
TYPE Original Research

PUBLISHED 06 January 2025

DOI 10.3389/fnhum.2024.1460139

OPEN ACCESS

EDITED BY

Michel Le Van Quyen,

Institut National de la Santé et de la

Recherche Médicale (INSERM), France

REVIEWED BY

Mario Valderrama,

University of Los Andes, Colombia

Keita Tanaka,

Tokyo Denki University, Japan

*CORRESPONDENCE

Nhan Duc Thanh Nguyen

ndtn@ece.au.dk

RECEIVED 05 July 2024

ACCEPTED 13 November 2024

PUBLISHED 06 January 2025

CITATION

Nguyen NDT, Mikkelsen K and Kidmose P

(2025) Cognitive component of auditory

attention to natural speech events.

Front. Hum. Neurosci. 18:1460139.

doi: 10.3389/fnhum.2024.1460139

COPYRIGHT

© 2025 Nguyen, Mikkelsen and Kidmose. This

is an open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Cognitive component of auditory
attention to natural speech
events

Nhan Duc Thanh Nguyen*, Kaare Mikkelsen and

Preben Kidmose

Center for Ear-EEG, Department of Electrical and Computer Engineering, Aarhus University, Aarhus,

Denmark

The recent progress in auditory attention decoding (AAD) methods is based

on algorithms that find a relation between the audio envelope and the

neurophysiological response. The most popular approach is based on the

reconstruction of the audio envelope from electroencephalogram (EEG) signals.

These methods are primarily based on the exogenous response driven by the

physical characteristics of the stimuli. In this study, we specifically investigate

higher-level cognitive responses influenced by auditory attention to natural

speech events. We designed a series of four experimental paradigms with

increasing levels of realism: a word category oddball paradigm, a word category

oddball paradigmwith competing speakers, and competing speech streams with

and without specific targets. We recorded EEG data using 32 scalp electrodes,

as well as 12 in-ear electrodes (ear-EEG) from 24 participants. By using natural

speech events and cognitive tasks, a cognitive event-related potential (ERP)

component, which we believe is related to the well-known P3b component,

was observed at parietal electrode sites with a latency of ∼625 ms. Importantly,

the component decreases in strength but is still significantly observable in

increasingly realistic paradigms of multi-talker environments. We also show that

the component can be observed in the in-ear EEG signals by using spatial

filtering. We believe that the P3b-like cognitive component modulated by

auditory attention can contribute to improving auditory attention decoding from

electrophysiological recordings.
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1 Introduction

A remarkable aspect of human perception is our ability to segregate concurrent

auditory objects and selectively attend to these objects. It is an ability we are readily familiar

with and utilize in many situations, for example in “cocktail party" scenarios, to volitionally

focus on the speaker(s) of interest. However, for individuals with hearing impairment,

the ability to segregate sounds is often significantly reduced, even when using a hearing

device to compensate for the elevated hearing threshold. This motivates the development

of smarter hearing aids with integrated modules to decode the auditory attention of users.

In turn, this increases interest in gaining a deeper understanding of how the processing

of auditory stimuli impacts EEG recordings. The process of decoding auditory attention,

based on electrophysiological signals, normally electroencephalography (EEG), is referred

to as auditory attention decoding (AAD).
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Previous work on AAD has successfully investigated the

correlation between the recorded EEG and the envelope of the

attended sound stream (Aiken and Picton, 2008; Ding and Simon,

2012) to identify the attended sound stream. However, this

approach largely relies on how attention affects the early response

to the physical attributes of the stimuli, rather than the subsequent

cognitive processing related to the semantics of the speech of the

audio. In this study, we have investigated the extent to which this

cognitive processing can be estimated from real speech streams,

to pave the way for future AAD implementations, in combination

with the envelope following response.

As previously noted, the majority of state-of-the-art AAD

methods rely on the increased entrainment to the envelope of

attended sounds compared to unattended sounds (Ding and Simon,

2012). The impact of attention on the envelope-following response

forms the foundation for research in the field of AAD. In AAD, the

attended speech stream is determined as the one whose envelope

has the highest correlation with the reconstructed envelope. The

majority of studies have trained linear (O’Sullivan et al., 2015;

Biesmans et al., 2017; Geirnaert et al., 2021a; Aroudi et al., 2019;

O’Sullivan et al., 2017) and non-linear (de Taillez et al., 2020;

Nogueira et al., 2019; Xu et al., 2022) models to predict the

attended audio envelope frommulti-channel EEG (called backward

modeling). Other studies use linear models to predict the EEG

based on the attended audio envelopes (called forward modeling)

(Wong et al., 2018; Alickovic et al., 2019). Another approach, called

canonical correlation analysis (CCA) (Hotelling, 1936), combines

a backward model on the EEG and a forward model on the

speech envelope tomaximize the correlation of their outputs jointly

(de Cheveigné et al., 2018). The CCA method has so far been

the best method with a decoding accuracy of up to ∼90% for a

decision window length of 30 s tested on specific datasets in a well-

controlled environment, with two competing speakers (Geirnaert

et al., 2021b).

Since our investigation concerns the cognitive processing of

the stimuli, our analysis relies heavily on Event-Related Potentials

(ERPs), caused by the processing of specific auditory events.

Due to the high temporal resolution (Woodman, 2010), there

has been an interest in analyzing ERPs for investigating selective

attention mechanisms. Extensive research has been dedicated

to understanding which components and cognitive systems are

influenced by attention. Some researchers (Broadbent, 1958;

Treisman, 1964; Treisman and Geffen, 1967) have hypothesized

an early selection mechanism when the sensory systems are

overloaded by multiple inputs, leading to the selection of input

for further processing. A study (Hillyard et al., 1973) found that

the N1 component (occurring around 150 ms) was affected by

the attention (amplitude was larger when the stimuli presented in

the attended ear than those in the unattended ear). This supports

a hypothesis of early selection for attention. However, another

line of research has focused on attention mechanisms in the post-

perceptual processes (Moray, 1959; Deutsch and Deutsch, 1963).

Others (Luck andKappenman, 2011) argued that selective attention

could happen in any system in the brain when that system becomes

overloaded. That means attention may happen at either the early

or late stage or even both, depending on the nature of stimuli and

task. For instance, in tasks combining several complicated cognitive

tasks and responses, we might expect an overload in the memory

and response systems and in consequence an impact on the late

post-perceptual components. Therefore, late cognitive components

like the P300 become relevant in the study of attention. The

P300 component, also known as P3, is an endogenous potential,

as it is related to cognitive processing rather than the physical

attributes of a stimulus. More specifically, the P300 is thought to

reflect processes involved in stimulus evaluation or categorization

(Polich, 2007; Kutas et al., 1977). The P300 has a positive-going

amplitude peaking around 300 ms, and the peak will vary in

latency from 250 to 500 ms or more, depending on stimuli, task,

and subject. Numerous studies have investigated how auditory

attention affects P3. For instance, the more attention or resources

allocated to process a stimulus, the larger the P3 amplitude is

(Isreal et al., 1980; Kramer et al., 1983; Mangun and Hillyard,

1990). Following the early findings, recent studies have investigated

the manipulation of attention to different ERP components to see

the differences between different neurological population groups.

Schierholz et al. (2021) has demonstrated the effect of attention on

N1, N2, P2, and P3 ERP components on both cochlear-implant

(CI) users and normal-hearing (NH) people. The study has also

found that there is enhanced attentional modulation on N1 latency

in CI users compared to the NH group. Another study (Vanbilsen

et al., 2023) has investigated the auditory attention of neurological

populations and found impairments in auditory processing in

terms of magnitude and delay of the P3 component compared

to the healthy group. This suggests that the P3 component could

potentially be a reliable feature for AAD.

Currently, the majority of AAD research relies on traditional

scalp EEG, which is obtrusive and uncomfortable for long

recordings in real-world environments. This necessitates the

development of less invasive methods for capturing EEG signals. As

a response to this challenge, there has been an increasing interest

in the development of miniaturized and wearable EEG devices

that provide a discrete, unobtrusive, and user-friendly recording

solution. One such solution is so-called ear-EEG systems Kappel

et al. (2019), where EEG is recorded from electrodes placed in the

ears. Numerous studies have compared ear-EEG and conventional

scalp EEG, e.g. in terms of auditory middle and late latency ERPs,

signal-to-noise ratio, power spectrum Mikkelsen et al. (2015) and

P3 response Farooq et al. (2015). Additionally, in the field of

AAD, in-ear single sensor Fiedler et al. (2017) and around-the-ear

sensors Holtze et al. (2022) have successfully been demonstrated

to unobtrusively monitor auditory attention to tone streams and

continuous speech streams.

Inspired by the above-mentioned works on ERP methods for

AAD, our study uses speech streams with different tasks and levels

of realism, to methodically probe to which extent the cognitive

processing of events (words) can be detected as an ERP. We

consider the feasibility of this method not only in terms of how

realistic the listening task can be but also in how “realistic" the

recording setup can bemade. This means both investigating a series

of progressively more demanding and realistic listening scenarios,

but also performing this investigation using both conventional

scalp EEG and a dry-contact ear-EEG setup (Kappel et al., 2019),

which is likely to bemore relevant for future AAD implementations

in, for instance, brain-controlled hearing aids.
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2 Methods

2.1 Participants

Twenty-four native Danish-speaking subjects (26.87 ± 8.44

years, 13 male, five left-handed) participated in the study. All

subjects provided written informed consent and reported normal

ability and no neural disorders. The experimental protocol was

approved by the Research Ethics Committee (Institutional Review

Board) at Aarhus University, approval number 2021-79.

2.2 Experimental paradigms

The study comprised four experimental paradigms. The

paradigms represent an increasing level of complexity, and all

participants conducted all four experiments sequentially from

paradigm 1 to 4.

2.2.1 Paradigm 1: word category oddball
This paradigm was designed to be similar to the conventional

oddball paradigm, in that subjects were presented with a sequence

of two different classes of spoken words: animal names and cardinal

numbers, or color names and cardinal numbers from a loudspeaker

situated one meter in front of the subject. The animal names

and color names were predefined as the target events, while the

cardinal numbers were the non-target events. The target and non-

target events in this context play similar roles as oddball and

standard events in the classical oddball paradigm. However, unlike

conventional oddball paradigms, the discrimination between the

target and non-target events was not based on the physical

attributes of the stimuli but rather on the semantics of the stimuli.

The stimuli for each trial were generated by randomly mixing

twenty target and non-target events, with the number of target

events between 2 and 5 and the first two always being non-targets.

The proportion of target events was chosen based on two criteria:

(1) to provide enough data for analysis, and (2) not too many since

less probable events would produce a larger cognitive response.

The distance between two consecutive events was random and

uniformly distributed between 0.8 and 1.2 s while keeping the total

length of the trial at 20 s. In each trial, the subject was asked to

pay attention to the target events and passively count them. At the

end of each trial, the subject reported the number of target events

and received feedback on their accuracy. The counting task and

feedback were used to encourage the subject to remain engaged

in the task. There were sixteen trials in this paradigm. The target

events in the first eight trials were animal names and the target

events in the last eight trials were color names.

2.2.2 Paradigm 2: word category with competing
speakers

Paradigm 2 was an extension of Paradigm 1, using similar

sequences of twenty discrete spoken words. However, instead of

a single stream of words, two competing streams were presented

simultaneously by two speakers located at equal distances on either

side of the subject, placed 60 degrees to the left and right. In each

trial, the subject was asked to pay attention to only the target events

in one of the streams and disregard the other stream. The subject

was instructed to passively count the number of target events in

the attended stream and report the count after the trial. The target

events in the twenty trials were balanced between the two classes

of events. Additionally, the instruction on which stream to attend

was randomized but balanced between the left and right speakers to

avoid bias toward a particular listening direction.

2.2.3 Paradigm 3: competing speech streams
with targets

In Paradigm 3, the setup was similar to the setup of Paradigm 2.

The subject was presented with two competing streams from the

same two speakers as in Paradigm 2. However, in this case, the

stimuli in each speaker were not sequences of spoken words but

snippets of different stories and each snippet had a duration of∼20

s. Each trial had one class of words predefined as target words. For

instance, a target class could be human names. In each trial, the

subject was asked to attend to one of the two streams (left or right)

and focus on the target words of that stream. At the end of the

trial, the subject answered a question about the target words and

received feedback. There were four classes of target words: animal

names, human names, color names, and plant species, distributed

over five different stories. The story of the attended stream in each

trial continued from where it ended in the previous trial. This made

the stream easier to follow and attend. There were 20 snippets in

total. Each snippet appeared twice in two different trials: one time

as the attended stream and one time as the unattended stream. The

attended streamwas also randomized and balanced between the left

and right speakers.

2.2.4 Paradigm 4: competing speech streams
without targets

Paradigm 4 was designed to simulate a real-world scenario of

selective listening in a setting with multiple sound sources. Two

competing streams from the same loudspeaker setup as utilized

in Paradigm 2 and 3 were presented to the subject, each stream

contained a single-speaker narrative. No particular target words

were specified for this paradigm. The subject was instructed to

attend to one stream while disregarding the other in each trial.

Following each trial, the subject was probed with a question

about the content and was provided with feedback. The data

collected from this paradigm was not employed in any analyses

or results presented in this paper but is merely described here for

completeness.

The motivation for this experimental design was to investigate

the cognitive processing of speech events. Advancing from

Paradigm 1 to 3, the experimental complexity was increased in

terms of task difficulty and how realistic it was compared to a

real-world scenario, thus enabling investigation of the impact of

the attention mechanism on the strength and distinctiveness of the

cognitive component.

2.3 Stimuli

The stimuli used in the whole experiment were in Danish

and synthesized using the Google Text-to-Speech tool v2.11.1
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FIGURE 1

Illustration of the stimuli for the four paradigms. The text above or below the waveforms shows the corresponding word utterance. The red and

green boxes indicate attended and unattended target words respectively. (A) Paradigm 1: Word category oddball. (B) Paradigm 2: Word category with

competing speakers and attention to the left. (C) Paradigm 3: Continuous speech with targets and attention to the right. (D) Paradigm 4: Continuous

speech without targets.

(Text-to-Speech AI, 2022). The voice configuration was randomly

selected between da-DK-Wavenet-A (female) and da-DK-Wavenet-

C (male) to generate each snippet in Paradigm 3 and 4. In the

end, there were 14 out of 20 male voice snippets in Paradigm

3 and 24 out of 40 male voice snippets in Paradigm 4. Each

voice configuration was selected to generate every single word

in Paradigm 1 and 2 once. The speed was set at 0.85 and the

authenticity was verified by native Danish speakers to make sure

that the pronunciation was natural and clear. In this process, minor

changes were made to the text to increase speech quality. The target

words in the paradigms were selected to be short (1 or 2 syllables)

to resemble the oddball events. The details of stimuli generation are

outlined below:

• Paradigms 1 and 2 shared the same words. The waveform

of each word was normalized to have the same root mean

square (RMS) amplitude. The normalized sound files were

then concatenated to fit the experimental design.

• The stimuli for Paradigms 3 and 4 were generated similarly.

Text scripts of the stories were first made and then used for

audio synthesis using the text-to-speech tool. The audio files

were then sliced into different snippets and normalized to

have the same RMS amplitude. The text scripts for Paradigm 3

were created by native Danish speakers. For Paradigm 4, the

text scripts were sourced from two books (The Hobbit and

Northern Lights) and excerpts from Danish radio broadcast

news covering politics, society, education, sports, and social

networks. The word onset times, to be used in the subsequent

ERP analysis, was extracted from the text-to-speech tool.

An illustration of the stimuli for all paradigms is shown in

Figure 1.
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FIGURE 2

Experimental setup: (A) Overall setup. (B) Example of an earpiece for the left ear with electrodes in positions A, B, C, T, E, and I (according to the

electrode position system proposed in Kidmose et al. (2013)). (C) Example of an earpiece mounted in the ear.

FIGURE 3

Grand average ERP waveforms for Paradigm 1. The ERPs are calculated from electrode Pz referenced to the average of all scalp electrodes. The

horizontal bar at the bottom represents the detected temporal clusters and their corresponding p-values from the cluster permutation test for the

di�erence ERP waveform.

2.4 Experimental setup and data
acquisition

Participation in the study comprised two visits to the lab. At

the first visit, an ear impression was taken to create individualized

earpieces, which were used as part of the ear-EEG device (Kappel

et al., 2019) to record EEG signals from the ears. The EEG

was recorded at the second visit. The recording room was an

acoustically shielded listening room with 0.4 s of reverberation

time. The subject was seated in a chair in front of the loudspeakers,

see Figure 2A. The EEG was recorded concurrently from 32 scalp

electrodes and a left and right ear-EEG earpiece with six electrodes

on each earpiece, see Figures 2B, C. EEG data were collected

using two TMSi Mobita amplifiers. Because the scalp and ear-EEG

electrodes were made of different materials (Ag/AgCl and IrO2,

respectively), they were connected to separate amplifiers. However,

the two amplifiers shared a common electrode position that had

a combined Ag/AgCl and IrO2 electrode, which was placed at the

Fpz location. This allowed for the scalp and ear-EEG data to be

combined during post-processing. The 32 scalp electrodes were
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FIGURE 4

Grand average scalp topographies from 400 to 800 ms post-stimulus of the di�erence ERP for Paradigm 1. Black dots show significant electrodes

and white dots show insignificant electrodes.

FIGURE 5

Definition of di�erent experimental conditions. AT: target event in the attended stream, AN: non-target event in the attended stream, UT: target event

in the unattended stream, UN: non-target event in the unattended stream. The target events (AT, UT) were predefined in each stream while the

remaining words were considered as the non-target events (AN, UN).

located according to the 10/20 system. Figure 2 shows the details

of the experimental setup. The experiments were implemented in

Python using the PsychoPy open-source platform v2022.1.4 (Peirce

et al., 2019).

All 24 subjects completed all four experiments. The EEG

sampling rate was 1,000 Hz for both amplifiers and referenced to

the average channels within each amplifier as the default setup of

the amplifiers. The data were then off-line re-referenced to the

common reference electrode in each amplifier, cut into trial blocks,

and concatenated to discard the data between trials. Data from each

of the four paradigms were saved in separate files following the

BIDS format (Gorgolewski et al., 2016).

2.5 Data analysis

The percentage of correct answers from each participant was

used as a post hoc data exclusion criterion. In the following, we

outline the analysis pipeline used in the data analyses:

1. Reference scalp EEG data to the averaged channel of all scalp

channels and ear-EEG data to the averaged channel within each

ear.

2. Apply zero-phase FIR bandpass filter with passband corner

frequencies 0.1 and 40 Hz.

3. Apply the Independent Component Analysis (ICA) method to

remove eye components (only for scalp EEG)

4. Epoch data from –200 ms to 1 second around the event onset

and group into the two experimental conditions.

5. Apply baseline correction 200 ms pre-stimulus.

6. Apply peak-to-peak epoch rejection. Epochs containing min-

max amplitude difference values above 200 µV were rejected

across all channels.

7. Calculate the individual average ERPs and grand average ERPs

for each group by averaging across epochs within the group.

The processing pipeline was applied to the saved dataset from

the data acquisition step. Note that the referencing applied before

saving the data in BIDS format does not affect the subsequent

analysis in this manuscript, as the scalp EEG and ear EEG in step (1)

are re-referenced to the average of the scalp and ear, respectively.

Thereby the scalp- and ear-EEG signals become independent..

In step (3), the ICA method was performed on the scalp EEG

data using the fastICA method (Hyvarinen, 1999). ICs with a

Pearson correlation coefficient with the electrooculography (EOG)

channel larger than 0.8 were considered as EOG artifacts. The

measurement space signals were reconstructed, using the mixing
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FIGURE 6

Comparison of the grand average ERPs of di�erent experimental conditions from channel Pz in the multi-talker environment. (A) Results of Paradigm

2: Word category with competing speakers. (B) Results of Paradigm 3: Competing speech streams with targets. For each paradigm, panel (1), (2), (3),

and (4) represent the comparison of AT vs. AN, AT vs. UT, AN vs. UT, and UT vs. UN, respectively. The horizontal bars at the bottom of each panel

represent the detected temporal clusters and their corresponding p-values (only for the significant clusters) from the cluster permutation test for the

di�erence ERP waveforms.

matrix, by leaving out the IC’s identified as EOG artifacts. The

processing pipeline was implemented using Python 3.9.9 and the

supported library MNE-Python v1.2.0 (Gramfort, 2013). In step

(4), the event onset was determined as the onset of the sound of

the corresponding word in the speech by using the text-to-speech

tool during the stimuli synthesis. The baseline correction in step (5)

was applied by subtracting the mean of the baseline period from the

entire epoch.

2.6 Electrode configuration selection

2.6.1 Scalp EEG
The initial analysis of scalp EEG was based on data recorded

from the Pz electrode referenced to the average of the scalp

electrodes. The choice of electrode configuration is justified by the

design of the experimental paradigms resembling the structure of

conventional P3b paradigms, from which it is well known that the

peak of the P3b wave is largest in the central parietal region (Polich,

2007).

2.6.2 Ear-EEG
In general, EEG signals and ERPs estimated from ear-EEG

recordings have smaller amplitudes and lower signal-to-noise ratios

as compared to scalp EEG. This is mainly due to small electrode

distances, lower spatial coverage of the scalp, and higher electrode

impedances (Kappel et al., 2019). Additionally, due to inter-subject

variability in the ear anatomy, there is a certain variation in the

placement of the ear electrodes, which adds to the inter-subject

variability of the ear-EEG signals. To optimize the SNR of the ERP

waveform, we applied a spatial filter (Biesmans et al., 2015). The

spatial filter was optimized for each ear individually, and computed

in the following way:

Let C be the number of channels, N be the number of samples

within the duration of an epoch, ET and EN be the sets of the

target and non-target epoch indexes, nT and nN be the number

of the target and non-target epochs, Xi ∈ R
C×N be an epoch of

multi-channels ear-EEG signals and w ∈ R
C×1 be the spatial filter

(weighting vector). The goal of the spatial filtering method is to find

the optimal w to maximize the ratio of output energy of the target

ERP to the output of non-target ERP and other neural activities:
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FIGURE 7

Scalp topographies of AT-AN and AT-UT di�erence ERPs between 400 and 800 ms post-stimulus for discrete event competing paradigm. Black dots

show significant electrodes, and white dots show insignificant electrodes. (A) AT vs. AN. (B) AT vs. UT.
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, (4)

with XN ∈ R
C×NnN the concatenation of non-target epochs

along the time axes, RT ∈ R
C×C the auto-correlation matrix of

averaged target epoch XT and RN ∈ R
C×C the auto-correlation

matrix of XN. From (4), it appears that if ŵ is a solution, then

any scalar multiplied with ŵ is also a solution. The unique solution

can be obtained by introducing the constraint w⊺
RNw = 1 (i.e.,

normalizing the output power of the non-target ERPs). Thus,

the optimal spatial filter can be found by solving the following

optimization problem:

ŵ = argmax
w

w
⊺
RTw, (5)

subject to the constraint

w
⊺
RNw = 1. (6)
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FIGURE 8

ERP and di�erence waves for scalp and ear-EEG signals. The dotted lines represent the target ERP waveforms. The dot-dash lines represent the

non-target ERP waveforms. The solid lines represent the di�erence ERP waveforms. The top row presents the grand average ERP waveforms

calculated from electrode Pz, with reference to the average of all scalp electrodes. The middle row and bottom row present the grand average ERP

waveforms obtained from the output of the spatial filter applied to six left-ear electrodes, with reference to the average of these electrodes, and the

output of the spatial filter applied to six right-ear electrodes, with reference to these electrodes, respectively. The gray areas between the di�erence

ERP waveforms and the horizontal lines y = 0.5/y = −0.5 represent the clusters detected by the two-side permutation test with threshold 0.5. The

cluster p-values lower than 0.2 are shown on the horizontal bars at the bottom of each subplot.

Solving the optimization problem described by Equations 5,

6 using the Lagrange multipliers method leads to a generalized

eigenvalue problem with the solution being the eigenvector

which corresponds to the largest generalized eigenvalue of RT

and RN.

As the spatial filter is optimized based on data, a rigorous cross-

validation technique is necessary to avoid overfitting. Therefore, the

ERP was estimated from the ear-EEG using the following cross-task

validation scheme:

1. For each paradigm and for each ear (left and right), a spatial filter

was estimated based on data from the other two paradigms. Each

filter was trained using six channels within an ear referenced to

the average channel of that ear.

2. The spatial filters from step 1 were applied to all epochs from the

paradigm that was not used for training those filters.

3. The individual ERPs and the grand average ERPs were calculated

from the output of step 2 for each paradigm.

2.7 Statistical analysis

Cluster permutation test is a non-parametric statistical

hypothesis testing method, introduced to the field of

electrophysiology in the seminal paper by Eric Maris and Robert

Oostenveld (Maris and Oostenveld, 2007), to circumvent the

multiple comparison problems in the analysis of ERP’s. Specifically,

to test the cognitive processing effect on the attended speech events

at a particular time t, the permutation test is performed in the

following way:

1. Calculate the test statistic (mean value across epochs) of the

epoched data for each experimental condition (attended events

and unattended events).

2. Pool all epochs from both conditions.

3. Randomly divide the epochs into two subsets, with the number

of epochs in each subset equal to the number of epochs in each

experimental condition.
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4. Calculate the test statistic (mean value across epochs) of each

subset.

5. Repeat steps 3 and 4 a large number of times (1,000 times in this

study) and construct the histogram of the test statistic.

6. The p-value of the test is the proportion of the number of

random partitions that resulted in data at least as extreme as the

observed data from step 1.

The cluster-based permutation test was used to determine the

significance of the spatial and temporal locations of the effect,

based on the ERP waveform and topography, respectively. The

cluster-based permutation test follows a similar procedure to the

permutation test described above. However, in the cluster-based

permutation test, the test statistics are calculated at the cluster level.

For instance, when testing the significance of the temporal location,

the following steps are taken to find the test statistics for each

permutation:

1. For each sample in the epoch, calculate the difference between

the mean values of two experimental conditions (attended

events and unattended events).

2. Find all clusters. A cluster is a set of temporally adjacent data

points that have difference values larger (or absolutely larger for

a two-sided test statistic) than a threshold.

3. Calculate test statistics for each cluster by summing the mean

difference within a cluster.

4. The largest statistic among clusters is the permutation test

statistic.

Note that, as highlighted in the original study (Maris and

Oostenveld, 2007), the threshold used in step (2) to form clusters

does not influence the false alarm rate of the test, but it does impact

the test’s sensitivity.

3 Results

Twenty-four subjects were included in the study and all subjects

completed all four experiments. During the experiments, subjects

were probed with a question after each trial, to allow the exclusion

of subjects who were not following the attention instructions.

However, all subjects had a satisfying rate of correct answers,

therefore no subjects were excluded based on their behavioral

responses. The individual accuracies for each paradigm are shown

in Supplementary Table S1.

In the following sections, ERP quantification was performed by

measuring local peaks of the waveform within the time window of

significant duration found by the cluster permutation test.

3.1 Paradigm 1: word category oddball

The individual ERPs were calculated by averaging across epochs

corresponding to the target and non-target words, using the

analysis pipeline described in Section 2.5. The difference ERPs

were obtained by subtracting the non-target ERPs from the target

ERPs. As shown in Figure 3, the grand average difference ERP of

electrode Pz demonstrates a positive going approximately from 400

to 950 ms and represents a significant difference between the two

experimental conditions. To test the significance of the temporal

location of the effect, a cluster permutation test was performed

as described in Section 2.7. This threshold yielded two clusters

in the difference waveform, see the bottom bar in Figure 3. The

cluster permutation test resulted in a significant cluster within the

time window 450–920 ms (p = 0.001), whereas the other cluster

is insignificant (p = 0.137). The amplitude and latency of the

ERP peak were measured at ∼4.15 µV and 625 ms, respectively.

This positive-going peak also appeared consistently within the

significant cluster for all subjects (see Supplementary Figure S1).

Figure 4 represents the scalp topographies of the grand average

difference ERP. The areas marked by black dots indicate significant

differences in effects between target and non-target ERPs as

determined by the spatial cluster permutation test, using the same

threshold from the temporal cluster test above. From Figure 4 we

observe the emergence of a centro-parietal spatial cluster, starting

around 500 ms and persisting until around 800 ms post-event

(p < 0.001). Additionally, in each topography, there is another

significant cluster at the frontal region which likely reflects the same

neural source but with opposite polarity (conceptually representing

the positive and negative ends of the source space dipole).

3.2 Paradigm 2 and 3: competing streams

This section presents the results from the analysis of the data

from Paradigms 2 and 3, the competing streams paradigms, using

the analysis pipeline described in Section 2.5.

For the presentation of the analysis results, we use the following

terminology: AT (target event in the attended stream), AN (non-

target event in the attended stream), UT (target event in the

unattended stream), and UN (non-target event in the unattended

stream). Figure 5 shows an example of a stimulus used in Paradigm

3, which comprises continuous speech streams. The target events

(AT, UT) were predefined as the specific word classes in each story

with the remaining words in each stream considered as the non-

target events (AN, UN). In Paradigm 2, all events were discrete

spoken words. For the sake of clarity, in the remainder of this

paper, the term AT waveform refers to the waveform calculated by

averaging all epochs of AT events. Similarly, the AN, UT, and UN

waveforms refer to the average over the AN, UT, and UN epochs,

respectively. For better comparison, Figure 6 shows the results of

the analyses for both discrete and continuous speech paradigms.

3.2.1 Paradigm 2: word category with competing
speakers

In Paradigm 2, the two competing streams consisted of

sequences of discrete spoken words. Four different analyses were

performed according to four pairs of experimental conditions AT

vs. AN, AT vs. UT, AN vs. UT, and UT vs. UN. The individual

ERPs for each condition of each case were first calculated. The

difference ERPs were obtained by subtracting the ERPs of the

latter from the former in each pair. Finally, the grand average

ERPs were calculated by averaging the individual ERPs. Figure 6A

shows the grand average ERPs for four analyses. The bottom bars

show the detected clusters and the p-values of significant clusters
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from the temporal cluster permutation test for the difference ERP

waveforms.

Figure 6A.1 presents the results of the AT vs. AN comparison

which compares the ERP waveforms of the target and non-target

events in the attended stream. The target ERP (AT) has a clear

positive deflection at around 632 ms with an amplitude of ∼3.3

µV, whereas there are no noticeable deflections in the non-target

ERP (AN). The cluster permutation analysis of the difference ERP

reveals a significant cluster in the 500–900 ms time window (p =

0.001,α = 0.0125, Bonferroni corrected). Similarly, a comparison

of the target ERPs in the attended stream (AT) and unattended

stream (UT) are shown in Figure 6A.2, and the cluster permutation

test reveals a significant difference in the time window 500–900 ms

(p < 0.001,α = 0.0125, Bonferroni corrected). The difference

ERP between AN and UT is shown in Figure 6A.3; the cluster

permutation test did not find a significant difference (p > 0.1 for all

time points). Finally, the difference between UT and UN is shown

in Figure 6A.4, and as for the AN vs. UT, there is no significant

difference (p > 0.1 for all time points).

Figure 7 shows the scalp topographies, between 400 and 800ms,

of the AT-AN and AT-UT difference ERPs. The permutation test

results show that the significant clusters (p < 0.01,α = 0.025,

Bonferroni corrected for the black dots region) of a cognitive

component generated by AT events in the competing stream

paradigm are also at the parietal site. This is consistent with the

observations from Paradigm 1 in Section 3.1.

3.2.2 Paradigm 3: competing speech streams
with targets

The data analysis followed the same procedures as used in

Section 3.2.1, albeit with the modification that the AN and UN

waveformswere computed from epochs containing all words except

those selected as target events in the attended and unattended

streams, respectively.

Figure 6B shows the grand average ERPs of four analyses for

Paradigm 3. Similar to the results from the word category with

competing speakers paradigm, the AT waveform is significantly

different from the AN waveform (p = 0.001,α = 0.0125,

Bonferroni corrected) and the UT waveform (p = 0.001,α =

0.0125, Bonferroni corrected) in the duration of 500–800 ms.

However, the amplitude of the AT waveform is noticeably smaller

(maximum amplitude 1.61 µV vs. 3.3 µV). The scalp topographies

of two analyses: AT vs. AN and AT vs. UT show a similar

pattern to that of the word category with competing speakers

paradigm with the significant clusters at the parietal site (see

Supplementary Figure S4). There are no noticeable differences

between the three types of events: AN, UT, and UN.

To ensure that the grand average waveform represents a

generalizable pattern across subjects, the individual difference ERP

waveforms between AT and AN for both Paradigm 2 and Paradigm

3 are displayed in Supplementary Figures S2, S3, respectively. The

individual ERP waveforms for Paradigm 2 show a consistent

pattern across subjects. In contrast, the ERP waveforms for

Paradigm 3 generally exhibit lower amplitudes, and a greater degree

of variability between subjects, and appear noisier compared to

those of Paradigms 1 and 2. Nevertheless, the grand average ERP is

TABLE 1 Similarity scores and corresponding p-values between the ear

and scalp ERPs for the three paradigms. All significant values (p < 0.025,

Bonferroni corrected.) are in boldface.

Ear Paradigm 1 Paradigm 2 Paradigm 3

score p-value score p-value score p-value

Left 0.563 0.140 0.715 0.050 0.734 0.050

Right 0.802 0.017 0.910 0.001 0.787 0.022

not driven by outliers or a small subset of subjects, as the majority

the individual waveforms exhibit a very similar waveform as the

grand average. These findings are consistent with the significant

clusters observed for Paradigm 2 and Paradigm 3 in the 500–800

ms range.

3.3 Cognitive component in ear-EEG

The ERP waveforms for the ear-EEG data were obtained using

the spatial filtering method described in Section 2.6.2. Each column

in Figure 8 shows the grand average ERP waveforms for each

paradigm. The ERP waveforms for electrode Pz are presented in the

top row to facilitate comparison. The filtered grand average ERP

waveforms for the left ear and the right ear are displayed in the

middle row and bottom row, respectively.

While the cross-task validation scheme did not find any

significant cluster (p ≥ 0.041,α = 0.025, Bonferroni corrected),

the difference ERP waveforms of both ears exhibit a very similar

pattern to the Pz channel ERPs across all three paradigms. To

quantify the similarity, we calculated the cosine similarity between

the scalp (Pz) and the ear ERP’s, and the significance of the

similarity was calculated from a permutation test distribution

between the Pz and permuted target/non-target ear-ERPs. The

result of this analysis is shown in Table 1. It is observed that in

each paradigm, the similarity of ERP waveforms between the right

ear and the Pz electrode is significant (p ≤ 0.022,α = 0.025,

Bonferroni corrected). For the left ear, all similarity scores are

>0.56 and are found to be less significant.

4 Discussion

4.1 Paradigm 1: word category oddball

The word category oddball paradigm, using discrete spoken

words as targets and non-targets, showed a significant difference

wave from the Pz electrode in the 450–900 ms interval, with a peak

amplitude around 4.15 µV at ∼625 ms post-event. Although the

peak appears with a significantly longer latency than reported in

other studies: 240–350 ms (Squires et al., 1975) and 200–500 ms

(Polich, 2007), due to the similarity in the experimental paradigm

and the cognitive task evoking the response, we conjecture that the

response and underlying mechanism are the same as for the P3b

component. The longer peak latency may be explained by higher

stimulus evaluation timing due to the use of spoken word stimuli,

task processing demand, and higher task complexity, which are

aligned with the findings in other P300 studies (Polich, 2007; Kutas
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et al., 1977). In this study, the task includes the semantic parsing of

the meaning of the events and classifying them into two categories

which are similar to the visual-presented word class categorization

tasks with the reported latency of up to 780 ms depending on

the reaction time (Kutas et al., 1977). In another study (Leckey

and Federmeier, 2020), it is argued that P600 component is a

representation of P3b where the semantic/syntactic mismatches

act as oddball events. This further substantiates that the ERP

identified in this study is related to a long-latency P3b component.

Moreover, a sequence of scalp topographies from 400 to 800 ms

shown in Figure 4 demonstrates that the positive deflection has a

maximum in the central parietal region, which further supports and

substantiates that the deflection reflects a P3b component.

4.2 Paradigm 2 and 3: competing streams

This section discusses how the studied component is impacted

by both the multi-talker environment and normal speech context.

4.2.1 Paradigm 2: word category with competing
speakers

The results shown in Figure 6A illustrate how the studied

component is affected by the attention in the multi-talker

environment. The positive deflection of the difference ERP

waveform of the AT and AN events is shown in Figure 6A.1

suggests that the studied component can also be elicited by the

word category oddball in the presence of competing speakers. The

unattended stream in this case plays a role as a distractor, i.e.,

background noise. The significant difference between AT and UT

in the duration 500–900 ms (p = 0.001), see Figure 6A.2, suggests

that the studied component is specifically elicited by the attended

oddballs, rather than by the mere presence of a semantic oddball.

In other words, although semantic oddballs are present in both the

attended and unattended streams, the cognitive component is only

evoked by oddballs within the attended stream. This is a remarkable

characteristic making it a promising component for addressing

the AAD problem. Moreover, we did not find any significant

differences between the AN and the UT, which indicates that the

target events in the unattended stream do not attractmore attention

than the non-target events in the attended stream. The result from

Figure 6A.4 demonstrates that when the subject ignores the sound

source, all the events in that source do not generate any difference

in ERP waveforms and are almost equally unattended. This again

clarifies the aforementioned hypothesis that the selective attention

mechanism plays an important role in triggering and manipulating

the P3b component rather than the presence of a semantic oddball

itself. The results from this paradigm demonstrate that, in a multi-

talker environment, the cognitive ERP component can be elicited

and observed at the parietal site only if the oddball events appear in

the attended stream.

4.2.2 Paradigm 3: competing speech streams
with targets

The attended target (AT) ERP and the difference wave (AT

minus AN) elicited by Paradigm 2 shown in Figure 6A has the same

morphology as the target ERP and difference wave (target minus

non-target) elicited by Paradigm 1 shown in Figure 3. This suggests

that the responses are related to the same underlying neural source

in both the single speaker and the competing speaker paradigm.

However, the stimuli, which were sequences of discrete speech

events, were still rather artificial and did not resemble real-

life speech signals. Therefore, the results from Paradigm 2 in

Section 3.2.1 are not sufficient to ensure that these responses will be

present, let alone detectable, in more naturally occurring stimuli.

To address this, in Section 3.2.2, we presented results on how

the cognitive component manifests in a “more realistic" listening

situation using natural, continuous speech stimuli.

The results in Section 3.2.1 show that identical component can

be observed in a multi-talker environment. However, the stimuli,

sequences of discrete speech events, were quite simple and well-

formatted, creating an unrealistic listening context. Therefore, it

is premature to conclude that the studied cognitive component

is a solid and promising candidate to apply in any speech-based

BCI application. In Figure 6, all the ERP waveform patterns in the

continuous speech paradigm (bottom row) are case-wise similar

to those in the discrete speech paradigm (top row). However, the

peak amplitude of the AT waveform in the latter is noticeably

smaller. It is reasonable because of the less distinct nature of the

target events in the more realistic listening scenario, i.e., the less

salience of the events which mainly modulates the amplitude of

the P3b component. Additionally, in the context of listening to a

story, subjects tend to be less attended to the target events due

to lack of time. The topographies again confirm that the neural

source location when we use the natural speech stimuli is also

around the parietal site which is identical to the location of the

studied component in the single stream paradigm (Figure 4) and

in the discrete event competing streams (Figure 7). We observe

that the topographies of Paradigms 2 and 3 exhibit a slight

left lateralization compared to those of Paradigm 1. Numerous

previous studies, including Wernicke’s foundational work on the

anatomical basis of aphasia (Wernicke, 1969), have established

that language processing is largely left-lateralized (Hickok and

Poeppel, 2007). Of particular relevance to the current study

is the significance of Wernicke’s area and its role in language

comprehension, which is located near the C3, P3, and P7 electrodes.

Thus, a plausible explanation for the observed left lateralization is

that the tasks in Paradigms 1 through 3 progressively increase in

demands related to language comprehension.

The results from this paradigm suggest that the studied

component is observable even in a realistic listening scenario where

the subject attends to one speech stream among multiple streams.

The latency and spatial distribution of the component appear

to be independent of how closely the stimulus resembles speech

in realistic situations. Also, the level of attention significantly

affects the amplitude of this component. All else being equal, the

more attention allocated to an event, the larger the amplitude

of the component. It is obvious that the target words in the

attended streams, as defined by the task in the experiment, become

important words in the speech context. In a specific speech context,

it is very likely that the important words catch the most attention

and evoke a larger P3b component. Although determining the

important words in real-time speech context is a challenging task,
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with the help of advanced semantic and syntactic analysis in

language models, this component can be further utilized to solve

the AAD problem where predefined target words are not available.

Alternatively, training temporal response function (TRF) to predict

the brain response to speech signals may help identify which

parts of different speech complexities, including long phrases or

sentences, cause stronger responses. Based on that a further analysis

of the cognitive response to these parts can be conducted.

In summary, attention to specific events in competing speaker

paradigms, whether involving discrete words or continuous speech

streams, evokes a cognitive component. This component is

particularly observable in the parietal region. In the competing

speech streams paradigm, which is a more realistic listening

situation, the amplitude of the component seems to be smaller.

4.3 Studied component in the ear-EEG
signal

Despite the inherent challenges of high inter-subject variance

and low SNR in the in-ear EEG data, the application of spatial

filtering yielded similar in-ear ERPs to those observed on the

scalp for all three paradigms (all similarity scores are >0.56 for

both ears). This demonstrates that the potential of the studied

component, elicited by speech events, is observable not only at scalp

locations but also at both ears and can be measured using in-ear

electrodes and decoded by spatial filters. This opens up possibilities

of utilizing this component with a compact andminiaturized in-ear

EEG setup to address the AADproblem and other BCI applications.

Results from the statistical test show that the studied

component is significant in training tasks but not in validation

tasks. This observation suggests a potential issue of overfitting the

spatial filters due to the limited amount of training data. We believe

that this problem could be mitigated by increasing the volume

of training data. Furthermore, the low SNR characteristic of ear-

EEG could present a barrier to achieving significant results. This

reveals challenges for future research to explore more advanced

signal processing methods to utilize the studied component in the

in-ear EEG signals.

5 Conclusion

Through the utilization of natural speech stimuli and cognitive

tasks, a study of cognitive components related to auditory attention

was conducted on both scalp and in-ear EEG devices. The findings

demonstrate that the cognitive processing of natural speech events

can be observed at parietal electrode sites and typically peaks

at ∼625 ms, which is more likely to be a P3b component.

Furthermore, we have also shown that the studied component

is significantly observable in the attended speech stream of a

multi-talker environment and its amplitude is influenced by the

level of attention given by the brain to the speech events. These

results suggest that the studied component carries information

that is useful for decoding auditory attention. Additionally, spatial

filtering played a pivotal role in extracting the cognitive component

from the ear-EEG signals, thus marking a significant advancement

toward cognitively controlled hearing devices.
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