
Frontiers in Human Neuroscience 01 frontiersin.org

High-order brain network feature 
extraction and classification 
method of first-episode 
schizophrenia: an EEG study
Yanxia Kang 1†, Jianghao Zhao 2†, Yanli Zhao 3†, Zilong Zhao 4, 
Yuan Dong 2, Manjie Zhang 2, Guimei Yin 2* and Shuping Tan 3*
1 Clinical Department, Beijing Huilongguan Hospital, Beijing, China, 2 Laboratory of Brain Science and 
Intelligent Information Processing, School of Computer Science and Technology, Taiyuan Normal 
University, Jinzhong, China, 3 Psychiatry Research Center, Beijing Huilongguan Hospital, Bejing, China, 
4 School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, China

Introduction: A multimodal persistent topological feature extraction and 
classification method is proposed to enhance the recognition accuracy of first-
episode schizophrenia patients. This approach addresses the limitations of traditional 
higher-order brain network analyses that rely on single persistent features (e.g., 
persistent images).

Methods: The study utilized resting-state EEG data from 198 subjects recruited 
at Huilongguan Hospital in Beijing, comprising 102 males and 96 females, with 
a mean age of 30 years and mean education of 14 years. Persistent topological 
features were extracted using adaptive thresholding during persistent homology 
(PH) filtrations. The distribution of these features was visualized through heatmaps 
and persistence entropies, while the generation process was elucidated using 
Betti curves and persistence landscapes.

Results: The classification performance of the multimodal persistent topological 
features was assessed using various machine learning classifiers. The classifier 
yielding the highest performance was selected for comparison with traditional 
brain network features derived from graph theory and single persistent topological 
features. The results revealed significant topological changes in first-episode 
schizophrenia patients throughout the persistent homology filtering compared 
to healthy subjects. The univariate feature selection algorithm achieved a 
classification accuracy of 94.6% with a combination of attributes meeting the 
criterion of AC ≥ 0.6.

Discussion: The proposed method demonstrates clinical significance for the early 
identification and diagnosis of first-episode schizophrenia patients, offering a 
new research perspective for constructing higher-order functional connectivity 
networks and extracting topological structure features.
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1 Introduction

In the analysis of complex brain networks based on graph theory, 
different correlations between nodes and different metric thresholds lead 
to significant differences in brain network topology (Mammone et al., 
2018). Some studies have shown that by integrating functional and 
structural neuroimaging and analysis, the unique information processing 
roles of synergistic and redundant components in the brain have been 
revealed, highlighting in particular the greater reliance on synergistic 
interactions by the human brain in support of higher-order cognitive 
functions (Luppi et al., 2022). Consequently, constructing complex brain 
networks based on connections between different functional regions has 
become a topic of discussion (Hasanzadeh et al., 2020). Traditional graph 
theory analysis methods typically involve manually setting a threshold 
for constructing brain networks (Morabito et al., 2015). However, this 
approach can result in an increased number of spurious connections or 
the omission of significant connections, leading to poorer generalization.

In recent years, topological data analysis (TDA) has emerged 
as a promising approach for analyzing functional brain networks 
(Ibáñez-Marcelo et al., 2019; Myers et al., 2019; Wang et al., 2019). 
Persistent homology (PH) plays a central role in TDA, as it allows 
comprehensive filtering of brain networks and analysis of 
structural changes, thereby identifying invariant features of their 
topology (Huber, 2021). For example, Spaziani (2019) used PH to 
extract topological features by analyzing brain networks across 
different sleep stages, enabling subject detection and classification. 
Existing studies using PH in brain network analysis primarily 
focus on exploring persistent graph features within a single 
modality. Entropy is widely used in higher order effects, and 
Stramaglia et  al. use transfer entropy to parse the flow of 
information between dynamic processes in a network system 
(Stramaglia et al., 2024). Liu et al. (2021) used persistent entropy 
to summarize the survival distribution of midbrain node relations 
in persistent homology filtering of brain networks to analyze 
subjects’ perceived image quality. Chung et al. (2016) combined 
network analysis and heat kernel methods to classify functional 
brain networks using HCP task-based fMRI networks. Wang et al. 
(2021) used persistent landscape features to dynamically analyze 
the persistent homology filtering process in stroke patients, with 
particular emphasis on the evolutionary properties of the brain 
network filtering process. However, considering persistent 
features individually does not fully exploit the wealth of 
information present in the PH process, including multimodal 
information such as point distances, dynamic evolution, and the 
survival distribution of different persistent topologies (Zhang 
et al., 2021).

For this reason, this paper uses Pearson’s correlation (Benesty 
et al., 2009) to construct a brain network of resting-state EEG signals 
between patients with first-episode schizophrenia and healthy 
subjects. An adaptive thresholding method was used for PH filtering 
of the network. Heatmaps and persistent entropy were used to extract 
the filtered persistent feature distribution states. Simultaneously, Betti 
curves and persistent landscape features were computed from the 
persistent feature generation process states. Finally, multiple machine 
learning classifier models were used to evaluate the classification 
performance of the multimodal persistent features. The use of 
extracted persistent topological features of multimodal brain networks 
provides a more comprehensive understanding of changes in the 

global high-dimensional EEG data in first-episode schizophrenia 
patients and healthy subjects.

2 Methodology

2.1 Basic principles

PH captures persistently changing topological information in metric 
space through a persistent filtering approach. The specific filtering 
process is as follows: first, Vietoris-Rips (VR) complexes of different 
dimensions are constructed according to the specified threshold ε. When 
ε is larger than the metric between nodes in the network, a line is formed 
between two points (Sheehy, 2012), as illustrated in Figure 1A. This 
results in persistent topological features under different dimensions, such 
as 0-dimensional, 1-dimensional, and 2-dimensional Betti numbers. 
These features are typically visualized using a Persistence Diagram (PD) 
or barcode.

As ε gradually increases from 0, the connections in the network 
continuously change, and the number of VR complexes evolves until the 
VR complexes and connections in the PD reach a stable state, indicating 
that ε has reached its maximum. During the construction of VR 
complexes, some topologies persist for longer periods and represent the 
more significant topological features of the network. Conversely, other 
topologies exist only briefly and are overwritten as ε increases; these are 
considered perturbations or noise (Turkes et al., 2022). The topologies 
that persist longer indicate important topological relationships within the 
network and are the persistent topological features to be extracted. As ε 
changes, the network’s topological structure evolves, as illustrated in 
Figure 1B.

In the experiment, the generation threshold (bi) and disappearance 
threshold (di) of each Vietoris-Rips (VR) complex in the PD were 
recorded for each dimension. This resulted in a set of points {bi, di, 
dim}, where dim represents the dimension, and the corresponding PD 
was derived from these points. Isomorphism between two persistence 
modules occurs if and only if the PDs of the two networks are 
identical. Figure 1C (a) illustrates a graph with a topology consisting 
of two holes, represented by two two-dimensional persistence points 
on the persistence graph. Conversely, Figure 1C (b) shows a graph 
with a topology of only one hole, resulting in a one-dimensional 
persistence point on the persistence graph (Otter et al., 2017).

2.2 Adjacency matrix

In the EEG time series signals, node pairs are measured using the 
Pearson correlation coefficient. This coefficient is then used to 
construct an adjacency matrix between the nodes. The Pearson 
correlation coefficient is calculated as described in Schober 
et al. (2018):

 
1 ij

ij
ii jj

C
D

C C
= −

where ijC  represents the covariance between different nodes, i and 
j  denote the indices of different nodes in the EEG signal.
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2.3 Topological features

The topological features (Betti numbers) extracted by PH cannot 
be  directly used as inputs for machine classification algorithms. 
Therefore, four persistent features are introduced: persistence 
landscape, Betti curves, heat kernel, and persistence entropy. These 
features can be  directly applied to machine learning 
classification algorithms.

2.3.1 Persistence landscape
Persistence Landscape (Bubenik, 2015) represents the 

persistence feature with a peak whose height is determined by the 
persistence of the feature, and its position corresponds to the 
feature’s position in the filtration. The conversion process from PD 
to PL is as follows:

First, the points in the PD are converted, and then a set of 
functions generated by the features of the rotated persistence image is 

considered to define the persistence landscape. The calculations are 
shown as follows. Given a point (𝑏𝑖,) in the PD, it is 

converted to ,
2 2

i i i ib d d b+ − 
 
 
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FIGURE 1

Complexes and topology changes in different dimensions in persistent homology. (A) Structural diagram representing the Vietoris-Rips (VR) complex in 
different dimensions. (B) represents the filtering process for point cloud data using different filtering thresholds (Ca) illustrates a graph with a topology 
consisting of two holes, represented by two two-dimensional persistence points on the persistence graph. (Cb) shows a graph with a topology of only 
one hole, resulting in a one-dimensional persistence point on the persistence graph.
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where ( )iA t , ( )iA t  is the diagonal set in the PD and ( )ia t  is the 
maximum value of ( )iA t  for each homology dimension k 
(Chukanov, 2023). Then, ( )k tγ  represents the persistence landscape 
of the kth homology dimension. Specifically, as shown in Figure 2, 
the plane is divided into multiple triangular regions i I∈  at ( ),i ib d  
intervals on the horizontal t-axis with a slope of 1. If kP  is the 
intersection of the regions in the set of polygons I , then kγ  is the 
tallest polygonal segment (the group of segments farthest from the 
t-axis) in the set kP .

2.3.2 Betti curve
The Betti Curve (BC) (Laumon and Rapoport, 1995) 

represents the number of topological features in each dimension 
for each ε in the VR filtration. Specifically, the 0-dimensional BC 
denotes the number of connected components for each ε, while 
the 1-dimensional BC indicates the number of 1-dimensional 
holes for each ε. The transformation from PD to BC is illustrated 
in Figure 2.

2.3.3 Heat kernels
Heat kernels (HK) are a multiscale convolution of PDs 

with Gaussian kernels (Reininghaus et  al., 2015). It samples 
the ( ){ }i i i IPDs d b

∈
= −  of different homology dimensions as a 

sum of Dirac-Delta functions uniformly from the 
specified filtration parameters, converting the PDs into a matrix. 
Then, the convolution of the PDs is calculated using a 
Gaussian kernel. This process is also applied to the reflectance 
image of the PD diagonal, and the difference between the two 
convolutions is computed (Kulkarni et al., 2020), resulting in a 
multi-channel raster image, or Heatmap (HM), as shown in 
Figure 2.

2.3.4 Persistence entropy
Persistence Entropy (PE) is the entropy of the persistence graph, 

calculated according to the definition of entropy (Rucco et al., 2016). 
The calculation is shown as:

 
( ) ( )PD logi i

i I
E p p

∈
= −∑

where 
( ) ( )i i

i PD i i
D i I

d b
p L d b

L ∈

−
= = −∑ .

Persistent entropy can globally summarize the information about 
the topological structure due to its strong correlation with 
the topology.

FIGURE 2 (Continued)
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3 Experiment

3.1 Persistent topological feature 
classification model for first-episode 
schizophrenia patients based on PH

Figure 3 shows the classification model of persistent topological 
features for patients with first-episode schizophrenia based on 
PH. Following the preprocessing of the resting-state EEG data, each 
EEG dataset was divided into five frequency bands. Subsequently, the 
adjacency matrix of 59 nodes for each subject in each frequency band 

was obtained. The network was constructed and filtered using the VR 
filtering algorithm to obtain the basic topological feature PD, which 
was then transformed into the multimodal topological features PL, 
BC, HK, and PE. Finally, four machine learning classifiers were used 
to verify the effectiveness of the feature classification.

3.2 Experimental data

The experiment used 59-channel EEG data collected from 104 
first-episode schizophrenia patients and 94 healthy subjects in a 
closed-eye resting state at Huilongguan Hospital. By matching gender, 
age, and education level, demographic and clinical data, including 
PANSS scores, were compiled for the two groups, as shown in Table 1.

Data acquisition for this experiment was performed using a 64-lead 
EEG device from NeuroScan, Inc. The sampling frequency was 500 Hz, 
with impedance kept below 5 kΩ. The ground electrode was placed at 
AFz, and reference electrodes were physically attached to the left and 
right mastoids. Vertical electroencephalography involves placing 
electrodes above and below the left eye, while horizontal 
electroencephalography involves placing electrodes on the orbital rim of 
the right eye.

Data preprocessing was performed using EEGLAB. The reference 
electrodes were converted to a mean reference, and noise components 
were removed from each subject’s data. Independent Component 
Analysis (ICA) was used to remove ocular artifacts from the signal. 
After artifact removal, the Event-Related Potential (ERP) components 
were extracted by filtering, segmenting, and averaging the stacked trials.

FIGURE 2

Patients (left) and normals (right) PD (A), PL (B), BC (C), HK (D).

TABLE 1 Statistics of demographic and clinical data of subjects in two 
groups.

Features Schizophrenic 
patients 
(n  =  104)

Normal 
subjects 
(n  =  94)

Statistical 
value

Average age (years) 30.49(20–50) 30.50(17–48) F1,196 < 1

Time of education 

(years)
14.15(9–19) 14.73(9–19)

F1,196 = 2.697, 

p = 0.102

Gender (male/

female)
52/52 50/44

χ12 = 0.201, 

p = 0.654

PANSS score 75.28 ± 11.10

Positive score 21.77 ± 4.89

Negative score 17.32 ± 5.84
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3.3 Data preprocessing

In the experiment, the EEG signal data was preprocessed using 
Python’s MNE toolkit. The signals were filtered into five frequency 
bands: Delta (1–3 Hz), Theta (4–7 Hz), Alpha (8–12 Hz), Beta 
(13–30 Hz), and Gamma (31–49 Hz).

The duration of each sample was approximately 230 s. A sliding 
window (length = 40s, TR = 40s) was used to segment the data from 40 
to 200 s to express the topological relationship of the brain. Repeated 
experiments were conducted on all EEG signals using non-overlapping 
sliding windows, and it was determined that the EEG signals from 126 
to 150 s (Zhang et al., 2021) best expressed the topological relationship 
of the brain.

3.4 Construction of the adjacency matrix

The adjacency matrices of the five frequency bands for the two 
groups of subjects were constructed as described in section 1.1. 
Figure 4 shows an adjacency matrix plot for the gamma band.

3.5 Construction of the brain networks and 
VR complexes

Experiments were conducted using the Giotto-TDA Topology 
Machine Learning Toolkit in Python to build brain networks and VR 
complex shapes (Tauzin et al., 2021). In the model, the maximum 
threshold for VR filtering was not set as a fixed value. Instead, the 
construction of the brain network using VR filtering was concluded 
dynamically by determining when the number of VR complexes in 

the brain network ceased to change (Bauer, 2021). Topological 
features obtained through VR filtering were visually represented 
using PD. Figure  5 shows the PD of first-episode schizophrenia 
patients and healthy subjects in the Gamma band.

3.6 Topological feature extraction

Based on the extraction of the basic persistent feature PD, PD is 
converted into PL, BC, and HK according to the methods described 
in sections 1.2.1–1.2.3. These three features represent the features of 
PD from different modes. Compared to direct feature extraction from 
complex EEG data for classification, converting PD into multimodal 
features offers extremely high interpretability and visualization.

To summarize the three obtained topological features, PL, BC, 
and HK are summarized using matrix norms (1-norm and 2-norm), 
and the features are numbered. The corresponding number of 
features is shown in the table. A matrix norm is obtained for each 
dimension of the VR complex, yielding feature values that can 
be used for machine learning classification. Additionally, changes in 
the VR filter structure are an important representation of the 
topological features, so the PE corresponding to the PD is calculated. 
Tables 2, 3 show the selection of topological features and the 
corresponding parameters used in the experiment.

4 Results

The experimental results are presented in three parts. The first 
part shows the PD performance of the two groups of subjects in each 
frequency band after VR filtering. The second part illustrates the 

FIGURE 3

Analysis flow chart. Clarify the experimental flow, which is mainly divided into EEG data processing, brain network construction using Pearson’s 
correlation coefficient and V-R complex construction, topological feature extraction, and classification using machine learning algorithms.
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machine learning classification performance of the multimodal 
persistent topological features. The third part details the classification 
accuracy and feature distribution of the two types of features.

4.1 Persistence image

In the experiment, persistent homology filtering was applied to 
the two groups of subjects across five frequency bands. The results are 
shown in Figure 6, which illustrates significant differences in the PD 
between healthy subjects and patients in each frequency band. In the 
alpha band, both patients and healthy subjects exhibited a large 
number of two-dimensional topologies clustered in the shorter 
threshold region, suggesting the presence of dense, unobservable 

holes. However, for more persistent two-dimensional topological 
features, the two-dimensional topology of the patients was tighter 
than that of the healthy subjects, with shorter edge relations. This 
trend was also observed in the Beta band, where the two-dimensional 
topology of healthy subjects was generally more clustered in the 
higher threshold portion of the distribution compared to the 
schizophrenia patients. The Delta and Gamma frequency bands 
showed similar performance. In the Theta frequency band, the 
two-dimensional topological distribution of healthy subjects was 
mainly concentrated at high-threshold and low-threshold positions, 
while for patients, it was mainly concentrated at mid-threshold 
positions. Overall, the topology of patients was more persistently 
homotopic relative to healthy subjects. These observations indicate 
that the distribution of topological features between patients and 

FIGURE 4

Adjacency matrix diagram of two groups of subjects in the γ-band. (A) represents schizophrenia patient and (B) represents healthy subject. The size is 
59*59, and the right side is the scale label, the lighter color indicates the higher correlation between two two nodes.

FIGURE 5

PD of subjects in the two groups in the γ-band. (A) shows schizophrenia patient, and (B) shows the healthy subject. Consisting of (birth, death, dim), 
red dots indicate 0-dimensional and green dots indicate 1-dimensional data.
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TABLE 4 Comparison of the classification performance of multiple 
classifiers with different features.

Features LR SVM RF Light 
GBM

Diagram properties 0.703 0.678 0.722 0.739

BC 0.738 0.741 0.752 0.755

PE 0.697 0.721 0.749 0.744

PL 0.655 0.706 0.721 0.734

HM 0.823 0.811 0.817 0.841

BC + PE + PL + HK 0.879 0.854 0.866 0.913

healthy subjects is distinct and regular, suggesting that these features 
have learnable properties.

4.2 Machine learning classification effect

The extracted topological features of each subject in each 
frequency band were combined to form the training data. This 
resulted in n subjects generating 5 (frequency bands) *N pieces of 
data, with the feature dimension of each piece of data being m 
(number of extracted features) + 1 (frequency band sequence 
number). For the extracted data, we used four machine learning 
classification models (LR, SVM, Random Forest, Light GBM) for 
classification and evaluated feature performance using accuracy. 
Additionally, we  compared the global and local features 
(modularity, local efficiency, clustering coefficient, and 
characteristic path length) of the brain network based on 
traditional graph theory and a single persistent feature in a multi-
machine learning classification model. The results, shown in 
Table 4 using fivefold cross-validation, indicate that the accuracy 
of multimodal persistent features is higher. Based on the results in 
Table 4, we used the Light GBM classifier, which had the highest 
accuracy, to compare different features using multiple indices. 
Under the four indices of accuracy, precision, recall, and F1 score, 
multimodal persistent features demonstrated better performance. 
The results are shown in Table 5.

4.3 Persistent topological feature 
distribution

As seen in Table 4, the HK, PE, and PL (Gaussian kernel standard 
deviation 3.2, 1-parameter) features in the Light GBM boosted tree 
model are significantly effective in identifying first-episode schizophrenia 
patients. These features focus on different aspects of the persistent 
topological features. HK primarily addresses the threshold distribution 
of PD, specifically the birth and death times of the persistent topological 
features, while PL emphasizes changes in the persistent topological 
features during filtration and the magnitude of these changes. The 
distributions of these two features are shown in Figure 7. There are 

significant differences in the distribution of HK and PL features between 
patients and healthy subjects across different frequency bands. In the 
Delta and Theta bands, the distribution of HK values in patients is more 

TABLE 2 Selection of topological feature parameters.

Topological features Parameters selection

PL

1 layer 1 norm

2 layers 1 norm

1 layer 1 norm

2 layers 1 norm

BC
1 norm

2 norms

HK

Gaussian kernel standard deviation 1.6 1 norm

Gaussian kernel standard deviation 3.2 1 norm

Gaussian kernel standard deviation 1.6 2 norms

Gaussian kernel standard deviation 3.2 2 norms

PE none

TABLE 3 Topological feature numbers.

Number Topological features

1 Landscape “p”: 1, “n_layers”: 1, “n_bins”: 100 H0

2 Landscape “p”: 1, “n_layers”: 1, “n_bins”: 100 H1

3 Landscape “p”: 1, “n_layers”: 2, “n_bins”: 100 H0

4 Landscape “p”: 1, “n_layers”: 2, “n_bins”: 100 H1

5 Landscape “p”: 2, “n_layers”: 1, “n_bins”: 100 H0

6 Landscape “p”: 2, “n_layers”: 1, “n_bins”: 100 H1

7 Landscape “p”: 2, “n_layers”: 2, “n_bins”: 100 H0

8 Landscape “p”: 2, “n_layers”: 2, “n_bins”: 100 H1

9 Betti “p”: 1, “n_bins”: 100 H0

10 Betti “p”: 1, “n_bins”: 100 H1

11 Betti “p”: 2, “n_bins”: 100 H0

12 Betti “p”: 2, “n_bins”: 100 H1

13 Heat “p”: 1, “sigma”: 1.6, “n_bins”: 100 H0

14 Heat “p”: 1, “sigma”: 1.6, “n_bins”: 100 H1

15 Heat “p”: 1, “sigma”: 3.2, “n_bins”: 100 H0

16 Heat “p”: 1, “sigma”: 3.2, “n_bins “:100 H1

17 Heat “p”: 2, “sigma”: 1.6, “n_bins”: 100 H0

18 Heat “p”: 2, “sigma”: 1.6, “n_bins”: 100 H1

19 Heat “p”: 2, “sigma”: 3.2, “n_bins”: 100 H0

20 Heat “p”: 2, “sigma”: 3.2, “n_bins”: 100 H1

21 Persistence Entropy H0

22 Persistence Entropy H1

TABLE 5 Comparison of the classification effects of different features.

Features Accuracy Precision Recall F1

Diagram properties 0.739 0.720 0.825 0.769

BC 0.755 0.731 0.844 0.783

PE 0.744 0.767 0.737 0.752

PL 0.734 0.831 0.621 0.711

HM 0.841 0.839 0.864 0.851

BC + PE + PL + HK 0.897 0.887 0.922 0.904
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scattered and inconsistent compared to healthy subjects. In the Alpha 
band, the distribution of PL values shows a significant difference between 
patients and healthy subjects, suggesting that patients exhibit more 
variability throughout the persistent homology filter, whereas healthy 
subjects display more stability. This trend is also observed to varying 
degrees in the other frequency bands.

4.4 Single feature classification accuracy

The topological features extracted from the experimental data (with 
a training set consisting of 73 psychotic subjects and 60 normal subjects, 
and a test set of 30 psychotic subjects and 30 normal subjects) were 
selected using a univariate feature selection algorithm. The accuracy of 
single-attribute classification is shown in Table 6. Attributes with good 
performance (AC ≥ 0.55) or (AC ≥ 0.60) were selected. These attributes 
were then used for machine learning classification to assess classification 
performance, with the accuracy results shown in Table 7. After selecting 

the attribute combination, those with AC ≥ 0.6 were used as the input for 
the classifier. Grid parameter adjustment was performed to select 
appropriate model parameters. After optimizing the model, tenfold cross-
validation was conducted, and the cross-validated classification results 
were averaged (Kohavi, 1995). The classification accuracies are shown in 
Table 7.

5 Statistical results and analysis

A loop is the simplest structure that introduces structural 
redundancy and feedback dynamics into a network. Loops are 
prevalent in network research and, along with star structures, link 
structures, and others, are considered fundamental components of 
networks, especially complex networks (Boccaletti et al., 2006). It has 
been shown that networks designed based on loop structures have 
optimal synchronization ability (fully homogeneous networks) and 
control robustness. Additionally, loop structures are used to 

FIGURE 6

PD of two groups of subjects in five frequency bands.

FIGURE 7

Feature distributions of HK (Gaussian kernel standard deviation 3.2, 1-norm) and PL (1-norm) for the two groups of subjects in the five frequency bands.
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TABLE 6 Single feature classification accuracy.

Feature 
number

Alpha Beta Delta Gamma Theta

1 0.62 0.62 0.50 0.55 0.51

2 0.55 0.46 0.41 0.60 0.57

3 0.58 0.58 0.67 0.62 0.58

4 0.64 0.64 0.48 0.50 0.62

5 0.50 0.51 0.58 0.66 0.48

6 0.58 0.50 0.57 0.60 0.37

7 0.58 0.60 0.67 0.60 0.58

8 0.60 0.57 0.46 0.58 0.51

9 0.57 0.48 0.51 0.53 0.51

10 0.57 0.55 0.42 0.55 0.55

11 0.62 0.58 0.64 0.58 0.44

12 0.44 0.55 0.60 0.64 0.53

13 0.48 0.57 0.57 0.42 0.48

14 0.50 0.39 0.51 0.60 0.46

15 0.60 0.75 0.69 0.75 0.58

16 0.39 0.55 0.66 0.50 0.55

17 0.58 0.78 0.62 0.73 0.64

18 0.58 0.53 0.60 0.58 0.60

19 0.57 0.62 0.62 0.66 0.62

20 0.53 0.51 0.60 0.64 0.50

21 0.58 0.67 0.76 0.75 0.69

22 0.46 0.57 0.57 0.48 0.55

TABLE 7 Accuracy summary tables for feature combination and model optimization comparison.

Alpha Beta Delta Gamma Theta

All properties 0.645 0.756 0.632 0.782 0.713

Single feature combination with accuracy AC ≥0.55 0.696 0.875 0.821 0.854 0.821

Single attribute ac ≥ combination of features for 0.60 0.729 0.729 0.875 0.821 0.854

Classification accuracy before optimization 0.729 0.875 0.854 0.875 0.854

Classification accuracy after optimization 0.875 0.908 0.946 0.908 0.925

characterize the degree of local node aggregation within the network 
and to measure the degree of approximation between the network and 
tree networks.

The circle structure brings structural redundancy and feedback 
dynamics to a network. Studies indicate that networks designed based 
on circle structures have optimal synchronization capability (fully 
chiral networks) and control robustness. Additionally, circle structures 
are used to depict the degree of node clustering locally in the network 
and to measure the proximity between the network and tree networks.

The importance or role of loops in a network can be measured by 
the circle ratio (Ebert et al., 2016). The circle ratio is a new metric for 
ranking the importance of nodes. Comparing it with existing metrics 
reveals that the ranking results for important nodes identified by the 
circle ratio differ significantly from those identified by traditional 
metrics. When a complex network is attacked maliciously using the 

important nodes identified by the circle ratio, the network collapses 
faster. Alternatively, the network can reach a synchronized state faster 
by controlling these important nodes. This analysis suggests that the 
circle ratio is an effective alternative measure of node importance in 
complex networks.

The circle ratio refers to the extent to which a node participates in 
the shortest circles of other nodes. The shortest circle is the minimum 
length loop that contains this node. Traditional node centrality 
metrics focus on the node itself, considering the contributions of 
neighboring nodes. However, the circle ratio reverses this perspective, 
emphasizing how much a node contributes to its neighbors’ structural 
and dynamical processes. A node’s importance is determined by its 
participation in the neighborhood’s social roles (the number of circles 
containing it). This shift in perspective implies a philosophical change 
in assessing node importance (Zhao et al., 2020).

In each frequency band (five bands), each subject’s data is divided 
into four 40-s segments. After filtering the data, the results are 
presented as persistence graphs, where each point represents a 
homology group existing for a duration (excluding infinite values). 
The top five homology groups by duration are identified. Based on the 
birth and death times of each homology group, the corresponding 
two-dimensional simplices are identified. The points and edges of 
these simplices form a graph, from which each node’s circle ratio value 
is obtained. The top 10 nodes by circle ratio are recorded for each 
graph, resulting in 20 graphs per subject. The important nodes in the 
Delta band are shown in Table 8, and those in the Theta band are 
shown in Table 9.

Statistical analysis was performed for all five bands, revealing a 
significant relationship between certain salient features and clinical 
measurements in the delta band, as shown in Figure 8.

A significant relationship was found between certain salient 
features and clinical measures in the theta band, as shown in Figure 9.

6 Discussion

With the increasing popularity of complex networks, substantial 
advancements have been achieved in applying graph theory to brain 
networks. Utilizing traditional graph theory methods to extract features 
from brain networks for tasks like classification and prediction can 
significantly contribute to our comprehension of the pathogenesis and 
principles underlying schizophrenia. However, existing methods for 
disease classification are constrained by their focus solely on low-order 
graph features, thus posing challenges in capturing the diverse 
topological information inherent in the data (De Miras et al., 2023).

Persistent homology methods can play an important role in the 
extraction of topological information, but their potential in the 
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construction of brain networks has not been fully exploited (Chung 
et al., 2024). Given the shortcomings of existing models, we propose 
a new method to extract multimodal persistent topological features 
from the complex brain networks of first-episode schizophrenia 
patients and improve their classification accuracy. By applying 
persistent homology and topological data analysis methods, 
we successfully extracted multimodal persistent topological features 
from resting-state EEG signal data and described and analyzed these 
features using tools such as heat maps, persistent entropy, Betti curves, 

and persistent landscape features. The experimental results show that 
our extracted multimodal persistent topological features 
comprehensively reflect the global topological changes in the high-
dimensional brain network between first-episode schizophrenia 
patients and healthy subjects. In the persistent homology filtering, 
there is a significant difference between the PDs of healthy subjects 
and patients in each frequency band, and the overall topological 
change trend of the high-dimensional brain networks of healthy 
subjects and patients is found by observing the PD images in each 
frequency band. While the distribution of 2D topology of healthy 
subjects was more clustered in higher or lower regions in each 
frequency band, the overall topology of patients had more persistent 
homology relative to healthy subjects, showing significant regularity.

Compared to traditional graph theory-based methods and single 
persistent topological features (Yin et  al., 2023), our method 
significantly improves classification accuracy, classification accuracy 
of 94.6% based on extracted multimodal persistent topological 
features. Additionally, through data filtering and persistence graph 
analysis methods, we  transformed the raw data into persistence 
graphs and extracted the top five homology clusters. Based on the 
information from the homology clusters, we constructed the graph 
structure and calculated the circle ratio value of each node, using this 
node importance ranking metric to identify the important nodes in 
patients and normal subjects. The results showed that the important 
roles of the channels at the electrode positions of P4 and Fp1 in the 
subjects were the occipital lobe region of the right hemisphere of the 
brain and the anterior center of the brain, respectively, and that the 
important nodes of the subjects were changed from the occipital lobe 
region of the left hemisphere of the brain to the anterior center of the 
brain after the lesion, and that the changes in the brain regions of the 
subjects after the lesion indicated that the patients with schizophrenia 
had different degrees of changes in their perceptual and cognitive 
functions (Howes et al., 2023).

This study provides important clinical guidance for the early 
detection and diagnosis of patients with first-episode schizophrenia. 
By gaining a deeper understanding of the topological features of brain 

TABLE 8 The number of times the patient’s Delta band critical node was 
recorded.

Node number Number of times recorded

38 904

9 853

39 798

… …

11 7

49 5

15 4

TABLE 9 The number of times the patient’s Theta band critical node was 
recorded.

Node number Number of times recorded

9 975

8 925

38 874

… …

45 12

1 5

11 3

FIGURE 8

Some salient features and clinical measurements in the Delta band.
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FIGURE 9

Some salient features and clinical measurements in the Theta band.

networks, we can better understand the functional brain connectivity 
of schizophrenic patients, and the proposed method can also 
be applied to other clinical areas, such as the use of higher-order 
networks to capture topological information in the construction of 
brain networks in Alzheimer’s disease with mild cognitive impairment 
(Hao et al., 2024; Huo et al., 2024), which has been further improved 
in feature extraction, and the integration of artificial intelligence with 
practical applications, which can be  used to provide the basis for 
personalized treatment and intervention (Marshall et al., 2024).

7 Conclusion

In this paper, we propose a multimodal persistent topological 
feature extraction and classification method to address the problem 
that the use of single-modal persistent features in the analysis of brain 
networks based on persistent homology fails to fully exploit the rich 
topological information generated during the persistent homology 
filtering process. Based on the resting EEG data of the subjects, 
Pearson correlation was used to build brain networks and high-
dimensional, globally effective features extracted from PH filtering 
were used for research classification.

Future studies can further explore the application of multimodal 
persistent topological features in other psychiatric disorders, 
combining them with other neuroimaging data sources such as 
functional magnetic resonance imaging (fMRI) and 
magnetoencephalography (MEG), to more comprehensively reveal 
the complexity of brain networks. Additionally, further optimization 
of classifier models and validation methods is an important direction 
for future research to improve classification accuracy and stability.
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