relevance of specific speech features. For instance, mean pause 
duration positively correlated with overall and cognitive fatigue, while 
speech ratio and adjective rate negatively correlated with these fatigue 
measures. Interestingly, when controlling for EDSS score, the negative 
correlations between speech ratio and both cognitive and overall 
fatigue remained significant. This suggests that certain speech 
alterations may be mediated by overall disability and that speech ratio 
may serve as a robust specific marker of fatigue independent of general 
disability level. However, the moderate correlation coefficient indicates 
that a substantial portion of variability cannot be accounted for by the 
linear relationship between fatigue and speech ratio. Moreover, it 
indicates that other factors, besides fatigue, may significantly 
contribute to speech ratio variability, suggesting that further studies 
are needed to fully understand this association. Although this 
relationship is not exceedingly strong, it indicates that fatigue has a 
noticeable impact on speech production, warranting further 
investigation and consideration in clinical assessments.

One limitation of our study is that it exclusively focused on 
German-speaking participants, potentially limiting the applicability 
of the findings to other linguistic and cultural contexts. Speech 
characteristics can vary significantly across languages, which may 
influence the effectiveness of automated speech analysis tools. This 
emphasizes the need for cross-linguistic validation of diagnostic tools 
(Lau et  al., 2022; Parola et  al., 2022). Another relevant limitation 
pertains to the gender of participants. As in other MS studies, our 
sample predominantly consisted of female participants. MS is known 
to affect females more frequently than males, but the 
overrepresentation of females in our study may limit the 
generalizability of the findings to the male MS population. Speech 
characteristics and fatigue manifestations may differ between genders, 
thus necessitating further studies with a more balanced gender 
distribution to ensure that the diagnostic tools are equally effective for 
both males and females. Additionally, the cross-sectional design of the 
study restricts the ability to infer causality between speech changes 
and fatigue. Moreover, fatigue fluctuates significantly within and 
between days and may have been suboptimally detected on the day of 
the assessment, particulalry in the case of the relapsing–remitting 
form of MS (Powell et al., 2017). Longitudinal studies are necessary to 
establish the temporal relationships and provide a more comprehensive 
understanding of symptom dynamics over time. This highlights the 
need for continuous monitoring to understand and address the 
progression of symptoms effectively. We  propose a longitudinal 
follow-up study where fatigue and speech assessments are performed 
regularly, over an extended peiord of time, in hopes of overcomming 
this limitaiton and confirming our findings.

Automated speech analysis offers several advantages over 
traditional fatigue assessment tools. It provides an objective measure 

that is less susceptible to biases inherent in self-reported data. 
Additionally, it can capture subtle changes in speech that may not 
be evident through subjective assessments. This method can be easily 
integrated into routine clinical practice, or even through remote 
assessments, providing continuous monitoring of fatigue and enabling 
timely interventions. The use of automated speech analysis in MS 
could help improve fatigue assessment, offering a low-burden, 
scalable, and precise tool for clinicians and researchers. Future studies 
should explore the longitudinal application of this method and its 
integration with other biomarkers to enhance the understanding and 
management of fatigue in MS. Furthermore, the development of 
standardized protocols for speech tasks and feature extraction will 
be crucial to ensure the reliability and generalizability of findings 
across different populations and settings. Extending these methods to 
cross-cultural studies will help validate and refine the approach for 
broader application.

In conclusion, this study demonstrates that automated speech 
analysis, particularly through a single narrative free speech task, 
provides an effective and low-burden method for detecting fatigue in 
multiple sclerosis patients. The findings highlight the potential of 
integrating speech analysis tools into clinical practice for improved 
monitoring and management of fatigue in MS.
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