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Schizophrenia (SZ) is a chronic mental disorder, affecting approximately 1% of the 
global population, it is believed to result from various environmental factors, with 
psychological factors potentially influencing its onset and progression. Discrete 
wavelet transform (DWT)-based approaches are effective in SZ detection. In this 
report, we aim to investigate the effect of wavelet and decomposition levels in 
SZ detection. In our study, we analyzed the early detection of SZ using DWT 
across various decomposition levels, ranging from 1 to 5, with different mother 
wavelets. The electroencephalogram (EEG) signals are processed using DWT, 
which decomposes them into multiple frequency bands, yielding approximation 
and detail coefficients at each level. Statistical features are then extracted from 
these coefficients. The computed feature vector is then fed into a classifier to 
distinguish between SZ and healthy controls (HC). Our approach achieves the 
highest classification accuracy of 100% on a publicly available dataset, outperforming 
existing state-of-the-art methods.
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1 Introduction

Schizophrenia (SZ) is characterized by various symptoms such as hallucinations, delusions, 
altered perception, negative emotional states, and cognitive deficits often resulting in 
fearfulness, withdrawal, and social difficulty (Guo et al., 2021). Although the exact cause of SZ 
is still unknown, it is thought to be caused by environmental factors that increase the risk of 
SZ, particularly during the prenatal or perinatal periods, long before the typical onset of 
symptoms in late adolescence or early adulthood (Guo et al., 2021). In order to diagnose 
individuals with SZ, clinical psychiatrists use clinical interviews, screening, and testing 
methods, also it is important for a psychiatrist to conduct a comprehensive examination to 
exclude substance misuse or other neurological disorders with symptoms that resemble SZ 
(Ranjan et al., 2024). However, these conventional methods provide subjective results, are 
time-consuming, and are sensitive to errors. Therefore, early and timely intervention for SZ 
could help reduce the disease progression by addressing it in its earlier stage (Ranjan 
et al., 2024).

In recent years, electroencephalogram (EEG) has emerged as a powerful diagnostic tool 
for brain disorders due to its non-invasiveness, objectivity, low cost, minimal time 
requirement, and lack of radiation exposure (Li et al., 2023; Sharma and Joshi, 2021; Zhou 
et  al., 2018; Safi and Safi, 2021; Wijaya et  al., 2015). Various machine learning (ML) 
techniques have been extensively used for SZ and healthy control (HC) classification with 
EEG signals. These techniques effectively handle the non-stationary nature of EEG data by 
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extracting critical time-frequency patterns. For instance, the authors 
in Khare et al. (2020) decomposed EEG signals into modes using 
empirical wavelet transformation (EWT) and extracted linear and 
non-linear time-domain features from these modes. They concluded 
that the first two amplitude mode (AM)-frequency mode (FM) 
components provide the most information for diagnosing 
SZ and HC.

In Khare and Bajaj (2021), the authors developed flexible-tunable 
Q wavelet transform (F-TQWT) for efficient feature extraction, which 
is then fed into the flexible least square support vector machine 
(F-LSSVM) classifier for automatic tuning of hyper-parameters, aimed 
at improving the discrimination between SZ and HC. In Gosala et al. 
(2023), the authors conducted a comparative study using wavelet 
scattering transform (WST), continuous wavelet transform (CWT), 
and discrete wavelet transform (DWT) for the classification of SZ and 
HC. In Agarwal and Singhal (2023), the authors used a fast Fourier 
transform (FFT) to divide a signal into sub-band (SB) components, 
from which statistical features were computed. Additionally, they 
developed a look-ahead pattern (LAP) feature to capture local 
variations in the EEG signal for SZ detection.

In Ruiz de Miras et al. (2023), the authors extracted both linear and 
non-linear features, which were then combined using principal 
component analysis (PCA) and provided as input to different classifiers 
for SZ detection. The observed differences were primarily localized in a 
specific region of the right brain hemisphere, particularly the opercular 
area and temporal lobe. In Kumar et al. (2023), the authors utilized a 
histogram of local variance (HLV) and symmetrically weighted local 
binary pattern (SLBP)-based automated approach for detecting SZ in 
adolescents from EEG signals to discriminate between SZ and HC. In 
Siuly et al. (2020), the authors decomposed EEG signals into intrinsic 
mode functions (IMFs) from empirical mode decomposition (EMD) 
and extracted statistical features for the detection of SZ. In Krishnan 
et  al. (2020), the authors introduced a multivariate (EMD)-based 
approach in which the randomness of the IMF signal was assessed by 
computing its entropy measures, demonstrating a significant distinction 
between HC and SZ. In Baygin et al. (2023), the authors utilized a 
carbon chain pattern (CCP) model with iterative tunable Q-factor 
wavelet transform (ITQWT), and clinically significant features were 
selected using iterative neighborhood component analysis (INCA) for 
SZ detection. In Baygin et al. (2021), the authors proposed a novel 
Collatz conjecture-based model for the classification of SZ and HC. The 
model utilizes maximum absolute pooling for decomposition and aims 
to demonstrate the feature generation capability of the conjecture-based 
structure. In Akbari et  al. (2021), the authors developed a novel 
framework for diagnosing SZ using phase space dynamic (PSD) analysis 
and extracted 15 graphical features from PSD. Using the forward 
selection algorithm, they identified the optimal features and channels, 
with the Cz channel showing more regularity in SZ. In Das and Pachori 
(2021), the authors proposed univariate iterative filtering (IF) in which 
the EEG data are decomposed into multi-IMFs, and the Hjorth 
parameter is extracted as a feature for the classification of SZ and HC. In 
Hossein Najafzadeh et al. (2021), the authors proposed a new method 
based on the adaptive neuro-fuzzy inference system (ANFIS), utilizing 
four features: Shannon entropy (ShEn), spectral entropy (SpEn), 
approximate entropy (ApEn), and the absolute value of the highest slope 
of autoregressive coefficients (AVLSACs). This study led to the 
development of a new decision support system (DSS) that can receive a 
person’s EEG signal and distinguish between SZ patients and HCs.

More recently, deep learning (DL) techniques have gained 
importance in EEG-based SZ detection. These methods can 
automatically extract meaningful features and patterns from complex 
EEG data, improving diagnostic accuracy (Acc). The authors in Göker 
(2023) used the 1D-CNN-based channel selection mechanism, focusing 
on different brain regions for SZ and HC classification. In Khare et al. 
(2023), the authors developed a unique DL model named SchizoNET 
combining the Margenau-Hill time-frequency distribution with CNN 
for automatic SZ detection. Despite the advances of DL techniques in 
SZ detection, traditional methods such as wavelet transforms (WTs) 
still play a crucial role in their capability to capture the time-frequency 
characteristics of EEG signals (Gosala et al., 2023). WTs enable time-
variant decomposition, allowing for different filtering settings across 
different time ranges and providing event-related filter responses while 
eliminating edge effects associated with traditional band-pass filters 
(Zhang et al., 2016). Over the past decade, researchers have applied 
various wavelet filters to represent time series data, with DWT emerging 
as a popular tool for EEG analysis due to its capability to capture both 
time and frequency domain features (Zhang et al., 2016). However, the 
application of DWT with different decomposition levels and wavelet 
types for the classification of SZ and HC remains largely unexplored. 
This motivated our study, where we conducted a performance analysis 
of DWT-based statistical features, considering multiple decomposition 
levels and wavelet filters for distinguishing SZ from HC.

The contributions of our analysis are as follows:

 1 Utilized DWT-based statistical features, with a decomposition 
level up to 5, by using a combination of different mother 
wavelets to classify EEG signals into SZ and HC groups.

 2 Validated our results using both 10-fold cross-validation and 
an 80:20 train-test split.

 3 Our analysis demonstrated significantly improved classification 
performance over existing methods.

The structure of this paper is as follows: Section 2 outlines the 
experimental procedure used for SZ detection and presents the results 
and discussion. Finally, in Section 4, the conclusions are provided.

2 Proposed analysis

In this section, Figure 1 illustrates the flowchart of our experimental 
analysis. Initially, the EEG signals undergo processing through DWT by 
decomposing them into a series of detailed and approximation 
coefficients at multiple scales. This transforms the non-stationary EEG 
signals into a multi-scale SB format. Following this, we extract statistical 
features from each level of wavelet coefficients. These extracted features 
are then concatenated and given as input to classifiers for the classification 
of SZ and HC. A detailed explanation of each step is provided below.

2.1 Discrete wavelet transform

The discrete wavelet transform (DWT) allows the analysis of signal 
features in both time and frequency domains by decomposing the signal 
into low-frequency and high-frequency components. Each stage of this 
method involves a high-pass filter and a low-pass filter, with the output 
signals of these filters being down-sampled by a factor of 2 (Mallat, 
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1989; Majid Aljalal et  al., 2022; Kandala et  al., 2021). In the first 
decomposition level, a high-pass filter with down-sampling produces 
the detail coefficients ( )1D , while a low-pass filter with down-sampling 
provides the approximation coefficients ( )1A , and the approximation 
coefficients are further processed to obtain detailed and approximation 
coefficients of the next level. This process will be repeated again until 
obtaining the approximation ( )nA  and detail coefficients ( )nD  in the 
last level. The three-level SB decomposition of an EEG signal is shown 
in Figure 2.

2.2 Statistical features

The effectiveness of the feature extraction significantly impacts the 
classification performance. In our study, we  extracted statistical 
features (Sunil Kumar and Kanhangad, 2017; Kumar et al., 2019) such 
as entropy (Krishnan et al., 2020), standard deviation (Siuly et al., 
2020), skewness (Ruiz de Miras et al., 2023), and kurtosis (Ruiz de 
Miras et al., 2023) from the SB of each of the wavelet coefficients 
resulting from the DWT of the signal.

2.3 Feature concatenation and 
classification

In this, the feature matrix is arranged through the concatenation 
of the extracted statistical features from all segments. In our analysis, 
we utilized an ensemble classifier (Han et al., 2019).

2.4 Feature selection

Feature selection (FS) helps in enhancing the model’s performance 
better by keeping only the essential features. Chi-square calculates 
whether the observed values deviate significantly from the expected 
values if the features were independent (Theresia Diah et al., 2019), 
and it is given by.

 
( )22
O E

E
χ

−
= ∑

 
(1)

where, O represents the observed frequency and E is the 
expected frequency.

The chi-square statistic is computed and compared to a set 
significance level (generally, 0.05) as described by Equation 1. If it is 
below this threshold, the feature is considered statistically significant 
and is selected for classification.

3 Experimental outcome

This section provides a detailed description of the dataset, 
followed by the results and discussion sections.

3.1 Dataset

This study uses an EEG dataset, publicly available on the Moscow 
State University website (Gorbachevskaya and Borisov, 2002), 
comprising 84 adolescents, including 45 individuals with SZ disorder 
and 39 HCs. The EEG signals were recorded from subjects aged 
between 10 years and 8 months and 14 years, using a 16-electrode 
system based on the international 10–20 placement system. The 
signals are sampled at a rate of 128 Hz, by experts at the Mental Health 
Research Center (MHRC), where none of the patients received 

FIGURE 1

Block diagram of our approach.

FIGURE 2

Sub-band decomposition of an EEG signal using DWT.
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chemotherapy during the examination. More details about this dataset 
can be found in Borisov et al. (2005).

3.2 Results

Selecting the appropriate number of decomposition levels is 
crucial for DWT in EEG signal analysis (Subasi, 2007). The decision 
to use a five-level decomposition was based on the fact that EEG 
signals typically do not contain significant information above 30 Hz 
(Subasi, 2007; Sharmila and Mahalakshmi, 2017). Depending on the 
type of signal to be analyzed, the mother wavelet is chosen according 
to the convenience and the requirement of the experimenter (Gandhi 
et  al., 2011). In our study, we  used Daubechies (db) from 2 to 5 
(Daubechies, 1992), Fejer-Korovkin (fk) at 4, 6, and 8 (Nielsen, 2001), 
biorthogonal (bior) such as 1.1, 1.3, and 1.5 (Daubechies, 1992), 
coiflets (coif) from 1 to 5 (Daubechies, 1992) and symlets (sym) from 
2 to 5 (Daubechies, 1992). As sharp transitions are critical for 
capturing transient EEG patterns (Rafiee et  al., 2011; Venkata 
Phanikrishna et al., 2021; Cheng et al., 2019) db and sym are used, coif 
has been used due to their time-frequency localization, its ability to 
detect subtle oscillatory patterns, and its large filter length (Rafiee 
et al., 2011; Venkata Phanikrishna et al., 2021; Cheng et al., 2019). 
Fejer-Korovkin (fk) is known for its enhanced symmetry but is less 
smooth compared to db (Nielsen, 2001). We also selected biorthogonal 
(bior) because it can preserve both amplitude and phase (Rafiee et al., 
2011; Venkata Phanikrishna et  al., 2021; Cheng et  al., 2019) (see 
Figure 3).

To demonstrate the significance of our analysis, we conducted two 
experiments: a 10-fold cross-validation technique and an 80:20 ratio 
for training and testing. Tables 1–8 show the classification Acc across 

various wavelet types and decomposition levels. Tables 1–4 show 
accuracy for 30-s EEG segments, while Tables 5–8 show results for 
60-s segments.

In our study, we  evaluated various wavelet types and 
decomposition levels for SZ and HC classification using EEG signals 
across 30 and 60-s segments. For 30-s segments, coif wavelets 
performed best without FS, achieving 100% Acc at levels 4 and 5 in 
the 80:20 split method (Table 3). With FS, sym4 and db4 wavelets 
reached 100% Acc at level 4 (Table  4). For 60-s segments, coif4 
achieved 93.8% Acc at level 4 in both 10-fold cross-validation and the 
80:20 split method (Tables 7, 8). FS further optimized the classification, 
especially for sym4 and db4, maintaining an Acc of 93.8%.

Overall, the utilization of chi-square FS improved the feature 
vector selection, which led to enhanced classification Acc, particularly 
with the sym and coif wavelets. These wavelets were particularly 
effective for SZ detection. Furthermore, level 4 decomposition proved 
most effective for detecting SZ in both 30 and 60-s data segments.

3.3 Discussion

Our proposed approach achieved 100% Acc, outperforming 
several existing methods, as shown in Table 9, by using statistical 
features extracted from the DWT of the EEG signal. DWT’s ability to 
capture both time and frequency characteristics of non-stationary 
EEG signals makes it effective for SZ detection. By carefully, exploring 
different wavelet families and decomposition levels, we demonstrated 
that the multi-resolution analysis provided by DWT offers a more 
robust classification performance. The authors in Kumar et al. (2023), 
Gosala et al. (2023), and Khare and Bajaj (2022), have used the same 
dataset as ours, while others have utilized different datasets and 

FIGURE 3

Sample plot of raw EEG signal.
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TABLE 1 Classification accuracy achieved with 30-s EEG segment using 10-fold cross-validation.

Classifier: Ensemble

Validation Wavelets Level 1 
decomposition 

(%)

Level 2 
decomposition 

(%)

Level 3 
decomposition 

(%)

Level 4 
decomposition 

(%)

Level 5 
decomposition 

(%)

10-fold

db2 85.7 87.5 94.6 88.7 92.9

db3 85.7 88.7 90.5 91.7 93.5

db4 86.3 86.3 90.5 89.9 91.7

db5 88.1 86.3 87.5 91.1 92.9

bior1.1 83.9 86.3 88.1 91.7 85.7

bior1.3 83.3 88.7 88.1 88.7 88.1

bior1.5 85.1 85.7 89.9 90.5 92.3

fk4 85.1 86.9 89.3 91.7 92.3

fk6 83.3 85.1 90.5 87.5 91.7

fk8 86.9 81 88.1 92.3 89.9

coif1 84.5 88.7 89.3 88.7 90.5

coif2 83.9 84.5 89.3 89.3 91.1

coif3 87.5 83.3 91.1 92.3 88.7

coif4 86.3 83.9 88.1 90.5 91.7

coif5 85.1 82.7 89.9 91.7 88.1

sym2 83.9 86.9 91.1 87.5 92.9

sym3 88.1 83 87.5 90.5 89.9

sym4 86.3 84.5 86.3 90.5 93.5

sym5 82.7 81 88.7 91.7 91.7

TABLE 2 Classification accuracy achieved with 30-s EEG segment using 10-fold cross-validation with chi-square FS.

Classifier: Ensemble

Validation Wavelets Level 1 
decomposition 

(%)

Level 2 
decomposition 

(%)

Level 3 
decomposition 

(%)

Level 4 
decomposition 

(%)

Level 5 
decomposition 

(%)

10-fold

db2 83.9 87.5 88.7 90.5 94

db3 86.9 88.7 89.9 93.5 93.5

db4 85.1 88.1 89.9 90.5 91.1

db5 87.5 90.9 89.9 91.7 92.3

bior1.1 83.9 83.9 88.1 90.5 86.9

bior1.3 85.7 86.3 88.1 89.9 86.9

bior1.5 84.5 86.3 85.7 89.3 89.9

fk4 85.1 85.7 85.1 92.3 89.9

fk6 83.3 87.9 88.1 90.5 94

fk8 86.9 83.3 85.7 92.3 88.1

coif1 86.9 89.3 89.3 92.9 92.9

coif2 88.7 84.5 87.5 91.1 90.5

coif3 85.1 84.5 91.1 90.5 92.9

coif4 83.9 82.7 89.3 91.1 92.3

coif5 83.9 83.9 88.7 92.3 89.3

sym2 85.7 88.1 91.7 90.5 92.9

sym3 86.3 82.7 92.9 91.1 89.9

sym4 82.1 82.7 88.1 90.5 90.5

sym5 86.3 81.5 91.7 91.7 94
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TABLE 3 Classification accuracy achieved with 30-s EEG segment using an 80:20 split.

Classifier: Ensemble

Validation Wavelets Level 1 
decomposition 

(%)

Level 2 
decomposition 

(%)

Level 3 
decomposition 

(%)

Level 4 
decomposition 

(%)

Level 5 
decomposition 

(%)

80:20

db2 87.9 90.9 93.9 87.9 93.9

db3 84.8 93.9 93.9 90.9 93.9

db4 87.9 87.9 93.9 93.9 93.9

db5 90.9 85.7 97 90.9 90.9

bior1.1 81.8 81.8 90.9 90.9 90.9

bior1.3 81.8 87.9 87.9 90.9 87.9

bior1.5 81.8 90.9 97 97 90.9

fk4 81.8 81.8 97 93.9 93.9

fk6 90.9 87.9 90.9 90.9 90.9

fk8 87.9 90.9 90.9 97 90.9

coif1 84.8 87.9 90.9 90.9 100

coif2 87.9 87.9 93.9 100 87.9

coif3 93.9 84.8 91.1 93.9 100

coif4 87.9 84.8 89.3 90.9 93.9

coif5 87.4 87.9 88.7 93.9 100

sym2 87.9 90.9 90.9 93.9 97

sym3 87.9 90.9 87.9 93.9 90.9

sym4 90.9 90.9 90.9 90.9 93.9

sym5 87.9 81.8 93.9 90.9 93.9

Bold values in the tables indicate the highest performance metrics achieved for the experiment.

TABLE 4 Classification accuracy achieved with 30-s EEG segment using an 80:20 split with chi-square FS.

Classifier: Ensemble

Validation Wavelets Level 1 
decomposition 

(%)

Level 2 
decomposition 

(%)

Level 3 
decomposition 

(%)

Level 4 
decomposition 

(%)

Level 5 
decomposition 

(%)

80:20

db2 90.9 87.9 93.9 88.9 93.9

db3 84.8 90.9 90.9 90.9 93.9

db4 87.9 87.9 90.9 100 90.9

db5 90.9 93.9 97 90.9 90.9

bior1.1 90.9 81.8 87.9 97 87.9

bior1.3 90.9 90.9 87.9 97 87.9

bior1.5 87.9 93.9 87.9 93.9 97

fk4 87.9 84.8 87.9 90.9 87.9

fk6 87.9 87.9 93.9 93.9 90.9

fk8 90.9 90.9 90.9 97 90.9

coif1 87.9 90.9 90.9 97 90.9

coif2 87.9 87.9 90.9 90.9 93.9

coif3 87.9 84.8 90.9 97 97

coif4 84.8 87.9 87.9 93.9 97

coif5 87.9 90.9 97 97 90.9

sym2 90.9 84.8 97 90.9 97

sym3 87.9 84.8 93.9 93.9 93.9

sym4 93.9 84.8 90.9 90.9 100

sym5 87.9 81.8 97 93.9 97

Bold values in the tables indicate the highest performance metrics achieved for the experiment.
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TABLE 5 Classification accuracy achieved with a 60-s EEG segment using 10-fold cross-validation.

Classifier: Ensemble

Validation Wavelets Level 1 
decomposition 

(%)

Level 2 
decomposition 

(%)

Level 3 
decomposition 

(%)

Level 4 
decomposition 

(%)

Level 5 
decomposition 

(%)

10-fold

db2 63.1 65.5 71.4 64.3 67.9

db3 57.1 65.5 63.1 63.1 65.5

db4 58.3 65.5 63.1 66.7 69

db5 58.3 63.1 67.9 65.5 67.9

bior1.1 59.5 64.3 65.5 61.9 61.9

bior1.3 61.9 63.1 64.3 71.4 69

bior1.5 60.7 63.1 65.5 65.5 71.4

fk4 56 63.1 66.7 65.5 61.9

fk6 58.3 71.4 63.1 66.7 61.9

fk8 58.3 64.3 61.9 76.2 63.1

coif1 58.3 67.9 61.9 65.5 66.7

coif2 56 70.2 63.1 72.6 64.3

coif3 57.1 66.7 65.5 70.2 65.5

coif4 58.3 64.3 61.9 70.2 70.2

coif5 59.5 60.7 61.9 71.4 69

sym2 58.3 63.1 63.1 70.2 64.3

sym3 58.3 70.2 65.5 64.3 61.9

sym4 60.7 70.2 64.3 66.7 70.2

sym5 61.9 66.7 64.3 69 70.2

TABLE 6 Classification accuracy achieved with a 60-s EEG segment using 10-fold cross-validation with chi-square FS.

Classifier: Ensemble

Validation Wavelets Level 1 
decomposition 

(%)

Level 2 
decomposition 

(%)

Level 3 
decomposition 

(%)

Level 4 
decomposition 

(%)

Level 5 
decomposition 

(%)

10-fold

db2 57.1 67.9 67.9 63.1 69

db3 60.7 70.2 65.5 64.3 65.5

db4 61.9 66.2 65.5 66.7 70.2

db5 64.3 67.9 64.3 71.4 67.9

bior1.1 64.3 61.9 64.3 61.9 63.1

bior1.3 60.7 66.7 63.1 65.5 63.1

bior1.5 60.7 65.5 64.3 70.2 67.9

fk4 61.9 64.3 67.9 64.3 64.3

fk6 63.1 69 67.9 71.4 70.2

fk8 58.3 65.5 63.1 71.4 70.2

coif1 60.7 64.3 65.5 71.4 70.2

coif2 61.9 67.9 66.7 73.8 70.2

coif3 61.9 61.9 64.3 72.6 64.3

coif4 61.9 61.9 63.1 72.6 70.2

coif5 63.2 63.1 61.9 72.6 70.2

sym2 63.1 64.3 63.9 63.1 70.2

sym3 60.7 64.3 63.1 70.2 65.5

sym4 63.1 69 64.3 65.5 71.4

sym5 58.3 63.1 63.1 72.6 73.8
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TABLE 7 Classification accuracy achieved with a 60-s EEG segment using an 80:20 split.

Classifier: Ensemble

Validation Wavelets Level 1 
decomposition 

(%)

Level 2 
decomposition 

(%)

Level 3 
decomposition 

(%)

Level 4 
decomposition 

(%)

Level 5 
decomposition 

(%)

80:20

db2 68.8 62.5 87.5 75 75

db3 62.5 75 62.5 81.2 68.8

db4 62.5 75 62.5 75 68.8

db5 62.5 68.8 75 68.8 68.8

bior1.1 68.8 62.5 75 62.5 68.8

bior1.3 62.5 62.5 68.8 68.8 62.5

bior1.5 75 68.8 75 75 62.5

fk4 62.5 75 62.5 75 68.8

fk6 68.8 81.2 62.5 81.2 81.2

fk8 68.8 75 75 87.5 75

coif1 62.5 87.5 68.8 81.2 68.8

coif2 62.5 75 62.5 75 75

coif3 81.2 68.8 68.8 68.8 68.8

coif4 75 62.5 75 93.8 62.5

coif5 68.8 81.2 62.5 87.5 81.5

sym2 68.8 81.2 62.5 62.5 81.2

sym3 68.8 68.8 62.5 62.5 68.8

sym4 62.5 75 62.5 62.5 75

sym5 68.8 68.8 68.8 62.5 68.8

Bold values in the tables indicate the highest performance metrics achieved for the experiment.

TABLE 8 Classification accuracy achieved with a 60-s EEG segment using an 80:20 split with chi-square FS.

Classifier: Ensemble

Validation Wavelets Level 1 
decomposition 

(%)

Level 2 
decomposition 

(%)

Level 3 
decomposition 

(%)

Level 4 
decomposition 

(%)

Level 5 
decomposition 

(%)

80:20

db2 62.5 81.2 75 81.2 68.8

db3 81.2 75 62.5 75 75

db4 62.5 81.2 81.2 75 68.8

db5 68.8 68.8 75 62.5 81.2

bior1.1 75 81.2 62.5 81.2 62.5

bior1.3 75 75 75 75 62.5

bior1.5 81.2 62.5 68.8 75 68.8

fk4 62.5 81.2 68.8 75 75

fk6 75 75 62.5 75 75

fk8 62.5 68.8 75 87.5 75

coif1 62.5 75 81.2 81.2 75

coif2 62.5 75 81.2 75 75

coif3 62.5 68.8 75 75 68.8

coif4 68.8 68.8 75 81.2 87.5

coif5 68.8 68.8 75 75 75

sym2 87.5 75 75 81.2 87.5

sym3 68.8 87.5 68.8 93.8 68.8

sym4 62.5 75 62.5 75 81.2

sym5 81.2 62.5 62.5 75 75

Bold values in the tables indicate the highest performance metrics achieved for the experiment.
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various feature extraction methods for the classification of SZ and 
HC. The authors in Khare and Bajaj (2021) extracted time-frequency 
features using F-TQWT. The authors in Krishnan et al. (2020), Siuly 
et al. (2020), and Das and Pachori (2021) have used EMD of IMF-7-
based statistical features, MEMD for extracting the entropy measures, 
and proposed MIF, an extension of univariate IF for multivariate 
signals, to decompose multi-channel EEG data into IMFs, from which 
features such as Hjorth parameters are computed in detecting SZ. In 
general, EMD has computational complexity. Our study, using DWT 
with multiple wavelet families, is a more computationally efficient 
method. The authors in Gosala et al. (2023) have used various wavelet 
methods such as CWT, DWT, and WST and extracted time-domain, 
frequency-domain, and time-frequency domain features from these 
wavelet coefficients. The authors in Sharma and Acharya (2021) 
implemented seven wavelet-based 1l  norm features using single-
channel Cz and orthogonal wavelet filters. In Hiesh et al. (2013), the 
authors extracted statistical features from wavelet transforms (db, level 
4) and fed them to the genetic algorithm support vector machine 
(GA-SVM) on a small dataset. The authors in Agarwal and Singhal 
(2023) proposed a method using a Fourier-based technique on EEG 
signals of SB-5 and also used the KW FS method. In Hossein 
Najafzadeh et al. (2021) and Sahu and Jain (2023), the authors used 

DWT and MDWT with the (db2) wavelet for preprocessing, focusing 
on entropy-based features (ShEn, SpEn, and ApEn) and autoregressive 
coefficients to decompose the EEG signals into distinct rhythms and 
extracted statistical features with decomposition level 3. The 
experiments in the aforementioned DWT-based approaches are 
performed using single or few wavelets. In contrast, in our study, 
we have used several wavelets with decomposition levels of 5, which 
is important for capturing the time-frequency features of the signal for 
the classification of SZ and HC. An advantage of our study is the 
detailed analysis of multiple wavelets and decomposition levels, 
allowing us to investigate the role of decomposition level and wavelet 
selection in SZ detection. However, a limitation of our study is that 
our analysis was conducted on a single dataset, which may limit the 
generalizability of our findings. It should be noted that, for clinical 
purposes, this approach needs to be validated on a larger dataset with 
more subjects, as well as data from other neurological disorders.

4 Conclusion

In conclusion, our study demonstrates the significance of selecting 
wavelet decomposition levels and the choice of wavelet type. From our 

TABLE 9 Performance comparison with the existing approaches.

References Dataset Method Decomposition 
parameters

FS Acc

Khare and Bajaj (2021) 81 F-TQWT-based features SB-6 KW 91.39%

Krishnan et al. (2020) 28 MEMD-based features IMF-6 RFE 93%

Kumar et al. (2023) 28, 84 SLBP- and HLV-based 

features

– Correlation 99.36, 92.85%

Gosala et al. (2023) 84

DWT, CWT, WST-

based time, frequency, 

and time-frequency 

features db 1 – 97.98%

Sharma and Acharya (2021) 28 Wavelet-based ↨ 1 norm level-7 – 99.21%

Hiesh et al. (2013) 10 DWT-based statistical 

features

db, level-4 GA 88.24%

Siuly et al. (2020) 81 EMD-based statistical 

features

IMF-7 KW 89.59%

Agarwal and Singhal (2023) 28, 81

Fusion of pattern and 

statistical SB-5 KW 99.24, 98.62%

Hossein Najafzadeh et al. 

(2021) 28

DWT-based AVLSAC, 

ShEn, SpEn, and ApEn db2 – 100%

Khare and Bajaj (2022) 84

RVMD-based statistical 

features mode-8 KW 92.93%

Sahu and Jain (2023) 28

MDWT-based statistical 

features db2, level-3 – 85.71%

Das and Pachori (2021) 28

MIF-based Hjorth 

parameters IMF-21 t-test 98.9%

Present study 84

DWT-based statistical 

features by using 

different wavelets db 4, coif 1–3, 5 and sym 4 Chi-square 100%

RFE, Recursive feature elimination; KW, Kruskal–Wallis; GA, genetic algorithm; MIF, multivariate iterative filtering; RVMD, robust variational mode decomposition; MDWT, multi-level 
discrete wavelet transformation.
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findings, it is clear that higher decomposition levels (specifically four 
and five) are effective and have achieved a classification accuracy of 
100% with the orthogonal wavelets (db 4, coif 1–3, 5, and sym 4). 
Moreover, our experimental analysis shows that the precision of 
feature extraction diminishes over longer time windows. In future 
studies, we plan to explore optimizing the interaction between wavelet 
decomposition levels and analyze deep learning architectures for the 
classification of SZ from HC groups. Additionally, we plan to explore 
the effectiveness of these methods for the diagnosis of other 
psychological disorders, such as bipolar disorder, depression, and 
Alzheimer’s disease.
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