
TYPE Original Research

PUBLISHED 29 August 2024

DOI 10.3389/fnhum.2024.1466853

OPEN ACCESS

EDITED BY

Andreas Sprenger,

University of Lübeck, Germany

REVIEWED BY

Manuela Deodato,

University of Trieste, Italy

Marcus Heldmann,

University of Lübeck, Germany

*CORRESPONDENCE

Melanie Klapprott

melanie.klapprott@uni-oldenburg.de

RECEIVED 18 July 2024

ACCEPTED 13 August 2024

PUBLISHED 29 August 2024

CITATION

Klapprott M and Debener S (2024) Mobile EEG

for the study of cognitive-motor interference

during swimming?

Front. Hum. Neurosci. 18:1466853.

doi: 10.3389/fnhum.2024.1466853

COPYRIGHT

© 2024 Klapprott and Debener. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Mobile EEG for the study of
cognitive-motor interference
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Research on brain function in natural environments has become a new

interest in cognitive science. In this study, we aim to advance mobile

electroencephalography (EEG) participant and device mobility. We investigated

the feasibility of measuring human brain activity using mobile EEG during a full-

body motion task as swimming, by the example of cognitive-motor interference

(CMI). Eleven participants were given an auditory oddball task while sitting

and swimming, with mobile EEG recording ongoing brain activity. Measures of

interest were event-related potentials (ERPs) elicited by experimental stimuli.

While the auditory N100 was measured to verify signal quality, the P300 to

task-relevant stimuli served as a marker of CMI e�ects. Analyzes were first

performed within subjects, while binomial tests assessed the proportion of

significant e�ects. Event-related changes in the time-frequency domain around

turns during swimming were analyzed in an exploratory fashion. The successful

recording of the N100 in all conditions shows that the setup was functional

throughout the experiment. Regarding CMI, we did not find reliable changes in

P300 amplitude in di�erent motor settings in all subjects. However, we found

plausible modulations in the alpha/mu and beta bands before and after turns.

This study shows that it is generally feasible to measure mobile EEG in the time

and time-frequency domain in an aquatic environment while subjects are freely

moving. We see promising potential in the use of mobile EEG in extreme settings,

advancing toward the application of mobile EEG in more real-life situations.

KEYWORDS

mobile EEG, participant mobility, device mobility, cognitive-motor interference,

swimming, ecological validity

1 Introduction

Over the last decades, research on the human brain has mainly been conducted in

highly controlled and stationary laboratory contexts. Based on this work, fundamental

knowledge about the anatomical and functional organization of the brain has been

generated (Ladouce et al., 2017;Matusz et al., 2019). However, these artificial circumstances

do not reflect the situations of everyday life, in which humans move and interact with

their surroundings (Chang et al., 2022). It has been recognized in neurocognitive research

that motor actions contribute to cognitive processes, which are again enclosed in the

motor system. This interaction of the motor system and cognitive systems is generally

known as motor cognition (Jeannerod, 2006). Technical advances in experimental setups

have enabled cognitive science in motion, termed as mobile brain/body imaging (MoBI;

Gramann et al., 2011; Jungnickel et al., 2019). The development of mobile EEG devices

has been key to advancing MoBI (Gramann et al., 2011; Debener et al., 2012; De Vos

et al., 2014; Bleichner and Debener, 2017), allowing brain research to take place in more
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naturalistic settings outside of the lab and while participants are

moving, elevating the level of ecological validity of cognitive

research (Ladouce et al., 2017).

Mobile EEG studies still vary greatly in terms of participant

and device mobility, as well as system specifications (Bateson et al.,

2017). For instance, an EEG system where all required devices are

wireless and head-mounted or carried by the participant, and they

can move freely, is called mobile EEG (Debener et al., 2012). The

same label can be given to an EEG system, where the participant

walks on a treadmill while the EEG cap is connected via cables to

a stationary amplifier (Gramann et al., 2011). While this system

has advantages in system specifications as the number of available

channels or the sampling rate, the mobility of the participant and

the devices is limited. In order to advance toward higher degrees of

mobility, while maintaining current levels of temporal and spatial

resolution, signal quality, and recording duration of state-of-the-

art systems, there is a need to explore the usage and the feasibility

of mobile EEG systems in more natural settings (Bleichner and

Debener, 2017; Stangl et al., 2023).

To validate the signal quality in such motion settings, one

or more quality metrics are required. Examples are the presence

of event-related potentials (ERPs) after stimulus presentation

(Debener et al., 2012) or the pre-stimulus noise on a single-trial

basis (De Vos et al., 2014). A popular use case for out-of-the-

lab EEG experiments including motion and eliciting ERPs is the

study of cognitive-motor interference (CMI). CMI consists in the

decrement of the performance in a cognitive and/or a motor task

when performed simultaneously as compared to the single-task

case (Al-Yahya et al., 2011; Plummer et al., 2013; Leone et al.,

2017). This phenomenon has already been described extensively

in various settings, such as walking (Debener et al., 2012; Reiser

et al., 2021), cycling (Zink et al., 2016; Scanlon et al., 2019), and

even skateboarding (Robles et al., 2021), and slacklining (Papin

et al., 2024). Common findings include a poorer performance in

both the cognitive and motor task, as well as smaller amplitudes of

the P300 ERP component, measured with mobile EEG (Gramann

et al., 2011; Debener et al., 2012; Lau et al., 2012; Jain et al., 2013;

Enders et al., 2016; Zink et al., 2016; Scanlon et al., 2019; Reiser

et al., 2021; Robles et al., 2021; Papin et al., 2024). The P300 occurs

∼300–600 ms after a stimulus presentation and is known to vary

in morphology with stimulus properties, a person’s workload and

attentional resources, as well as internal states and processes (Polich

and Kok, 1995; Polich, 2007; Luck, 2014). A reduced amplitude

of the P300 during cognitive-motor dual-tasking (CM-DT) thus

implies that an individual’s cognitive resources available for the

cognitive task are reduced as compared to the single-task setting,

due to the additional allocation of resources to the execution of the

motor task (see e.g., Leone et al., 2017; Reiser et al., 2021).

This pilot study examines the feasibility of mobile EEG

to measure CMI during swimming, thereby (a) extending the

literature on EEG in extreme settings and CMI with a new

type of motor task , and (b) advancing mobile EEG technology

toward being applied in more out-of-the-lab settings. Participants

performed an auditory oddball paradigm while sitting (single-task

condition) and swimming front crawl (dual-task condition). To

our knowledge, this is the first study to record brain activity in

an aquatic environment, while participants are freely moving. So

far, electrophysiological measurements in water have either been

related to animal research, such as EEG recordings in sea animals

(Yu et al., 2021; Kendall-Bar et al., 2022), and rats (Günther et al.,

2022), or to feasibility tests of measuring ECG during swimming

and diving (Stauffer et al., 2018; Sun et al., 2022). There is one

publication of a pilot study measuring human EEG underwater,

however, the authors used a stationary setup without participant

mobility (Schneider et al., 2014).

Based on the current state of CMI research, we expected (a)

an enhanced P300 amplitude, measured at channel Pz, after target

as compared to standard stimuli in both motor conditions (sitting

and swimming), (b) a reduced P300 amplitude after target stimuli

in the swimming condition as compared to sitting, and (c) a later

P300 peak latency after target stimuli in the swimming condition as

compared to sitting. In order to evaluate the interpretability of the

data, we also investigated the occurrence of the N100, measured

at channel Fz, before testing the experimental hypotheses. The

N100 can be seen as an index of stimulus detection (Luck, 2014).

We further explored whether there are meaningful changes in

the alpha / mu and beta frequency bands (8–13 and 15–30 Hz,

respectively) at central channels during swimming, as they are

generally associated with movement preparation and coordination

(Gross et al., 2002; Palva and Palva, 2007; Maksimenko et al., 2018).

As turns in swimming aremotion sequences disrupting the ongoing

rhythmic movements of the athletes, they require an increased

mental effort and coordinative preparation as compared to plain

swimming. Therefore, we examined oscillatory activity around

turns, normalized to a sitting baseline, in order to investigate if

power in the respective frequency bands varies with the mental

preparation for turns during swimming.

2 Materials and methods

2.1 Preregistration

The hypotheses, methods and analysis plans of this pilot study

were preregistered prior to analyzing the data. The preregistration

was submitted on December 14th, 2022, and can be found on the

Open Science Framework (https://osf.io/qt4mr).

2.2 Participants

For this study, data ofN = 11 right-handed, healthy participants

(five female, six male) were recorded in September and October

2022. The sample size was limited by a short period of time in which

we could access the university pool of the University of Oldenburg

without any public visitors. The participants reported to have no

medical or psychiatric conditions, and normal or corrected to

normal eyesight. Most importantly, the participants were required

to have several years of experience as swimmers. Their age ranged

from 16 to 54 (M = 32.18, SD = 12.05). Participants were recruited

via personal contacts and provided their written informed consent

prior to participation. They were reimbursed with 10e/h.

The experiment was conducted according to the Declaration

of Helsinki and with approval of the ethics committee of the

University of Oldenburg (permit-number: Drs/EK2022/040-01).
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2.3 Materials

Stimuli were presented via the mobile version of the

experimental software Presentation (Neurobehavioral Systems,

Berkeley, CA, USA, Version 23.0 10.27.21), which ran on an

Android smartphone (Samsung Galaxy S21 5G, Android version

12, Modelnb SM-G991B/DS), and transmitted via waterproof in-

earphones (IPX8 Waterproof in-Ear Earphones, AGBTEK).

EEG data were measured by 28 sintered Ag/AgCl passive

electrodes (at the 10–20 sites F3, F4, C3, C4, P3, P4, O1, O2, F7,

F8, T7, T8, P7, P8, Fz, Cz, Pz, POz, FC1, FC2, CP1, CP2, FC5, FC6,

CP5, CP6, TP9, and TP10). The reference and ground electrodes

for the EEG system were placed at FCz and AFz, respectively. The

electrodes were inserted into an elastic cap designed without a

chin strap, manufactured by Easycap (Easy-cap GmbH, Hersching,

Germany), which was more suitable for the given experimental

conditions than standard EEG caps with chin straps. Impedances

were kept below 20 k�, using Easycap electrolyte gel (Abralyt

HiCl, Easy-capGmbH,Hersching, Germany). Themobile amplifier

(SmartingPro; mBrainTrain, Beograd, Serbia) was tightly attached

to the back of the cap and positioned underneath electrodes O1

and O2.

EEG data were recorded by the same smartphone which was

also used for stimulus presentation, using the SmartingPro App

(mBrainTrain, Beograd, Serbia, Version 2.2), with a sampling rate

of 250 Hz. Head movements were captured with the Inertial

Measurement Units (IMUs), consisting of 3D accelerometers,

gyroscopes and quaternions integrated in the mobile amplifier.

EEG data, head movement data, and experimental events were

synchronized using Lab Streaming Layer (LSL, Kothe et al., 2024)

and an internally developed app (Receiva, Version 1.0.00.9; Blum

et al., 2021). Data were stored in a single XDF file.

To protect the EEG system from water, a silicone swim cap was

pulled over the EEG cap and the amplifier, so that both units were

covered by it. Using medical tape, the transition from the swim

cap to the participants’ skin was sealed. The tape was applied all

around the head, as well as to the upper part of the participant’s

spine, to fixate the audio cable and to prevent water from flowing

up from the gaps the cables caused in the seal. The amplifier was

additionally protected with a layer of tape around the amplifier box

at the back of the EEG cap. For the swimming block, participants

were given a front snorkel and a buoy. The front snorkel was

worn to allow participants to breathe without turning their heads,

keeping the head as stable as possible while swimming and thus

reducing head movement artifacts. The buoy served as storage for

the smartphone assuring that the smartphone floated above the

water so that the Bluetooth connection to the amplifier would not

break off. An illustration of the setup during swimming is shown in

Figure 1.

2.4 Tasks

The cognitive task was a standard auditory oddball paradigm

(see e.g., Polich, 2007). Each experimental block consisted of 200

beep-tones of a duration of 70 ms, transmitted via the waterproof

in-ear headphones at a participant-controlled, comfortable volume.

The interstimulus interval randomly varied between 1 and 3 s. The

tones could be standard (a pure tone of 800 Hz) or deviant (1,000

Hz) and were presented in a random order. The number of deviant

stimuli varied between 47 and 54 across the blocks. The participants

were instructed to count the deviant—target—tones and report the

final number to the experimenter at the end of each block.

The motor task demands were manipulated by varying between

sitting and swimming as an additional task to the oddball paradigm:

during the first ("Pre Swim") and the third ("Post Swim") block,

participants were sitting in a chair next to the pool while being

given the cognitive task. For the second block ("Swim"), participants

were inside the pool and swimming front crawl in addition to the

cognitive task. For this block, the auditory oddball was done twice,

to have a balanced number of trials between sitting and swimming.

This fixed order of blocks was chosen as it was crucial to have a

Pre Swim and a Post Swim measurement for each participant, in

order to compare signal quality before and after swimming with

the EEG device.

2.5 Procedure

Data collection took place in the indoor pool of the University

of Oldenburg, which was closed to the public during recording

times. The water temperature was at ∼23◦C. After the preparation

of the EEG and the swim cap, and an initial resting measurement,

the participants performed the first block of the oddball task

while being seated, which will be referred to as Pre Swim in

the following.

Subsequently, the second block, Swim, started. Participants

were given their swim goggles and the front snorkel which were

both put over the swim cap. In addition, they were given the buoy,

which was attached with a belt around their waist (see Figure 1).

Before the oddball during swimming started, the volume of the

tones was adjusted to the altered sound conditions underwater. For

that, the participants went into the pool and held their face and

ears underwater. The experimenter repeatedly played the stimulus

sounds until the participants heard them loud enough via the

headphones.When the volume was adjusted, a countdown of 5 min

started. In that time, the experimenter put the phone into the buoy

and the participants could swim for the rest of the countdown to

get used to the unfamiliar setup. After the countdown, the oddball

task started. Participants swam for∼7 min while doing the oddball

task. While the participants were swimming, the experimenter

observed them and the technical equipment. After the first half

of Swim, a computer voice instructed the participants to swim

to the poolside to report the number of target tones they had

counted to the experimenter. Then, another 2-min countdown

started automatically, during which the participants could either

take a break or continue swimming. Following that, the participants

again swam for ∼7 min while simultaneously working on the

oddball task. When the whole block was finished, they were again

instructed to swim back to the experimenter to report the counted

number of target tones. The experimenter helped the participants

out of the pool and brought them back to their chair.

During the last block, in the following referred to as Post Swim,

the participants were seated again. As in Pre, the block started with

an eye artifact and a resting state EEG measurement, before the

participants were given the oddball task. In the end, they were again
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FIGURE 1

Device setup during the swimming block. Above the swim cap, the subject is wearing her swim goggles and a front snorkel which allows her to

breathe without turning her head. Underneath the swim cap lies the EEG cap with the amplifier at the back. Additionally, the subject is wearing

waterproof in-ear headphones, which are connected via an elongated audio cable to the smartphone, stored in the buoy. Via the earphones, the

experimental stimuli are transmitted from the smartphone to the subject. The smartphone is connected to the amplifier via Bluetooth, in order to

synchronize the EEG data, the IMU data from the amplifier as well as the experimental triggers and store them in a single data set. The picture was

taken during the piloting process and depicts author MK.

asked to report the number of target tones they had counted to

the experimenter. When the whole experiment was finished, the

experimenter took off the swim cap and the EEG cap and showed

the participants the way to the showers.

2.6 EEG data analysis

EEG data were processed using EEGLAB (Version 2022.0;

Delorme and Makeig, 2004) and custom Matlab scripts (The

MathWorks, Inc., Natick, MA, USA, Version 2022a). The

preprocessing pipeline is illustrated in Figure 2.

2.6.1 Preprocessing
In the first step, the data was investigated in terms of overall

completeness. In two subjects (Subject 05 and 08) the recordings of

at least one motor condition were missing completely, thus, these

two data sets were excluded from further analyzes. In two other

participants, EEG recordings of the sitting condition were missing

partially (Subject 10: Pre Swim, Subject 11: Post Swim). As the other

block of this condition was preserved, respectively, both data sets

were included in further analyzes.

After filtering with a zerophase, 1 Hz FIR highpass filter (order

826; EEGLAB function pop_eegfiltnew()), bad channels with a

standard deviation (SD) of their activation exceeding the mean

SD activation plus 3 standard deviations were identified, visually

validated, and temporarily removed. Then, the data of all available

blocks for each participant were merged into one file and line noise

was removed using zapline plus (Klug and Kloosterman, 2022).

The data were cleaned using Artifact Subspace Reconstruction

(ASR) with a threshold value of 70 standard deviations. Before

the application of an extended infomax independent component

analysis (ICA), the data were cut into regularly spaced epochs

in steps of 1 s. Of these generated epochs, those with a joint

probability of >3 SD or with a kurtosis of >3 SD were excluded.

Using the weights and spheres obtained from the ICA, components

capturing eye and muscle artifacts were manually rejected across all

experimental blocks per subject. The ICA weights and spheres were

applied to minimally processed raw data (0.3 Hz zerophase FIR

highpass filter (order 2750; EEGLAB function pop_eegfiltnew()),

30 Hz zerophase FIR lowpass filter (order 110; EEGLAB function

pop_eegfiltnew()). Subsequently, ASR with a threshold value of

70 standard deviations was applied and the temporarily removed

channels were interpolated.

For the ERP calculation, the ICA corrected data were then

re-referenced to the mastoid channels (TP9 and TP10) and

subsequently epoched from –0.2 to 0.8 s around the stimulus

onsets and corrected for their baseline (–0.2 to 0 s relative to

stimulus onset). Epochs with a joint probability of >5 SD and with a

kurtosis of >5 SD were rejected. In order to explore potential time-

frequency changes around turns, we took the ICA corrected data

of the swimming block and re-referenced them to the common

average. The data were epoched from –2.5 to 2.5 s around turns.

The markers for turns were extracted from the data recorded by

the IMU channels integrated in the amplifier. An example of how

themarkers were extracted is shown in the Supplementary material.

Epochs with a joint probability of >5 SD and with a kurtosis of >5

SD were rejected.

2.6.2 ERP component parametrization and
analysis
2.6.2.1 N100 amplitude

To validate the functionality of the experimental setup in

general, the occurrence of the frontocentral N100 component after
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FIGURE 2

Overview of the EEG preprocessing pipeline. Gray: After basic

preprocessing procedures, we applied several artifact correction

procedures [artifact subspace reconstruction (ASR; cut-o� of 70

SD), bad segment rejection based on statistical properties of the

data, independent component analysis (ICA)]. The ICA weights and

spheres were applied to the “Preprocessed 2” data, which di�ered

from “Preprocessed 1” in terms of filter settings. Green: After

re-referencing to the linked mastoid electrodes TP9 and TP10 the

data were cut into epochs around the stimuli, corrected for their

baseline and bad epochs were rejected to have clean data for the

ERP calculation. Yellow: Afer re-referencing to common average,

the data were cut into epochs around the turns and normalized to a

sitting baseline, to investigate changes in the alpha and beta band.

Blue: Depending on the measure, statistical tests were performed.

standard and target tones was taken as the measure of interest.

To define the N100, the minimum voltage for the average ERP of

the channel Fz between 100 and 200 ms after the onset of both

standard and target stimuli was determined for every participant

in every condition. A ± 50 ms time window was put around

the peak, determining the individual search window. Then, for

every trial, the minimum voltage was searched in this window

and a smaller time window of ± 25 ms was placed around the

peak of the N100 to parameterize the N100 in the single trials. In

addition to the statistical analyzes, the N100 was visually validated

by its topography.

2.6.2.2 P300 amplitude and latency

For the parietocentral P300 component, both the amplitude

and peak latency were extracted. To investigate the amplitude

of the P300, the maximum voltage for the average ERP of the

channel Pz between 300 and 600 ms after target stimulus onset

was determined for every participant in every condition. A ±

100 ms time window was put around the peak, determining the

individual search window. Then, a smaller time window of ± 50

ms was placed around the peak of the P300 in the single trials

and the mean amplitude of this time window was taken as the

measure for the P300. It should be noted that the parametrization

of the N100 and P300 amplitudes deviates from the pre-registered

analysis plan. However, given the characteristics of the present data,

we decided to adjust the analysis accordingly. The P300 latency was

parameterized as the time from stimulus onset until the amplitude

peak. In analogy to the N100 investigation, the P300 was visually

validated by its topography, in addition to the statistical analysis.

2.6.3 Exploratory: modulation of frequency
bands during swimming

It should be noted that this analysis was not included in the

original preregistration, but was thought of during the analysis

of the planned hypotheses. For exploring whether we can detect

meaningful changes in the alpha / mu and beta band during

swimming, we re-sampled the data to a sampling frequency of

60 Hz. The downsampling was performed to stay in accordance

with previous research in our group, for which EEG data were

synchronized with external motion sensors with a lower sampling

rate (Jacobsen et al., 2020). We transformed the epoched data

around turns into the time-frequency domain by using morlet

wavelets. For further calculations, we took five (fronto-) central

channels (FC1, FC2, C3, Cz, and C4) as our region of interest (ROI)

and averaged across epochs, the ROI, and participants, obtaining

a grand average. To eliminate the f/1 pattern, we normalized the

averaged, epoched data by a sitting baseline.

2.7 Statistical analyses

Statistical analyses on the N100 amplitudes and P300

amplitudes and latencies were performed in RStudio (RStudio PBC,

Boston, MA, USA, Version 2022.12.0). For the directed hypotheses,

all tests were performed within subjects in the first step. The

alpha level for significance was set to 0.05. Finally, binomial tests

evaluated the proportion of significant effects found within subjects

as compared to the chance level in order to control for multiple

comparisons. We used the qbinom() function to compute the

threshold for statistical significance, i.e., the chance level (St(α) =

qbinom(1-α, n, 1/c) × 100 / n), as proposed by Combrisson and

Jerbi (2015). Thus, when all subjects were included (n = 9), the

chance level was at 77%; for the analyzes where one subject was

missing (n = 8), the chance level was at 75%. For the exploratory

analysis, the tests were performed on the grand average across all

subjects. To correct for multiple comparisons here, the Bonferroni

correction was applied.

2.7.1 Univariate tests for the occurrence of the
N100

To validate that the oddball paradigm and the mobile EEG

acquisition was successful in all blocks (Pre Swim, Swim, Post

Swim), the N100 was taken as a sanity check. Shapiro-Wilk tests

assessed normality of the distribution of N100 amplitudes, before

performing one-sided t-tests or Wilcoxon rank tests (in case of

violations of the assumption of normality) against zero (alternative

= less). A binomial test compared the proportion of significant

effects in the single subjects for all experimental blocks against the

chance level.
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2.7.2 Permutation tests for P300 properties
2.7.2.1 Main e�ect of the stimulus type

For testing themain effect of the stimulus type on the ERP, P300

amplitudes were compared between stimulus conditions using

permutation tests. The following analyzes were calculated for each

block (Pre Swim, Swim, Post Swim) in each subject:

The mean difference between the P300 amplitudes after target

and standard stimuli was calculated for the observed data. Then,

the labels of the P300 amplitude values were shuffled, and the mean

difference was re-calculated. This procedure was repeated 5,000

times to obtain a null distribution of mean differences between

amplitudes following target and standard stimuli. As there were

more standard than target tones in the experiment, a random

subsample of values with a “standard” label, which was equal to

the number of observations with a “target” label, was taken for

every iteration of the permutations. The observed mean value was

compared to the null distribution. Its relative position served as

an indicator for the likelihood of the observed mean if it was

assumed that the null hypothesis was true. This is equivalent to

the p-value (Cohen, 2014). This scheme was also applied in the

subsequent analyzes, with the respective adjustments. A binomial

test compared the proportion of significant effects found in the

single subjects and conditions against the chance level.

2.7.2.2 Interaction e�ect of motor condition and stimulus

type

Subsequently, we tested the interaction effect of the motor

condition and stimulus type on the ERP amplitudes, hypothesizing

a lower P300 amplitude during the swimming condition than in

the sitting condition. We re-coded the data, combining the data

from the Pre Swim and Post Swim to “Sit,” while applying no

changes to the data from Swim. Then, for both motor conditions,

the difference between ERP amplitudes in the time range of the

P300 component after standard and target tones was calculated.

Then, we performed a permutation analysis on these differences

in order to investigate the difference between the target-standard

differences in “Sit” and “Swim". Therefore, the same procedure as

described above was applied. In order to test the interaction effect

of the motor condition and stimulus type on the ERPs’ latency, we

used the re-coded data with the motor condition labels “Sit” and

“Swim.” We applied a permutation analysis to compare the P300

latencies in the cognitive task only condition and the additional

motor task condition.

2.7.2.3 Exploration of brain activity during turns

For the investigation of potential changes in the alpha and beta

band during turns, the grand average was divided into 10 bins

à 500 ms for the alpha and beta frequency bands, respectively.

By using permutation tests, each bin was compared to the mean

of all bins from the respective frequency band. Thus, first, the

actually observed difference was calculated. Then, the labels of

the current bin and the rest were randomly shuffled and the

difference was calculated again. This procedure was repeated

5,000 times, leading to a null distribution, against which the

observed value was compared. The alpha level was adjusted by

considering that the tests were performed as being two-sided and

by using the Bonferroni correction, leading to an alpha level

of α = 0.0025.

FIGURE 3

ERP noise levels in electrodes Fz (left) and Pz (right) in all subjects.

The experimental blocks are separated by color. Noise estimates

were obtained by computing the standard deviation of the channels

of interest in the prestimulus interval on a single trial level. Note that

for subject 10 the data of the Pre-block is missing and for subject

11, there is no data available from the Post-block.

3 Results

In total, N = 2 subjects were excluded from the analyzes due

to problems with the recording software. Thus, N = 9 participants

remained for the statistical analyzes.

3.1 Preprocessing

Considering the remaining subjects, on average 1.11 (range: 0–

3) channels were marked as bad and temporarily removed from

the data. After artifact correction, on average 21 (range: 20–22)

independent components remained per participant. At the end of

the preprocessing pipeline, on average 122 standard and 47 target

epochs (ranges: 117–126; 44–50) remained in the data sets of Pre

Swim per participant, which results in a loss of 15.5% of the data.

For Swim, on average 244 standard and 75 target epochs (ranges:

221–266; 69–82) were retained, marking a data loss of 20.25%.

Finally, on average 129 standard and 48 target epochs (ranges:

123–134; 43–52) remained for Post Swim, indicating that 11.5%

of the data were lost due to preprocessing and artifact correction

procedures. For the turn epochs, after preprocessing there were 24

(range: 17–30) out of 25.5 (range: 18–31) events per participant left.

3.2 Single-trial noise

Figure 3 shows that noise levels were generally increased in

Swim as compared to Pre Swim and Post Swim. Categorical

regressions confirmed that in all included participants, the noise

level was significantly higher in Swim as compared to Pre Swim

(Post Swim for subject 11; p <0.001 for all subjects). A binomial

test showed that this proportion does not lie above the chance level

(8/8 successes, p = 0.1). This result of the binomial test is due to
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FIGURE 4

Grand average ERPs measured at central electrodes, referenced to

TP9 and TP10. The blue lines indicate the ERPs after standard tones;

the red lines indicate the ERPs after target tones. (A) ERPs for the Pre

condition (sitting). (B) ERPs for the Swim condition. (C) ERPs for the

Post condition (sitting).

the high chance level threshold resulting from a relatively small n.

Despite the effect was reliably significant on the individual level, it

did not survive the correction formultiple testing on the group level

(binom.test(8, 8, 0.75, alternative = “greater")→ p = 0.1). There was

a significantly higher noise level in Post Swim than in Pre Swim in

only two subjects (p <0.05). This proportion does not lie above the

chance level (2/7 successes, p = 0.99). Note that in this comparison

only seven subjects were included as in one subject (subject 10), Pre

Swim is missing while in another subject (subject 11) Post Swim

is missing.

3.3 EEG metrics

Figure 4 shows the grand-average ERPs at central channels for

the standard and target stimuli in all three experimental blocks.

Despite the amplitudes are reduced for the swimming condition,

one can see typical oddball ERP patterns. In Pre Swim and Post

Swim, the ERP waveforms look typical, with only slightly reduced

amplitudes in Post Swim. Figures 5–7 show ERPs at channels Fz

and Pz, focusing on the N100 and P300, for three examplary

subjects, respectively. Figure 5 shows the ERP of a subject, where we

found the expected effects in all conditions, Figure 6 shows a subject

where the expected experimental effects could be observed during

Pre and Post Swim, but not during Swim, due to a decrease in signal

quality. Figure 7 depicts the data of a subject who did not show any

of the experimental effects at all. The occurrence of the N100 in all

subjects and conditions however shows that the experimental setup

was functional throughout the experiment. The topographies for

the N100 look plausible for all conditions; the topography of the

target P300 is only atypical during Swim. Summaries of mean N100

and P300 amplitudes as well as the interaction effects on the P300

amplitude and latency across all subjects are shown in Figures 8–10,

respectively. ERP plots including topographies for the subjects not

shown here, as well as the grand average and tables summarizing

the results can be found in the Supplementary material.

3.3.1 Occurrence of the N100
In order to validate that the setup was functional and that

the participants could hear the stimuli well throughout the whole

experiment, the occurrence of the N100 ERP component after

standard as well as target tones in all blocks served as a criterion.

Depending on the distribution of the data within subjects and

blocks, one-sided t-tests or Wilcoxon tests against zero were

performed. The results show that the N100 occurred in all subjects

in all experimental blocks (p <0.05), which is supported by

plausible ERP topographies. Binomial tests however show that the

proportion of significant findings is not significantly above the

chance level (p = 0.1 for Pre Swim and Post Swim; p = 0.104 for

Swim). Despite the effect was reliably significant on the individual

level, it did not survive the correction for multiple testing on the

group level (binom.test(9, 9, 0.77, alternative = “greater") → p =

0.104).

3.3.2 E�ects of experimental manipulation on the
P300

To test the first hypothesis, permutation analyzes were applied

for comparing amplitudes in the time range of the P300 component

between ERPs after standard and target tones in all experimental

blocks. We hypothesized a higher amplitude in the P300 time

range following target stimuli as compared to standard ones. In Pre

Swim, we found significant main effects in six of the eight subjects

included in the analyzes (p <0.05), which are also represented by

the topography. A binomial test however showed that the given

proportion does not significantly lie above the chance level (p =

0.68). In Swim, we found a significant effect in two of the nine

subjects (p <0.05), which a binomial test showed to be below chance

level (p = 1). In Post Swim, we found a significant effect in 5 of the 8

included subjects (p <0.05), which are also topographically valid. A

binomial test however showed that the given proportion does not

significantly lie above the chance level (p = 0.89).

In order to answer the second research question, whether there

was an interaction effect of the motor condition and stimulus

type regarding the ERPs’ morphology, permutation analyzes were

applied on P300 amplitudes and latencies. Firstly, we compared

amplitude differences between the standard and target condition

in the range of the P300 component between ERPs in the sitting

and swimming condition. We hypothesized the difference between

target and standard amplitudes to be larger during sitting than

during swimming. We found a significant effect in one out of nine

subjects. This proportion was not significant (one out of nine; p =

1), as assessed by a binomial test. Subsequently, we tested whether

there was an interaction effect of the motor condition and stimulus

type on the latency of the P300 after target stimuli, hypothesizing

an increase in the latencies for P300 peak amplitudes during

swimming. For doing so, we performed permutation analyzes

Frontiers inHumanNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1466853
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Klapprott and Debener 10.3389/fnhum.2024.1466853

FIGURE 5

ERPs and topographies in the N100 and P300 windows for all factorial combinations for a subject where all the expected experimental e�ects could

be observed. The upper row shows topographies and channel potential of the N100 measured at Fz for standard and target stimuli combined. The

lower row shows topographies and channel potential of the P300 measured at Pz separated by standard and target stimuli. The shaded areas around

the channel potentials mark the standard error of the means across single trials. The gray bars around the peak mark the peak of the potential ± or

100 ms, respectively.

on the P300 latencies in Sit and Swim. We found a significant

effect in five out of nine subjects. A binomial test evaluated

this proportion as not being significantly above the chance level

(p= 0.97).

3.3.3 Oscillatory activity around turns
Lastly, we aimed to explore whether we can measure

meaningful data during swimming also in the time-frequency

domain. For this we analyzed potential changes in alpha/mu and

beta activity from –2.5 to 2.5 s around turns in an undirected,

exploratory fashion. Permutation tests of single bins á 500 ms

against the whole activation showed a significant decrease in the

alpha/mu band from –2,500 to –2,000 ms, and from –1,500 to 1,000

ms before the turn, as well as immediately after the turn (0–500

ms; p <0.0025 in the respective bins). Significant increases in the

alpha/mu band as compared to a sitting baseline were found in

the bins from 1,500 to 2,500 ms after the turn (p <0.0025 in the

respective bins). For the beta band, a significant increase in power

was found from –2,000 to –1,500 ms before and from 1,000 to 2,500

ms after the turn (p <0.0025 in the respective bins). A decrease in

beta band power was found from –1,000 to 500ms (p <0.0025 in the

respective bins) around the turns. Next to the description of howwe

obtained these data, the results are illustrated in Figure 11.

4 Discussion

This study investigated whether it is possible to acquire

meaningful mobile EEG data during swimming, by the example

of CMI. Participants performed an auditory oddball task while

being seated and while swimming, with their brain activity being

constantly measured by mobile EEG. Measures of interest were the

ERPs elicited by the experimental stimuli in all conditions as well

as modulations of the alpha/mu and beta frequency bands during

turns in the swimming pool on an exploratory basis.

4.1 Feasibility of measuring mobile EEG
during swimming

In order to obtain the data at hand, we had to overcome

considerable challenges. First of all, the integrity of the EEG system

had to be guaranteed for the whole experiment, especially during
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FIGURE 6

ERPs and topographies in the N100 and P300 windows for all factorial combinations for a subject where the expected experimental e�ects could be

observed during Pre and Post Swim, but not during swimming, due to a decrease in signal quality. The structure is the same as for Figure 5.

swimming. By developing a custom EEG cap without chinstraps,

and isolating it with an off-the-shelf swim cap and medical tape,

we successfully made the system waterproof. Second, the Bluetooth

connection between the mobile amplifier and the phone recording

the data had to be stable, just as the presentation of the auditory

stimuli of the oddball paradigm. The phone had to be close

to the participants and always above the water surface, as (a)

Bluetooth cannot transfer data through water, and (b) the audio

cable could not be too long in order to be properly fixated at the

participants’ back. In addition to instructing the participants to not

dive after turns, this setup enabled a stable Bluetooth connection

and stimulus presentation via the headphones. Lastly, the data

quality had to be sufficient to obtain meaningful results from the

study. The main issue here were the head movements involved in

front crawl swimming. By giving the participants a front snorkel

that allowed them to breathe without turning their heads, we

avoided greater head motion, which led to more stability and a

higher signal quality of the EEG. Another potential problem could

have been sweat artifacts, which are known to detoriate the EEG

signal. However, we did not observe these artifacts in our data,

possibly due to the rather low temperature of the university’s indoor

pool (23◦C).

The subsequent analysis of the data shows that we were

successful in overcoming these challenges and that it is indeed

feasible to measure meaningful human EEG data during

swimming. The analysis also showed that the recorded data

profited from common mobile EEG preprocessing procedures.

Despite the increased data loss after preprocessing (20.25%) and

noise levels in Swim, we found a reliable N100 component of the

ERPs in all participants, as well as P300 components in a part of the

participants. Even if these effects did not survive the correction for

multiple testing due to a too small sample size, we clearly see the

ERPs and topographies on the single subject level. Further, it was

possible to obtain meaningful data in the time-frequency domain

around the turns during swimming. Finally, the maintained quality

of the data in Post Swim shows the robustness of our system in an

aquatic environment.

Regarding the degrees of mobility postulated by Bateson et al.

(2017), it lies at hand that we reached considerably high levels of

device mobility (headmounted + smartphone for recording) and

participant mobility (free movement except for the head). On the

side of the system specifications, we reached a rather moderate

level (unshielded, passive gel electrodes; 24-bit resolution; sampling

rate of up to 500 Hz; ∼5 h battery life), which, however, was

sufficient for our purposes. The use of active electrodes for instance

would also not have been feasible, as they would be too large

to fit properly underneath the swim cap. As a recent study

showed that the signal quality of passive electrodes does not

significantly differ from the quality of active electrodes (Scanlon

et al., 2021), we do not see any disadvantage of our system in
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FIGURE 7

ERPs and topographies in the N100 and P300 windows for all factorial combinations for a subject where the expected experimental e�ects could not

be observed in any of the blocks. The structure is the same as for Figures 5, 6.

FIGURE 8

Summary of the average N100 amplitudes after standard (Sta) and

target (Tar) stimuli during the experimental blocks. The lines

connect the dots belonging to single subjects.

this regard. In comparison to the studies considered by Bateson

et al. (2017), and other more recent MoBI studies (Mavros et al.,

2022; Studnicki et al., 2022; Liu et al., 2024) our setup offers

an advanced combination of device and participant mobility.

FIGURE 9

Summary of the average P300 amplitudes after standard (Sta) and

target (Tar) stimuli during the experimental blocks. The lines

connect the dots belonging to single subjects.

Despite there are setups with advantages in terms of system

specification, these cannot compete with the degree of overall

mobility our system offers (for an illustration, see Bateson et al.,

2017).
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FIGURE 10

Summary of the interaction e�ect of the stimulus type and the

motor condition on the P300 amplitudes and latencies. The lines

connect the dots belonging to single subjects. (Left) comparison of

P300 Peak latencies after target stimuli in sit and swim. (Right)

comparison of the amplitude di�erences (target-standard) in sit and

swim. A high score corresponds to a higher P300 amplitude after

target stimuli as compared to the amplitude following standard

stimuli.

4.2 E�ects of CMI during swimming

In previous studies, it was consistently shown that target tones

elicited a larger P300 amplitude than standard ones (Gramann

et al., 2011; Debener et al., 2012; Lau et al., 2012; Jain et al., 2013;

Enders et al., 2016; Zink et al., 2016; Scanlon et al., 2019; Reiser

et al., 2021; Robles et al., 2021; Papin et al., 2024). Further, the

authors reported CMI measurable on the brain level, shown in a

reduction in P300 amplitudes in dual-task conditions as compared

to single-task conditions. In how far CMI is affected by swimming

on the brain level, however, remains open, as our results are not

clearly in line with the existing literature.

To begin with, even in the sitting condition (especially in Post

Swim) not all participants showed the expected main effect of

the stimulus type. This could have been due to inter-individual

differences and the finding that not all humans show a P300

(Woodman, 2010; Luck, 2014), or intra-individual variations, as

cognitive and arousal-related states (Polich and Kok, 1995), which

might have an increased influence in a study with a rather small

sample size. Another reason could be that the participants did not

understand the task. However, this explanation is rather unlikely,

as the participants reported a realistic number of target tones

they had counted and especially in Post the task should have

FIGURE 11

Grand average of the time-frequency solution around turns during swimming. (A) Frequency power in dB during an arbitrary 5 s time frame for

illustration purposes during an open-eyes resting measurement during sitting and the mean of the power during the whole open-eyes resting

measurement. (B) Frequency power in dB during turn phases while swimming (turn ± 2.5 s). (C) Mean frequency power during the sitting baseline

and turn epochs. (D) Mean topographies of alpha and beta in 1,500 ms windows during the turn phases. (E) Frequency power during turn phases

normalized by the mean sitting baseline. Bins marked with a star contain a significantly lower or higher dB change from the baseline as compared to

the mean of the whole activation in the respective frequency band.
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been clear. A more realistic explanation would be that while still

highly motivated in the first block of the experimental paradigm,

the participants’ engagement in the task decreased over time,

contributing to overall lower amplitudes in Post Swim. Further,

the decrement of the P300 amplitude may be due to physical

exertion. Despite the participants were instructed to swim carefully

and relaxed, we cannot exclude that for some participants the

swimming task was more exhaustive than for others. Previous

research has shown that a high intensity bout of physical exercise

can have a negative impact on cognitive performance (e.g., Pontifex

et al., 2019, thus, which may also be reflected in ERP amplitudes).

Regarding the absence of the oddball effect on the P300 during

Swim, it might be that the dual-task was merely too difficult for

most participants and that they prioritized the motor task rather

than focusing on the cognitive task. This would be in line with the

“posture first” strategy (Shumway-Cook et al., 1997), postulating

that in CM-DT situations individuals prioritize the motor task

over the cognitive task to maintain physical integrity. Thus, this

concept might be extended to a “not drowning first” strategy.

However, as the experiment did not contain any questionnaires

for the participants about the perceived difficulty of the task,

we cannot be sure whether this was the case in this study.

Nonetheless, we do see an effect in some of the subjects (see also the

Supplementary material), so the recording circumstances in single

sessions also must have played a role, alongside with inter- and

intra-individual variations (Polich and Kok, 1995; Luck, 2014).

Concerning the P300 peak latency, we could not find a clear

association of altered motor conditions and the components’

latency. In a part of the participants, we found the expected

effects, but in the other part, the direction of the effect was

reversed. This inconsistency has also been reported in earlier

studies (Ladouce et al., 2019; Kao et al., 2020; Papin et al.,

2024). It should be kept in mind that in our study, we

focused on effects on the subject-level, while the previous studies

mentioned above investigated the effects on the group-level. More

research, also combining both approaches, would be beneficial

to further understand the discrepancies between the findings.

However, the reader should also note that in our study, the

CMI effects on the P300 amplitude were not reliable; thus

drawing conclusions about effects on the P300 latencies should not

be made.

4.3 Exploratory: oscillatory activity around
turns

In addition to the time domain, we investigated the

brain activity during swimming in the time-frequency domain.

Specifically, we explored whether there are changes in the alpha

/ mu and beta band as a correlate of cortical preparations for

turns, measured at central channels. We indeed found significant

deviations over time in both the alpha / mu and beta frequency

band, indicating beta desynchronization just before the turn and

beta synchronization from 1 s on after the turn, as well as a

synchronization in the alpha / mu band ∼1 s after the turn. Both

frequency bands change in different manners, indicating that it

is not likely that the observed patterns are purely due to noise

and artifacts.

Movement is associated with desynchronization in the alpha /

mu and beta frequency bands (Gross et al., 2002;Maksimenko et al.,

2018), thus it is not surprising to see that especially in the alpha /

mu band there is less power as compared to the sitting baseline. The

decrease in beta just before the turn might reflect the immediate

preparation for it. The slight increase in in both frequency bands

in the remaining time windows might be explained by a re-

synchronization of oscillatory activity, especially after the turn. As,

to our knowledge, this is the first examination of brain activity

during a complex full body motion, we cannot link these results

to any prior research or interpret this finding unambiguously.

Thus, more research on brain activity during complex, full body

movements is needed in order to properly interpret and support

our findings in this regard.

4.4 Limitations

Despite the impact of our research for potential future

applications of mobile EEG in cognitive and sports neuroscience,

there are some limitations to the study that should be noted. First of

all, the small sample size indicates that the observed effects have to

be interpreted with caution. However, a larger sample size was not

possible for this pilot study, as we only had access to the university

pool for a few weeks, while the piloting and fine-tuning of the

setup took an extensive amount of time during that period. Due

to the limited sample size, more detailed analyzes regarding for

example demographic characteristics like potential age or gender

differences were not feasible. Another limitation is the prototypical

setup we designed for the experiment. For instance, there was only

onemodified EEG cap available, which was used for all participants,

so the the electrodes did not sit at the exact same position for

all participants, due to their variations in head size. This might

have contributed to some irregularities in the data and between

single participants.

On the side of the experimental design, we have to mention that

the order of the blocks was not randomized or counter-balanced

between participants, thus, the study is not immune against

potential order effects. As it is known that the P300 amplitude

habituates after some repetitions of the same experiment,

(Lammers and Badia, 1989) this also might have contributed to the

reduced oddball effect in Post Swim. However, the aim was to study

the feasibility of acquiring mobile EEG data during swimming,

thus, a Pre and a Post measurement was needed for all participants.

Last but not least, there was no valid behavioral component

included in the study, such as a reliable behavioral performance

during the oddball task or questionnaires about the perceived

difficulty of the respective conditions. Despite the participants were

asked to report the number of counted target tones, it might be that

they had guessed at some point which we did not have control over.

The reason for this implementationwas that a reliablemeasure such

as button presses would not have been possible, especially during

the swimming block.

4.5 Conclusion and outlook

To conclude, this pilot study not only extends the literature on

CMI, but also shows that it is feasible to measure EEG in such
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a hostile environment as water. So far, investigations regarding

swimming were either limited to stationary diving (Schneider et al.,

2014), dry conditions (Shi et al., 2017; Mikicin et al., 2020), ECG or

other behavioral recordings in humans (Stauffer et al., 2018; Stets

et al., 2020), or recordings in animals (Yu et al., 2021; Günther et al.,

2022; Kendall-Bar et al., 2022). Future research with more mature

setups for measuring mobile EEG during swimming might enable

more thorough diagnostics in the swim sport, complementing

existing methods, such as general procedures like video taping,

or more advances techniques to also measure muscle fatigue, as

tensiomyography (Buoite Stella et al., 2024). Another branch of

research could investigate more effects of swimming on cognition

and brain activity. As there is a growing body of research showing

benefits of swimming on cognition and brain health (Abou-Dest

et al., 2012; Lin et al., 2020; Faíl et al., 2022), it would be

interesting to complement the effects reported on a behavioral

level and on the animal brain with data recorded from the human

brain. Despite there is still a lot of potential for technological and

methodological advancements, we are confident that those can

be achieved and enable more mobile EEG research in sports and

health science.
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(2024). Shoulder tensiomyography and isometric strength in swimmers before and
after a fatiguing protocol. J. Athlet. Train. 59, 738–744. doi: 10.4085/1062-6050-0265.23

Frontiers inHumanNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1466853
https://www.frontiersin.org/articles/10.3389/fnhum.2024.1466853/full#supplementary-material
https://doi.org/10.1155/2012/273185
https://doi.org/10.1016/j.neubiorev.2010.08.008
https://doi.org/10.1155/2017/5496196
https://doi.org/10.3389/fnhum.2017.00163
https://doi.org/10.3390/s21238135
https://doi.org/10.4085/1062-6050-0265.23
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Klapprott and Debener 10.3389/fnhum.2024.1466853

Chang, M., Büchel, D., Reinecke, K., Lehmann, T., and Baumeister,
J. (2022). Ecological validity in exercise neuroscience research: a
systematic investigation. Eur. J. Neurosci. 55, 487–509. doi: 10.1111/ejn.
15595

Cohen, M. X. (2014). Analyzing Neural Time Series Data: Theory and Practice.
Camebridge, MA: MIT Press. doi: 10.7551/mitpress/9609.001.0001

Combrisson, E., and Jerbi, K. (2015). Exceeding chance level by chance:
the caveat of theoretical chance levels in brain signal classification and
statistical assessment of decoding accuracy. J. Neurosci. Methods 250, 126–136.
doi: 10.1016/j.jneumeth.2015.01.010

De Vos, M., Gandras, K., and Debener, S. (2014). Towards a truly mobile auditory
brain—computer interface: exploring the P300 to take away. Int. J. Psychophysiol. 91,
46–53. doi: 10.1016/j.ijpsycho.2013.08.010

Debener, S., Minow, F., Emkes, R., Gandras, K., and de Vos, M. (2012). How about
taking a low-cost, small, and wireless EEG for a walk? Psychophysiology 49, 1449–1453.
doi: 10.1111/j.1469-8986.2012.01471.x

Delorme, A., and Makeig, S. (2004). EEGLAB: an open source toolbox for analysis
of single-trial EEG dynamics including independent component analysis. J. Neurosci.
Methods 134, 9–21. doi: 10.1016/j.jneumeth.2003.10.009

Enders, H., Cortese, F., Maurer, C., Baltich, J., Protzner, A. B., and Nigg, B. M.
(2016). Changes in cortical activity measured with EEG during a high-intensity cycling
exercise. J. Neurophysiol. 115, 379–388. doi: 10.1152/jn.00497.2015

Faíl, L. B., Marinho, D. A., Marques, E. A., Costa, M. J., Santos, C. C., Marques,
M. C., et al. (2022). Benefits of aquatic exercise in adults with and without chronic
disease—a systematic review with meta-analysis. Scand. J. Med. Sci. Sports 32, 465–486.
doi: 10.1111/sms.14112

Gramann, K., Gwin, J. T., Ferris, D. P., Oie, K., Jung, T.-P., Lin, C.-T., et al. (2011).
Cognition in action: imaging brain/body dynamics in mobile humans. Rev. Neurosci.
22, 593–608. doi: 10.1515/RNS.2011.047

Gross, J., Timmermann, L., Kujala, J., Dirks, M., Schmitz, F., Salmelin, R., et al.
(2002). The neural basis of intermittent motor control in humans. Proc. Natl. Acad.
Sci. U. S. A. 99, 2299–2302. doi: 10.1073/pnas.032682099

Günther, M., Arborelius, U., Risling, M., Gustavsson, J., and Sondén, A. (2022).
An experimental model for the study of underwater pressure waves on the central
nervous system in rodents: a feasibility study. Ann. Biomed. Eng. 50, 78–85.
doi: 10.1007/s10439-021-02898-6

Jacobsen, N. S. J., Blum, S., Witt, K., and Debener, S. (2020). A walk in the park?
characterizing gait-related artifacts in mobile EEG recordings. Eur. J. Neurosci. 54,
8421–8440. doi: 10.1111/ejn.14965

Jain, S., Gourab, K., Schindler-Ivens, S., and Schmit, B. D. (2013). EEG during
pedaling: evidence for cortical control of locomotor tasks. Clin. Neurophysiol. 124,
379–390. doi: 10.1016/j.clinph.2012.08.021

Jeannerod, M. (2006).Motor Cognition: What Actions Tell the Self. Oxford: Oxford
University Press.

Jungnickel, E., Gehrke, L., Klug, M., and Gramann, K. (2019). MoBI—Mobile
Brain/Body Imaging. in Neuroergonomics, eds. H. Ayaz, and F. Dehais (Amsterdam:
Elsevier), 59–63. doi: 10.1016/B978-0-12-811926-6.00010-5

Kao, S., Cadenas-Sanchez, C., Shigeta, T. T.,Walk, A.M., Chang, Y., Pontifex, M. B.,
et al. (2020). A systematic review of physical activity and cardiorespiratory fitness on
P3b. Psychophysiology 57:13425. doi: 10.1111/psyp.13425

Kendall-Bar, J. M., Mukherji, R., Nichols, J., Lopez, C., Lozano, D. A., Pitman, J. K.,
et al. (2022). Eavesdropping on the brain at sea: development of a surface-mounted
system to detect weak electrophysiological signals fromwild animals.Anim. Biotelemet.
10:16. doi: 10.1186/s40317-022-00287-x

Klug, M., and Kloosterman, N. A. (2022). Zapline-plus: a Zapline extension for
automatic and adaptive removal of frequency—specific noise artifacts in EEG. Hum.
Brain Map. 43, 2743–2758. doi: 10.1002/hbm.25832

Kothe, C., Shirazi, S. Y., Stenner, T., Medine, D., Boulay, C., Grivich, M. I., et al.
(2024). The lab streaming layer for synchronized multimodal recording. bioRxiv.
doi: 10.1101/2024.02.13.580071

Ladouce, S., Donaldson, D. I., Dudchenko, P. A., and Ietswaart, M. (2017).
Understanding minds in real-world environments: toward a mobile cognition
approach. Front. Hum. Neurosci. 10:694. doi: 10.3389/fnhum.2016.00694

Ladouce, S., Donaldson, D. I., Dudchenko, P. A., and Ietswaart, M. (2019). Mobile
EEG identifies the re-allocation of attention during real-world activity. Sci. Rep.
9:15851. doi: 10.1038/s41598-019-51996-y

Lammers, W. J., and Badia, P. (1989). Habituation of P300 to target stimuli. Physiol.
Behav. 45, 595–601.

Lau, T. M., Gwin, J. T., and Ferris, D. P. (2012). How many electrodes are
really needed for EEG-based mobile brain imaging? J. Behav. Brain Sci. 2, 387–393.
doi: 10.4236/jbbs.2012.23044

Leone, C., Feys, P., Moumdjian, L., D’Amico, E., Zappia, M., and Patti, F. (2017).
Cognitive-motor dual-task interference: a systematic review of neural correlates.
Neurosci. Biobehav. Rev. 75, 348–360. doi: 10.1016/j.neubiorev.2017.01.010

Lin, J.-Y., Kuo, W.-W., Baskaran, R., Kuo, C.-H., Chen, Y.-A., Chen, W. S.-T.,
et al. (2020). Swimming exercise stimulates IGF1/ PI3K/Akt and AMPK/SIRT1/PGC1?
survival signaling to suppress apoptosis and inflammation in aging hippocampus.
Aging 12, 6852–6864. doi: 10.18632/aging.103046

Liu, C., Downey, R. J., Salminen, J. S., Arvelo Rojas, S., Richer, N., Pliner,
E. M., et al. (2024). Electrical brain activity during human walking with parametric
variations in terrain unevenness and walking speed. Imag. Neurosci. 2, 1–33.
doi: 10.1162/imag_a_00097

Luck, S. J. (2014). An Introduction to the Event-Related Potential Technique, 2nd
Edn. Camebridge, MA: The MIT Press.

Maksimenko, V. A., Pavlov, A., Runnova, A. E., Nedaivozov, V., Grubov, V.,
Koronovslii, A., et al. (2018). Nonlinear analysis of brain activity, associated with
motor action and motor imaginary in untrained subjects. Nonlin. Dyn. 91, 2803–2817.
doi: 10.1007/s11071-018-4047-y

Matusz, P. J., Dikker, S., Huth, A. G., and Perrodin, C. (2019). Are we ready
for real-world neuroscience? J. Cogn. Neurosci. 31, 327–338. doi: 10.1162/jocn_e_
01276

Mavros, P., J Wälti, M., Nazemi, M., Ong, C. H., and Hölscher, C. (2022). A mobile
EEG study on the psychophysiological effects of walking and crowding in indoor
and outdoor urban environments. Sci. Rep. 12:18476. doi: 10.1038/s41598-022-20
649-y

Mikicin, M., Mróz, A., Karczewska-Lindinger, M., Malinowska, K., Mastalerz,
A., and Kowalczyk, M. (2020). Effect of the neurofeedback-EEG training during
physical exercise on the range of mental work performance and individual
physiological parameters in swimmers. Appl. Psychophysiol. Biofeed. 45, 49–55.
doi: 10.1007/s10484-020-09456-1

Palva, S., and Palva, J. M. (2007). New vistas for-frequency band oscillations. Trends
Neurosci. 30, 150–158. doi: 10.1016/j.tins.2007.02.001

Papin, L. J., Esche, M., Scanlon, J. E. M., Jacobsen, N. S. J., and Debener, S. (2024).
Investigating cognitive-motor effects during slacklining using mobile EEG. Front.
Hum. Neurosci. 18:1382959. doi: 10.3389/fnhum.2024.1382959

Plummer, P., Eskes, G., Wallace, S., Giuffrida, C., Fraas, M., Campbell, G., et al.
(2013). Cognitive-motor interference during functional mobility after stroke: state
of the science and implications for future research. Archiv. Phys. Med. Rehabil. 94,
2565–2574.e6. doi: 10.1016/j.apmr.2013.08.002

Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clin.
Neurophysiol. 118, 2128–2148. doi: 10.1016/j.clinph.2007.04.019

Polich, J., and Kok, A. (1995). Cognitive and biological determinants of P300: an
integrative review. Biol. Psychol. 41, 103–146.

Pontifex, M. B., McGowan, A. L., Chandler, M. C., Gwizdala, K. L., Parks,
A. C., Fenn, K., et al. (2019). A primer on investigating the after effects of
acute bouts of physical activity on cognition. Psychol. Sport Exerc. 40, 1–22.
doi: 10.1016/j.psychsport.2018.08.015

Reiser, J. E., Wascher, E., Rinkenauer, G., and Arnau, S. (2021). Cognitive-
motor interference in the wild: assessing the effects of movement complexity on
task switching using mobile EEG. Eur. J. Neurosci. 54, 8175–8195. doi: 10.1111/ejn.
14959

Robles, D., Kuziek, J. W. P., Wlasitz, N. A., Bartlett, N. T., Hurd, P. L.,
and Mathewson, K. E. (2021). EEG in motion: using an oddball task to explore
motor interference in active skateboarding. Eur. J. Neurosci. 54, 8196–8213.
doi: 10.1111/ejn.15163

Scanlon, J. E. M., Jacobsen, N. S. J., Maack, M. C., and Debener, S. (2021). Does
the electrode amplification style matter? a comparison of active and passive EEG
system configurations during standing and walking. Eur. J. Neurosci. 54, 8381–8395.
doi: 10.1111/ejn.15037

Scanlon, J. E. M., Townsend, K. A., Cormier, D. L., Kuziek, J. W. P., and
Mathewson, K. E. (2019). Taking off the training wheels: measuring auditory P3
during outdoor cycling using an active wet EEG system. Brain Res. 1716, 50–61.
doi: 10.1016/j.brainres.2017.12.010

Schneider, S., Cheung, J. J. H., Frick, H., Krehan, S., Micke, F., Sauer, M.,
et al. (2014). When neuroscience gets wet and hardcore: neurocognitive markers
obtained during whole body water immersion. Exp. Brain Res. 232, 3325–3331.
doi: 10.1007/s00221-014-4019-5

Shi, L., Zhang, Y. -m., Tetsuo, K., Shi, Z. -y., Fang, Y. -q., Denoble, P. J., et al.
(2017). Simulated high altitude helium-oxygen diving. Aerospace Med. Hum. Perform.
88, 1088–1093. doi: 10.3357/AMHP.4912.2017

Shumway-Cook, A., Woollacott, M., Kerns, K. A., and Baldwin, M. (1997). The
effects of two types of cognitive tasks on postural stability in older adults with and
without a history of falls. J. Gerontol. Ser. A 52A, M232–M240.

Stangl, M., Maoz, S. L., and Suthana, N. (2023). Mobile cognition: imaging
the human brain in the “real world". Nat. Rev. Neurosci. 24, 347–362.
doi: 10.1038/s41583-023-00692-y

Stauffer, F., Thielen, M., Sauter, C., Chardonnens, S., Bachmann, S., Tybrandt, K.,
et al. (2018). Skin conformal polymer electrodes for clinical ECG and EEG recordings.
Adv. Healthc. Mater. 7:1700994. doi: 10.1002/adhm.201700994

Frontiers inHumanNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1466853
https://doi.org/10.1111/ejn.15595
https://doi.org/10.7551/mitpress/9609.001.0001
https://doi.org/10.1016/j.jneumeth.2015.01.010
https://doi.org/10.1016/j.ijpsycho.2013.08.010
https://doi.org/10.1111/j.1469-8986.2012.01471.x
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1152/jn.00497.2015
https://doi.org/10.1111/sms.14112
https://doi.org/10.1515/RNS.2011.047
https://doi.org/10.1073/pnas.032682099
https://doi.org/10.1007/s10439-021-02898-6
https://doi.org/10.1111/ejn.14965
https://doi.org/10.1016/j.clinph.2012.08.021
https://doi.org/10.1016/B978-0-12-811926-6.00010-5
https://doi.org/10.1111/psyp.13425
https://doi.org/10.1186/s40317-022-00287-x
https://doi.org/10.1002/hbm.25832
https://doi.org/10.1101/2024.02.13.580071
https://doi.org/10.3389/fnhum.2016.00694
https://doi.org/10.1038/s41598-019-51996-y
https://doi.org/10.4236/jbbs.2012.23044
https://doi.org/10.1016/j.neubiorev.2017.01.010
https://doi.org/10.18632/aging.103046
https://doi.org/10.1162/imag_a_00097
https://doi.org/10.1007/s11071-018-4047-y
https://doi.org/10.1162/jocn_e_01276
https://doi.org/10.1038/s41598-022-20649-y
https://doi.org/10.1007/s10484-020-09456-1
https://doi.org/10.1016/j.tins.2007.02.001
https://doi.org/10.3389/fnhum.2024.1382959
https://doi.org/10.1016/j.apmr.2013.08.002
https://doi.org/10.1016/j.clinph.2007.04.019
https://doi.org/10.1016/j.psychsport.2018.08.015
https://doi.org/10.1111/ejn.14959
https://doi.org/10.1111/ejn.15163
https://doi.org/10.1111/ejn.15037
https://doi.org/10.1016/j.brainres.2017.12.010
https://doi.org/10.1007/s00221-014-4019-5
https://doi.org/10.3357/AMHP.4912.2017
https://doi.org/10.1038/s41583-023-00692-y
https://doi.org/10.1002/adhm.201700994
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Klapprott and Debener 10.3389/fnhum.2024.1466853

Stets, A., Smith, S. L., and Helton, W. S. (2020). Dual-task interference
between swimming and verbal memory. Hum. Fact. 62, 1132–1140.
doi: 10.1177/0018720819871743

Studnicki, A., Downey, R. J., and Ferris, D. P. (2022). Characterizing and
removing artifacts using dual-layer EEG during table tennis. Sensors 22:5867.
doi: 10.3390/s22155867

Sun, C., Luo, J., Jia, T., Hou, C., Li, Y., Zhang, Q., et al. (2022). Water-resistant
and underwater adhesive ion-conducting gel for motion-robust bioelectric monitoring.
Chem. Eng. J. 431:134012. doi: 10.1016/j.cej.2021.134012

Woodman, G. F. (2010). A brief introduction to the use of event-related potentials
in studies of perception and attention. Attent. Percept. Psychophys. 72, 2031–2046.
doi: 10.3758/BF03196680

Yu, Y., Li, N., Li, Y., and Liu, W. (2021). A portable waterproof EEG acquisition
device for dolphins. Sensors 21:3336. doi: 10.3390/s21103336

Zink, R., Hunyadi, B., Huffel, S. V., and Vos, M. D. (2016). Mobile EEG
on the bike: disentangling attentional and physical contributions to auditory
attention tasks. J. Neural Eng. 13:e046017. doi: 10.1088/1741-2560/13/4/04
6017

Frontiers inHumanNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1466853
https://doi.org/10.1177/0018720819871743
https://doi.org/10.3390/s22155867
https://doi.org/10.1016/j.cej.2021.134012
https://doi.org/10.3758/BF03196680
https://doi.org/10.3390/s21103336
https://doi.org/10.1088/1741-2560/13/4/046017
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org

	Mobile EEG for the study of cognitive-motor interference during swimming?
	1 Introduction
	2 Materials and methods
	2.1 Preregistration
	2.2 Participants
	2.3 Materials
	2.4 Tasks
	2.5 Procedure
	2.6 EEG data analysis
	2.6.1 Preprocessing
	2.6.2 ERP component parametrization and analysis
	2.6.2.1 N100 amplitude
	2.6.2.2 P300 amplitude and latency

	2.6.3 Exploratory: modulation of frequency bands during swimming

	2.7 Statistical analyses
	2.7.1 Univariate tests for the occurrence of the N100
	2.7.2 Permutation tests for P300 properties
	2.7.2.1 Main effect of the stimulus type
	2.7.2.2 Interaction effect of motor condition and stimulus type
	2.7.2.3 Exploration of brain activity during turns



	3 Results
	3.1 Preprocessing
	3.2 Single-trial noise
	3.3 EEG metrics
	3.3.1 Occurrence of the N100
	3.3.2 Effects of experimental manipulation on the P300
	3.3.3 Oscillatory activity around turns


	4 Discussion
	4.1 Feasibility of measuring mobile EEG during swimming
	4.2 Effects of CMI during swimming
	4.3 Exploratory: oscillatory activity around turns
	4.4 Limitations
	4.5 Conclusion and outlook

	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


