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Emotion recognition is a critical research topic within a�ective computing, with

potential applications across various domains. Currently, EEG-based emotion

recognition, utilizing deep learning frameworks, has been e�ectively applied and

achieved commendable performance. However, existing deep learning-based

models face challenges in capturing both the spatial activity features and spatial

topology features of EEG signals simultaneously. To address this challenge, a

domain-adaptation spatial-feature perception-network has been proposed for

cross-subject EEG emotion recognition tasks, named DSP-EmotionNet. Firstly,

a spatial activity topological feature extractor module has been designed to

capture spatial activity features and spatial topology features of EEG signals,

named SATFEM. Then, using SATFEM as the feature extractor, DSP-EmotionNet

has been designed, significantly improving the accuracy of the model in cross-

subject EEG emotion recognition tasks. The proposedmodel surpasses state-of-

the-art methods in cross-subject EEG emotion recognition tasks, achieving an

average recognition accuracy of 82.5% on the SEED dataset and 65.9% on the

SEED-IV dataset.

KEYWORDS

a�ective computing, electroencephalography, emotion recognition, convolutional

neural network, graph attention network, domain adaptation

Introduction

Emotion recognition (Jia et al., 2021; Tan et al., 2020; Cimtay et al., 2020; Doma

and Pirouz, 2020) has become an important task in affective computing. It has

potential applications in areas like affective brain-computer interfaces, diagnosing affective

disorders, detecting emotions in patients with consciousness disorders, emotion detection

of drivers, mental workload estimation, and cognitive neuroscience. Emotion is a mental

and physiological state that arises from various sensory and cognitive inputs, significantly

influencing human behavior in daily life (Jia et al., 2021). Emotion is a response to

both internal and external stimuli. Physiological signals, such as Electrocardiography

(ECG), Electromyography (EMG), and Electroencephalography (EEG), correspond to

the physiological responses caused by emotions. They are more reliable indicators of

emotional expression than non-physiological signals, such as speech, posture, and facial

expression, which can be masked by humans (Tan et al., 2020; Cimtay et al., 2020). Among

these physiological signals, EEG signals have a high temporal resolution and a wealth of
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information, which can reveal subtle changes in emotions,

making them more suitable for emotion recognition than other

physiological signals (Atkinson and Campos, 2016). EEG-based

emotion recognition methods are more accurate and objective, as

some studies have verified the relationship between EEG signals

and emotions (Xing et al., 2019).

In recent years, EEG signals have gained widespread application

in emotion recognition due to their ability to accurately reflect

the genuine emotions of subjects (Jia et al., 2020; Zhou et al.,

2023). Early approaches to EEG-based emotion recognition have

relied on processes such as signal denoising, feature design, and

classifier learning. For example, Wang et al. have introduced the

Support Vector Machine (SVM) classifier (Wang et al., 2011),

while Bahari et al. have proposed the K-Nearest Neighbors (KNN)

classifier (Bahari and Janghorbani, 2013), both achieving effective

emotion classification. However, traditional machine learning

techniques have been constrained by intricate feature engineering

and selection processes. To overcome these limitations, researchers

have introduced deep learning techniques. The continuous

refinement of deep learning algorithms has led to significant

achievements in EEG-based emotion recognition. For example,

Kwon et al. have utilized CNN to extract features from EEG signals,

while Li et al. have obtained deep representations of all EEG

electrode signals using Recurrent Neural Networks (RNN; Kwon

et al., 2018; Li et al., 2020). Additionally, some researchers have

adopted hybridmodels combining Convolutional Neural Networks

(CNN) and RNN. For instance, Ramzan et al. have proposed a

parallel CNN and LSTM-RNN deep learning model for emotion

recognition and classification (Ramzan and Dawn, 2023). Although

traditional neural network models such as CNN and RNN have

achieved high accuracy in EEG emotion recognition tasks, they

typically process data in the form of grid data. However, grid data

cannot effectively represent connections between different brain

regions, thus hindering models from directly capturing the spatial

topological features of EEG signals. To better capture connections

between brain regions and achieve improved performance in

emotion recognition tasks, researchers have begun exploring the

use of graph data to represent interactions between brain regions

and employing Graph Neural Networks (GNNs) to process this

data. For instance, Asadzadeh et al. have proposed an emotion

recognition method based on EEG source signals using a Graph

Neural Network approach (Asadzadeh et al., 2023). However,

models based on GNNs face challenges in accurately detecting local

features and capturing the spatial activity features of EEG signals.

However, when applying deep learning models to

interdisciplinary tasks such as EEG-based emotion recognition,

significant challenges arise due to the limited number of subjects in

EEG emotion datasets, coupled with individual differences among

subjects. This often results in a notable decrease in the performance

of deep learning models in cross-subject EEG emotion recognition

tasks. To address the issue of poor performance of subjects

in EEG emotion recognition, many researchers have begun

exploring the application of transfer learning techniques. In

cross-subject EEG emotion recognition tasks, transfer learning

primarily addresses the issue of domain gaps caused by individual

differences. Transfer learning mainly includes fine-tuning and

domain adaptation. Fine-tuning, as an effective knowledge transfer

method, has gained widespread adoption. Zhang et al. introduced

the Self-Training Maximum Classifier Difference (SMCD) model,

utilizing fine-tuning to apply a model trained on the source domain

to the target domain (Zhang et al., 2023). However, collecting

a large amount of labeled data from the target domain requires

considerable time, manpower, and financial resources. Especially

in tasks like EEG emotion recognition, acquiring large-scale

EEG datasets and labeling them is a complex and expensive

task. In some cases, labeled data from the target domain may be

extremely scarce, or even insufficient for fine-tuning, which limits

the performance and generalization ability of the model on the

target task. Researchers have begun exploring the application of

domain adaptation in cross-disciplinary EEG emotion recognition.

Li et al. proposed a Domain Adaptation method that enhances

adaptability by minimizing source domain error and aligning latent

representations (Li et al., 2019). However, the majority of existing

domain adaptation methods only focus on extracting shallow-level

features, without effectively aligning deep-level features of different

types. This greatly limits the ability of the model for cross-domain

transfer learning.

The primary contributions of this paper can be outlined as

follows:

• To accurately capture the activity states of different brain

regions and their inter-regional connectivity, we have

designed a dual-branch Spatial Activity Topological Feature

Extractor Module, named SATFEM. This module has been

able to simultaneously extract spatial activity features and

spatial topological features from EEG signals, significantly

enhancing the recognition performance of the model.

• To minimize the disparity between the source and target

domains, we have devised a Domain-adaptation Spatial-

feature Perception-network for cross-subject EEG emotion

recognition, resulting in the proposal of the DSP-EmotionNet

model. This model is tailored to enhance the generalization of

themodel on the target domain, thereby elevating the accuracy

of cross-subject EEG emotion recognition tasks.

• The proposedDSP-EmotionNetmodel achieves accuracy rates

of 82.5% and 65.9% on the SEED and SEED-IV datasets,

respectively, for cross-subject EEG emotion recognition

tasks. These rates surpass those of state-of-the-art models.

Additionally, a series of ablation experiments have been

conducted to investigate the contributions of key components

within DSP-EmotionNet to the recognition performance of

cross-subject EEG emotion recognition tasks.

1 Related work

Traditional EEG feature extractors, such as CNNs and RNNs,

have limitations in capturing the connections between brain

regions, which constrains their ability to extract spatial topological

features. Although GNN models have made improvements in

this area, they still face challenges in detecting subtle local

variations. Domain adaptation techniques have shown success

in cross-subject EEG emotion recognition tasks, but most

existing domain adaptation-based methods focus predominantly

on aligning shallow features, failing to effectively utilize deeper and

more diverse feature types.
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1.1 EEG spatial activity feature extractor

In recent years, the application of EEG signals in the

field of emotion recognition has significantly increased. This is

mainly attributed to the accurate and authentic reflection of

the true emotional states of individuals by EEG signals. With

the development of deep learning, two popular deep learning

models, CNN and RNN, have been widely applied in EEG emotion

recognition. For instance, Kwon et al. have utilized CNN for

feature extraction from EEG signals. In their model, the EEG signal

undergoes preprocessing via wavelet transform before convolution,

considering both the time and frequency aspects of the EEG signal

(Kwon et al., 2018). Li et al. have employed four directed RNNs

based on two spatial directions to traverse the electrode signals

of two different brain regions, obtaining a deep representation of

all EEG electrode signals while preserving their inherent spatial

dependencies (Li et al., 2020). Moreover, some researchers have

adopted hybrid models combining CNN and RNN. For example,

Chakravarthi et al. have proposed a classification method that

combines CNN and LSTM, aiming to recognize and classify

different emotional states by analyzing EEG data (Chakravarthi

et al., 2022). Ramzan et al. have proposed a parallel CNN and

Long Short-Term Memory Recurrent Neural Network (LSTM-

RNN) deep learning model, which primarily utilizes CNN for

extracting spatial features of EEG signals and LSTM-RNN for

extracting temporal features of EEG signals, thus achieving emotion

recognition and classification (Ramzan and Dawn, 2023). However,

EEG spatial activity feature extractors such as CNNs and RNNs

typically process data in a grid format. While grid data can

effectively reflect the spatial activity states of EEG signals, it fails

to adequately represent the connections between different brain

regions. This limitation hinders the model’s ability to directly

capture the spatial topological features of EEG signals.

1.2 EEG spatial topological feature
extractor

Despite the high accuracy achieved by traditional neural

network models such as CNN and RNN in EEG emotion

recognition tasks, the data they handle is typically in the form

of grid data. EEG data are usually captured from multiple

electrodes on the scalp, with each electrode signal representing

the activity of the corresponding brain region. However, grid

data cannot effectively represent the connectivity between brain

regions, thereby preventing the model from directly capturing the

connections between different brain regions. Therefore, in order to

better capture the connectivity between brain regions and achieve

better performance in emotion recognition tasks, researchers have

begun to explore the use of graph data to represent the connections

between brain regions and leverage GNNs to process such graph

data. For instance, Asadzadeh et al. have proposed an emotion

recognition method based on EEG source signals using a Graph

Neural Network node (ESB-G3N). This method treats EEG source

signals as node signals in graph data, the relationships between

EEG source signals as the adjacency matrix of the graph data

and employs GNN for EEG emotion recognition (Asadzadeh

et al., 2023). However, GNN-based models have certain advantages

as EEG spatial topological feature extractors in processing the

spatial topological features of EEG signals, they face challenges in

accurately detecting local features and subtle variations in brain

activity.

1.3 Transfer learning for emotion
recognition

Due to the potential applications of deep learning models

in various fields, there is great interest in utilizing these models

for EEG-based emotion recognition. However, when applying

deep learning models to cross-subject EEG emotion recognition

tasks, there is a significant challenge due to the limited number

of subjects in EEG emotion datasets, coupled with individual

differences between subjects. This often results in a significant drop

in the performance of deep learning models in interdisciplinary

EEG emotion recognition tasks. To address the issue of decreased

performance of subjects in EEG emotion recognition, many

researchers have begun to explore the application of transfer

learning techniques. In interdisciplinary EEG emotion recognition

tasks, transfer learning primarily addresses the problem of data

domain gaps caused by individual differences. EEG signals from

different subjects in the same emotional state may exhibit

significant variations due to individual differences. In such cases,

the target domain has represented the feature space of EEG data

obtained from a certain number of subjects. In contrast, the source

domain has included data collected from one or more different

individuals. Li et al. have incorporated fine-tuning into emotion

recognition networks and examined the extent to which the models

can be shared among subjects (Li et al., 2018). Wang et al. have

proposed amethod that utilizes fine-tuning to address the challenge

of emotional differences across different datasets in deep model

transfer learning, to construct a robust emotion recognition model

(Wang et al., 2020). These methods overcome subject differences

by training on the source domain and fine-tuning on the target

domain. Although existing transfer learning methods for EEG

emotion recognition can achieve improved results, almost all

existing work requires the use of a certain amount of labeled

data from the target domain for fine-tuning training. However,

collecting a large amount of labeled data from the target domain

requires a considerable amount of time, manpower, and financial

resources. Especially in tasks such as EEG emotion recognition,

obtaining large-scale EEG datasets and labeling them is a complex

and expensive task. In some cases, the labeled data from the

target domain may be extremely scarce or even insufficient for

fine-tuning, which may limit the performance and generalization

ability of the model on the target task. Therefore, some researchers

have begun exploring the application of domain adaptation for

cross-subject eeg emotion recognition. For example, Jin et al.

have proposed the utilization of the Domain Adaptation Network

(DAN) for knowledge transfer in EEG-based emotion recognition

to address the fundamental problem of mitigating differences

between the source subject and target subject in order to eliminate

subject variability (Jin et al., 2017). Li et al. have proposed a

domain adaptation method for EEG emotion recognition, which
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is optimized by minimizing the classification error on the source

domain while simultaneously aligning the latent representations of

the source and target domains to make themmore similar (Li et al.,

2019). Wang et al. have proposed an efficient few-label domain

adaptation method based on the multi-subject learning model for

cross-subject emotion classification tasks with limited EEG data

(Wang et al., 2021). However, most existing domain adaptation-

based methods for cross-subject EEG emotion recognition focus

primarily on aligning shallow features, without effectively aligning

and fully utilizing deeper, more diverse types of features.

2 Methodology

2.1 Overview

The overall architecture of the proposed model is illustrated

in Figure 1. We summarize three key ideas of the proposed DSP-

EmotionNet model as follows: (1) Constructing EEG spatial activity

features and EEG spatial topological features. (2) Integrating

spatial activity feature extractor and spatial topological feature

extractor to capture the connections between different brain

regions and the subtle changes in brain activity, this module is

named the SATFEM module. The SATFEM module enhances

the generalization ability of the model in cross-subject EEG

emotion recognition by extracting both spatial activation and

spatial topological features, resulting in a more robust feature

representation. Compared to traditional methods that focus on a

single type of feature, this combined approach better captures the

complexity of EEG data. (3) Utilizing the SATFEM module as a

feature extractor, a domain adaptation spatial feature perception

network was proposed for cross-subject EEG emotion recognition

tasks, improving the generalization ability of the model. This

method not only applies domain adaptation techniques but

also employs a dual-branch feature extractor to ensure effective

domain feature alignment between different subjects. This enables

domain adaptation to go beyond merely aligning shallow features,

allowing for the effective alignment of deeper and more diverse

feature types.

2.2 EEG feature representations

In this section, we introduce two distinct EEG feature

representations: EEG spatial activity feature representation and

EEG spatial topological feature representation. These different

feature representations reflect various spatial relationships

within the brain. Specifically, We employ EEG spatial activity

feature representation to illustrate spatial activation state

distribution maps of the brain, which can reflect the activation

states of different brain regions in space. We use EEG spatial

topological feature representation to depict spatial topological

functional connectivity maps of the brain, which can reflect

the connectivity between different brain regions in space.

These two EEG feature representations complement each

other and effectively demonstrate the spatial relationships of

EEG signals.

2.2.1 EEG spatial activity feature representation
To construct the EEG spatial activity feature representation, we

employ the temporal-frequency feature extractionmethod to derive

the Differential Entropy (DE) of five frequency bands {δ, θ ,α,β , γ }

from all EEG channels across EEG signal samples within 4-s

segments. We denote AB = (Aδ ,Aθ ,Aα ,Aβ ,Aγ ) ∈ R
Ne×B as

a frequency feature matrix comprising frequency bands extracted

from the DE feature, where B ∈ {δ, θ ,α,β , γ } represents the

frequency band andNe ∈ {FP1, FPZ, ...,CB2} denotes the electrode.

Subsequently, the selected data are mapped onto a frequency

domain brain electrode location matrix AM
b
∈ R

H×W , (b ∈

{1, 2, ...,B}), based on the electrode positions of the brain.

Finally, the frequency-domain brain electrode position matrices

corresponding to different frequencies are overlaid to generate

the spatial-frequency feature representation of EEG signals. Thus,

the construction of the EEG feature representation AM =

(AM
δ ,A

M
θ ,A

M
α ,A

M
β ,A

M
γ ) ∈ R

H×W×B is completed. The construction

process of EEG spatial activity feature representation is illustrated

in Figure 2.

2.2.2 EEG spatial topological ferture
representation

To construct the EEG spatial topological feature representation,

we employ the temporal-frequency feature extraction method to

derive the DE of five frequency bands {δ, θ ,α,β , γ } from all EEG

channels across EEG signal samples within 4-s segments. We

denote AB = (Aδ ,Aθ ,Aα ,Aβ ,Aγ ) ∈ R
Ne×B as a frequency

feature matrix comprising frequency bands extracted from the

DE feature, where B ∈ {δ, θ ,α,β , γ } represents the frequency

band and Ne ∈ {FP1, FPZ, ...,CB2} denotes the electrode.

Subsequently, the frequency domain brain electrode network is

defined as a graph G = (V ,E,A), where V represents the set

of vertices, with each vertex representing an electrode in the

brain; E denotes the set of edges, indicating the connections

between vertices; and A denotes the adjacency matrix of the brain

electrode networkG. Finally, the frequency-domain brain electrode

position graph corresponding to different frequencies is overlaid

to generate the spatial-frequency feature representation of EEG

signals. Thus, the construction of the EEG feature representation

AG = (AG
δ ,A

G
θ ,A

G
α ,A

G
β ,A

G
γ ) is completed. The construction process

of EEG spatial topological feature representation is illustrated

in Figure 3.

2.3 Spatial feature perception extractor

Using EEG spatial activity features and EEG spatial topological

features as inputs, a dual-branch spatial-activity-topological

feature extractor module named SATFEM is designed. SATFEM

can simultaneously extract spatial activity features and spatial

topological features. The features extracted from the dual

branches are fused at the feature fusion layer. Algorithm 1 shows

the pseudocode for SATFEM. The SATFEM feature extractor

consists of three main components: the spatial-topological feature

extractor, the spatial activity feature extractor, and the feature

fusion layer.
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FIGURE 1

The overall architecture of DSP-EmotionNet for EEG emotion recognition is as follows. Initially, two distinct feature maps of the brain are

constructed: one representing EEG spatial activity features and the other representing EEG spatial topological features. Subsequently, the spatial

activity feature extractor is employed to detect subtle changes in brain activity, and the spatial topological feature extractor is used to capture the

connectivity between di�erent brain regions. Finally, a domain adaptation spatial feature perception network is proposed for cross-subject EEG

emotion recognition tasks, aimed at enhancing the generalization capability of the model.

FIGURE 2

The construction process of EEG spatial activity feature representation. We adopt a time-frequency feature extraction method to extract 4-s EEG

signal DE features from EEG signal samples. Subsequently, based on the electrode positions of the brain, the selected data are mapped onto the

brain electrode position matrix. Finally, the electrode position matrices corresponding to di�erent frequencies are superimposed to generate a spatial

activity feature representation of the EEG signal.
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FIGURE 3

The construction process of EEG spatial topological feature representation. We employ a time-frequency feature extraction method to extract 4-s

EEG signal DE features from EEG signal samples. Subsequently, the brain electrode position network is defined as a graph representation. Finally, the

graph representations of electrode positions corresponding to di�erent frequencies are superimposed to generate a spatial topological feature

representation of the EEG signal.

Data: EEG spatial activity

feature:AM = (AM
δ ,A

M
θ ,A

M
α ,A

M
β ,A

M
γ ) ∈ R

H×W×B, EEG

spatial topological

feature:AG = (AG
δ ,A

G
θ ,A

G
α ,A

G
β ,A

G
γ )

Result: Fused feature output Yout

1 foreach EEG spatial activity feature AM do

2 XM
1 ← model_CNN(AM);

3 end

4 foreach EEG spatial topological feature AG do

5 XG
2 ← model_GNN(AG);

6 end

7 Concatenate XM
1 and XG

2 ;

8 Yout ← concat(XM
1 ,XG

2 );

9 return Fused feature output Yout;

Algorithm 1. SATFEM.

2.3.1 Spatial topological feature extractor
The Graph Attention Network (GAT) is proposed to address

issues in deep GNN models, such as inefficient information

propagation and unclear relationships between nodes (Velickovic

et al., 2017). GAT utilizes attention mechanisms to dynamically

allocate weights between nodes, thereby enhancing the influence of

important nodes and improving the efficiency of information

propagation and clarity of relationships between nodes.

Therefore, it is suitable for extracting EEG spatial topological

feature representation as a feature extractor. This helps capture

relationships between different functional areas in EEG feature

representation, facilitating more accurate identification of different

EEG signals. The input of GAT is the EEG spatial topological

feature representation AG = (AG
δ ,A

G
θ ,A

G
α ,A

G
β ,A

G
γ ).

In graph, let any node vi in the l − th layer correspond to the

feature vector hi, where hi ∈ R
d(l) , and d(l) represents the feature

dimension of the node. After an aggregation operation centered

around the attention mechanism, the output is the new feature

vector hi
′, where hi

′ ∈ R
d(l+1) , and d(l+1) represents the length of

the output feature vector. This aggregation operation is called the

Graph Attention Layer(GAL).

Assuming the central node is vi, let the weight coefficient from

neighboring node vj to vi be denoted as Equation 1.

eij = α(Whi,Whj), (1)

The weight parameter W ∈ R
d(l+1)×d(l) is used for the feature

transformation of nodes in this layer. α(·) is the function used to

compute the correlation between two nodes. The fully connected

layer for a single layer is described as Equation 2.

eij = LeakyReLU(αT[Whi ‖Whj]), (2)

where the weight parameter α ∈ R
2d(l+1) , and the activation

function is designed as the LeakyReLU function. To better

distribute weights, it is necessary to uniformly normalize the

relevance computed with all leaders, specifically through softmax

normalization as shown in Equation 3.

αij = softmaxj(eij) =
exp(eij)

∑

vk∈Ñ(vi)
exp(eik)

, (3)
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The weight coefficient α is calculated such that Equation 3

ensures that the sum of the weight coefficients for all neighbors

is equal to 1. The complete formula for calculating the weight

coefficients is described in Equation 4.

αij =
exp(LeakyReLU(αT[Whi ‖Whj]))

∑

vk∈Ñ(vi)
exp(LeakyReLU(αT[Whi ‖Whk]))

, (4)

Following the calculation of the weight coefficients as described

above, according to the weighted sum with attention mechanism,

the new feature vector of node vi is obtained as shown in

Equation 5.

hi
′ = σ







∑

vj∈Ñ(vi)

αijWhj






, (5)

2.3.2 Spatial activity feature extractor
The Residual Network (ResNet) is proposed to address the

problem of degradation in deep CNN models. ResNet utilizes

residual connections to link different convolutional layers, thereby

enabling the propagation of shallow feature information to the

deeper layers. Therefore, it is suitable for extracting EEG spatial

Activity feature representation as a feature extractor.

The input of ResNet is the EEG spatial Activity feature

representation AM = (AM
δ ,A

M
θ ,A

M
α ,A

M
β ,A

M
γ ) ∈ R

H×W×B. The

EEG spatial Activity feature representation first goes through

conv1, which consists of a 7 × 7 convolutional layer, a max

pooling operation, and Batch Normalization. The conv1 layer

is responsible for the initial processing of spatial information

extraction and feature representation for EEG spatial Activity

feature representation. Specifically, the input of conv1 is the spatial-

frequency feature representation AM = (AM
δ ,A

M
θ ,A

M
α ,A

M
β ,A

M
γ ) ∈

R
H×W×B, where the shape of the spatial Activity feature

representation is H ×W × C, with H representing the height, W

representing the width, andC representing the number of channels.

Due to the number of frequency bands being 5, C = 5. However,

this does not meet the input requirements of the original ResNet

model, as the first convolutional layer in the original ResNet model

requires an input channel size of 3. If the original model is used

directly to process data with 5 input channels, channel conversion

or padding operations are required, which may result in the loss

of important information from the original data. Therefore, we

replaced the first half of the ResNet model with a new convolutional

layer that has 5 input channels, 64 output channels, a kernel size of

7 × 7, a stride of 2, a padding of 4, and no bias. The equations for

conv1 of ResNet are shown in equations Equation 6.

C1 = MaxPool(ReLU(BN(Conv7×7(A
M)))), (6)

where AM is the input of conv1 in the CNN branch, C1 is the

output of conv1 in the CNN branch. Conv7×7(·) represents the

convolutional layer operation with an output channel of 64, kernel

size of 7 × 7, the stride of 2, and padding of 4. BN(·) represents

the batch normalization layer operation, which performs batch

normalization on the output of the convolutional layer. ReLU(·)

represents the ReLU activation function, which applies the ReLU

activation function to the output of the batch normalization layer.

MaxPool(·) represents the max pooling layer operation, which

performs max pooling using a 3 × 3 pooling kernel, a stride of 2,

and padding of 1.

The features output from conv1 are processed through conv2x,

conv3x, conv4x, and conv5x, respectively. Each of conv2x, conv3x,

conv4x, and conv5x consists of 2 BasicBlocks. In BasicBlock, the

input feature is added to the main branch output feature via a

shortcut connection before being passed through a ReLU activation

function. The equation of the main branch, as shown in Equation 7.

Xmain = BN(Conv3×3(ReLU(BN(Conv3×3(XBasicIN))))), (7)

where XBasicIN is the input of BasicBlock, Xmain is the output

of the main branch in the BasicBlock. Conv3×3(·) represents the

convolutional layer operation with a kernel size of 3× 3, the stride

of 1, and padding of 1. BN(·) represents the batch normalization

layer operation, which performs batch normalization on the output

of the convolutional layer. ReLU(·) represents the ReLU activation

function, which applies the ReLU activation function to the output

of the batch normalization layer.

The shortcut connection allows the gradient to flow directly

through the network, bypassing the convolutional layers in the

main branch, which helps to prevent the vanishing gradient

problem. The equation of the shortcut connection, as shown in

Equation 8.

Xshortcut == BN(Conv1×1(Conv3×3(XBasicIN))), (8)

where XBasicIN is the input of BasicBlock, Xshortcut is the output of

the shortcut connection in the BasicBlock. Conv3×3(·) represents

the convolutional layer operation with a kernel size of 3 ×

3, the stride of 1, and padding of 1. Conv1×1(·) represents

the convolutional layer operation with a kernel size of 1 × 1.

BN(·) represents the batch normalization layer operation. ReLU(·)

represents the ReLU activation function.

The addition of the input feature to the main branch output

feature allows the network to learn residual mappings, which can

be easier to optimize during training. The equation of the addition,

as shown in Equation 8.

XBasicOUT = ReLU(Xmain + Xshortcut), (9)

where Xmain is the output of the main branch, Xshortcut is the output

of the shortcut connection, and XBasicOUT is the output of the

BasicBlock. ReLU(·) represents the ReLU activation function.

2.3.3 Feature fusion layer
Utilizing EEG spatial activity feature representation and EEG

spatial topological feature representation, the EEG spatial activity

extractor and EEG spatial topological feature extractor respectively

extract local features of EEG signals and functional connectivity

of brain regions from EEG signals. Subsequently, the extracted

EEG spatial activity feature representation information and EEG

spatial topological feature representation information are fused

in the Feature Fusion layer, as outlined in Equation 10. The

fused dual-branch network module is referred to as the spatial-

activity-topology feature extraction network module, abbreviated

as SATFEM.
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Yout = Fusion(XM
1 ‖ X

G
2 ) (10)

where ‖ represents the concatenate operation,XM
1 , and XG

2

respectively represent the EEG spatial activity feature and EEG

spatial topological feature features extracted by the EEG spatial

activity extractor and EEG spatial topological feature extractor

branches, Yout represents the fused feature output.

2.4 Domain adaptation

A Domain Adversarial Neural Network (DANN) is used

for implementing transfer learning. This framework was initially

proposed by Ganin et al. for image classification (Ganin and

Lempitsky, 2015). Building upon the original DANN model, a

domain adaptive learning model for EEG emotion recognition is

proposed, utilizing SATFEM as the feature extractor, named DSP-

EmotionNet. The aim is to address domain differences among

different subjects. Algorithm 2 shows the pseudocode for DSP-

EmotionNet. The architecture of this model comprises three main

components: the feature extractor, emotion classifier, and domain

classifier.

The feature extractor is used to extract shared EEG emotion

representations from both the source and target domain input data.

For the model, the SATFEM module is selected as the feature

extractor. The formula for the feature extractor in the model can

be represented as Equation 23:

Hi = Fθ (xi; θf ) (23)

where xi represents the input sample, while Hi represents the

output feature representation obtained from the feature extractor.

The feature extractor utilizes parameters θf tomap the input sample

xi to a high-level feature space that contains abstract features useful

for the adversarial transfer learning task of EEG-based emotion

recognition. These features are then passed to the emotion classifier

and domain classifier for subsequent emotion recognition and

domain adaptive learning tasks.

The emotion classifier is a classifier used for emotion

classification. It takes the shared features extracted by the feature

extractor as input and performs emotion classification on the

source domain data. In this case, a fully connected layer is chosen

as the classifier for emotion classification. The formula for the

emotion classifier in the model can be represented as Equation 24:

Yi = Gφ(Hi;φy) (24)

where Hi represents the output feature representation from the

feature extractor, and Yi represents the emotion prediction results

of the model for the input sample xi. The emotion classifier maps

the feature representationHi to a predicted probability distribution

over emotion labels using the parameter φy.

The domain classifier is used to determine whether the input

features are from the source domain or the target domain. It takes

the shared features extracted by the feature extractor as input

and attempts to correctly classify them as belonging to the source

Data: Source domain data D
E
s = {(x

i
s , L

i
s)}

Ns
i=1, Target domain data

D
E
t = {x

j
t}
Nt
j=1, Learning rate η, Gradient reversal factor

λ

Result: Trained model for EEG emotion recognition

1 Step 1: Initialize model parameters:

• Feature extractor Fθ: SATFEM module with parameters θf

• Emotion classifier Gφ with parameters φy

• Domain classifier Dψ with parameters ψd

while not converged do

Step 2: For each mini-batch of source and target domain

data: foreach (xis , L
i
s) in source domain data and x

j
t in target domain data do

Step 2.1: Feature extraction using SATFEM

Hi
s ← Fθ (x

i
s; θf ) (11)

H
j
t ← Fθ (x

j
t ; θf ) (12)

Step 2.2: Emotion classification on source domain

data

Y i
s ← Gφ (H

i
s;φy) (13)

Compute emotion classification loss:

Lemotion ← CrossEntropy(Y i
s , L

i
s) (14)

Step 2.3: Domain classification using Gradient

Reversal Layer (GRL) Apply GRL on both source and

target features:

Ĥi
s ← Rλ(H

i
s) (15)

Ĥ
j
t ← Rλ(H

j
t ) (16)

Predict domain labels:

Di
s ← Dψ (Ĥ

i
s;ψd) (17)

D
j
t ← Dψ (Ĥ

j
t;ψd) (18)

Compute domain classification loss:

Ldomain ← CrossEntropy(Di
s , 0)+ CrossEntropy(D

j
t , 1) (19)

Step 2.4: Backpropagation and optimization Compute

total loss:

Ltotal ← Lemotion − λLdomain (20)

Update SATFEM parameters θf and emotion classifier

Gφ by minimizing Ltotal:

(θ̂f , φ̂y)← argmin
θf ,φy

Ltotal (21)

Update domain classifier Dψ by maximizing domain

loss:

ψ̂d ← argmax
ψd

Ltotal (22)

end

end

return Trained classification model for the target domain

Algorithm 2. DSP-EmotionNet.
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domain or the target domain. The objective of the domain classifier,

achieved through adversarial training, is to make the extracted

features indistinguishable in terms of the domain. The formula

for the Domain Classifier in the model can be represented as

Equation 25:

Di = Dψ (Hi;ψd) (25)

where Hi represents the output feature representation from the

Feature Extractor, and Di represents the prediction results of the

domain label for the input sample xi. The Domain Classifier maps

the feature representationHi to a predicted probability distribution

over domain labels using the parameter ψd.

The model is capable of learning universal feature

representations from EEG emotion data of different subjects,

thereby improving the emotion recognition performance

of both the source and target domains. Through domain

adaptation training, this transfer learning model aligns the

feature representations of the source and target domains, further

enhancing the generalization ability and adaptability of the model

to the target domain. The overall training objective of the model

can be expressed as Equation 26.

E(θf ,φy,ψd) =
∑

xi∈DE
s

Lemotion(Gφ(Fθ (xi)), L
y
i )

− λ
∑

xi∈DE
s ∪D

E
t

Ldomain(Dψ (Fθ (xi)), L
d
i )

(26)

where θf , φy, and ψd represent the parameters of the feature

extractor Fθ , the emotion classifier Gφ , and the domain classifier

Dψ , respectively. Lemotion denotes the emotion classification loss,

while Ldomain represents the domain classification loss. The

emotion samples are denoted by xi, and L
y
i represents their

corresponding true emotion labels. Additionally, Ldi represents

their corresponding domain labels, where Ldi = 0 indicates that

the sample xi comes from the source domain, and Ldi = 1 indicates

that the sample xi comes from the target domain.

The model first optimizes the parameters θf and φy of the

feature extractor Fθ and emotion classifier Gφ by minimizing the

classification loss and the feature extractor loss. This is achieved

through the following formula, as shown in Equation 27:

(θ̂f , φ̂y) = argmin
θf ,φy

E(θf ,φy,ψd) (27)

Then, the model optimizes the parameters ψd of the domain

classifier Dψ by maximizing its loss. This is achieved through the

following formula, as shown in Equation 28:

(ψ̂d) = argmax
ψd

E(θf ,φy,ψd) (28)

The two stepsmentioned above are alternated until the network

converges. During the domain adaptive learning process, a gradient

reversal layer is employed to induce the feature extractor to learn

adversarial feature representations, as shown in Equation 29:

Rλ(x) = x (29)

During backpropagation, the gradient reversal is achieved by

multiplying the gradient with a negative identity matrix, as shown

in Equation 30.

dRλ

dx
= −λI (30)

3 Experiments

3.1 Datasets and settings

The study utilizes the SEED dataset (Zheng and Lu, 2015) and

the SEED-IV dataset (Zheng et al., 2018) for research purposes.

Both of these datasets are publicly available datasets used for EEG-

based emotion recognition. The SEED dataset includes 15 Chinese

movie clips as stimuli for the experiments. These movie clips

contain three types of emotions: positive, neutral, and negative.

Each clip has a duration of ∼4 min. There are a total of 15 trials

in each experiment. In a session, there is a 5-s cue before each

clip, followed by a self-assessment period of 45 s, and then a 15-

s rest after each clip. Two movie clips with the same emotion are

not presented consecutively. The EEG signals are collected using a

62-channel ESI Neuroscan system. The SEED-IV dataset comprises

72 movie clips as experimental stimuli. These movie clips include

four types of emotions: happy, sad, fear, and neutral. A total of

15 participants took part in the experiment. For each participant,

three experiments are conducted on different days, each containing

24 trials. In each trial, the participant watched one of the movie

clips, while their EEG signals were recorded using a 62-channel ESI

Neuroscan system. The EEG signals from 62 channels are recorded

using the ESI Neuroscan system at a sampling rate of 1,000 Hz,

which is downsampled to 200 Hz. Band-pass filtering is applied

to the EEG data to remove noise and artifacts, and features such

as DE are extracted from each segment in five frequency bands

(δ: 1 ∼ 4Hz, θ : 4 ∼ 8Hz, α: 8 ∼ 14Hz, β : 14 ∼ 31Hz,

γ : 31 ∼ 50Hz).

We train and test the DSP-EmotionNet model using a Tesla

V100-SXM2-32GB GPU and implement it using the PyTorch

framework. The training is conducted using an Adam optimizer,

and the learning rate is set to 5e-4. The batch size is set to

64, and the dropout rate is set to 0.7. The number of classes

to classify for the SEED dataset is 3, while for the SEED-IV

dataset, it is 4. We adopt the leave-one-subject-out (LOSO) cross-

validation strategy to partition the dataset. Specifically, we use

all data from 14 subjects as the training set. The remaining 1

subject is treated as an unknown subject and used as the test set.

The cross-entropy loss is used as a loss function in this paper.

The summary of the hyper-parameter settings is as shown in

Table 1.

3.2 Baseline methods

In order to evaluate the effectiveness of the proposed model,

a comparative analysis is conducted with several baseline methods
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TABLE 1 The settings of hyper-parameters on the SEED and SEED-IV

datasets are summarized.

SEED SEED-IV

Optimizer Adam Adam

Learning rate 5e-4 5e-4

Number of classes 3 4

Batch size 64 64

Loss function Cross-entropy Cross-entropy

Dropout rate 0.7 0.7

using the SEED and SEED IV datasets. Brief introductions to each

of these methods are provided below.

• SVM (Suykens and Vandewalle, 1999): Support vector

machine utilizes the least squares to perform classification.

• RF (Breiman, 2001): Random forest is an ensemble learning

method that integrates numerous decision trees to improve

classification accuracy.

• MLP (Rumelhart et al., 1986): A multilayer perceptron

represents a fundamental type of feedforward neural network,

characterized by its layered structure of neurons arranged in a

sequence from input to output.

• STRNN (Zhang et al., 2019): The proposed framework,

known as spatialâĂŞtemporal recurrent neural network

(STRNN), integrates spatial and temporal data for the effective

classification of human emotions.

• 3D-CNN (Zhao et al., 2020): It introduced a 3D convolutional

neural network model for emotion recognition using EEG

signals, which automatically extracted spatial-temporal

features to achieve high classification accuracy.

• MMResLSTM (Ma et al., 2019): It proposed a Multimodal

Residual LSTM Network for emotion recognition, which

leveraged shared weights between different modalities to

capture temporal correlations in EEG signals, thus achieving

high classification accuracy.

• CDCN (Gao et al., 2021): It proposed a channel-fused dense

convolutional network for EEG-based emotion recognition.

This network utilizes convolutional and dense structures

to process the temporal and electrode-related features of

EEG signals, enhancing the model’s ability to capture time

dependencies and electrode correlations.

• ACRNN (Tao et al., 2020): It proposed an attention-

based convolutional recurrent neural network for EEG-based

emotion recognition, which utilizes channel-wise attention to

dynamically weigh channels and incorporates self-attention to

improve feature extraction from EEG signals.

• STFFNN (Wang et al., 2022): It introduced the Spatial-

Temporal Feature Fusion Neural Network for EEG-based

emotion recognition. This network combines spatial

dependency learning, temporal feature learning, and feature

fusion using convolutional neural networks and bidirectional

LSTM, aiming to enhance emotion recognition accuracy.

• TSception (Ding et al., 2022): It proposed a novel multi-

scale convolutional neural network for EEG-based emotion

TABLE 2 Performance comparison between the baseline methods and

the proposed DSP-EmotionNet on the SEED datasets.

Method ACC/STD F1-
score/STD

Kappa/STD

RF (Breiman, 2001) 0.533/0.087 0.487/0.115 0.299/0.129

SVM (Suykens and

Vandewalle, 1999)

0.531/0.109 0.468/0.137 0.296/0.163

MLP (Rumelhart

et al., 1986)

0.701/0.094 0.674/0.123 0.550/0.142

STRNN (Zhang et al.,

2019)

0.732/0.111 0.723/0.116 0.598/0.166

3D-CNN (Zhao et al.,

2020)

0.742/0.078 0.738/0.079 0.613/0.116

MMResLSTM (Ma

et al., 2019)

0.744/0.104 0.713/0.106 0.616/0.157

CDCN (Gao et al.,

2021)

0.693/0.094 0.668/0.116 0.540/0.142

ACRNN (Tao et al.,

2020)

0.763/0.081 0.739/0.093 0.644/0.121

STFFNN (Wang et al.,

2022)

0.720/0.090 0.0710/0.095 0.579/0.136

TSception (Ding

et al., 2022)

0.643/0.098 0.636/0.107 0.465/0.148

MetaEmotionNet

(Ning et al., 2023)

0.775/0.088 0.772/0.087 0.663/0.132

DSP-EmotionNet 0.825/0.076 0.824/0.072 0.739/0.126

recognition, which captures both the temporal dynamics and

spatial asymmetry of brain activity.

• MetaEmotionNet (Ning et al., 2023): It integrates spatial-

frequency-temporal features into a unified network

architecture and utilizes meta-learning to achieve rapid

adaptation to new tasks.

3.3 Experimental results and analysis

Tables 2, 3 presents the cross-subject experimental results

on the SEED and SEED-IV datasets, showcasing the average

accuracy (ACC) and standard deviation (STD) of both the reference

approaches and the proposed DSP-EmotionNet framework for

emotion recognition based on EEG signals. Across the SEED

dataset, our approach surpasses alternative methodologies in the

inter-subject transfer scenario, achieving an ACC of 0.825 with an

STD of 0.076. Regarding the SEED-IV dataset, which involves a

four-category classification task, the performance of our technique

is relatively lower compared to the SEED dataset. Specifically, for

the SEED-IV dataset, our technique achieves an ACC of 0.659, with

an STD of 0.078.

Our proposed DSP-EmotionNet model excels in emotion

recognition tasks. In contrast, traditional machine learning

methods such as SVM and RF perform relatively poorly, primarily

due to their inability to capture the rich information present

in EEG signals. Deep learning-based CNN and RNN can better

extract deep temporal or spatial features, hence methods like
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TABLE 3 Performance comparison between the baseline methods and

the proposed DSP-EmotionNet on the SEED-IV datasets.

Method ACC/STD F1-
score/STD

Kappa/STD

RF (Breiman, 2001) 0.347/0.066 0.297/0.083 0.134/0.083

SVM (Suykens and

Vandewalle, 1999)

0.411/0.074 0.348/0.075 0.209/0.094

MLP (Rumelhart

et al., 1986)

0.507/0.063 0.397/0.083 0.328/0.089

STRNN (Zhang et al.,

2019)

0.532/0.074 0.517/0.076 0.372/0.100

3D-CNN (Zhao et al.,

2020)

0.541/0.109 0.507/0.133 0.384/0.149

MMResLSTM (Ma

et al., 2019)

0.511/0.114 0.461/0.112 0.348/0.149

CDCN (Gao et al.,

2021)

0.545/0.131 0.521/0.150 0.393/0.172

ACRNN (Tao et al.,

2020)

0.492/0.092 0.462/0.082 0.296/0.110

STFFNN (Wang et al.,

2022)

0.567/0.073 0.550/0.075 0.418/0.099

TSception (Ding

et al., 2022)

0.562/0.095 0.558/0.096 0.414/0.128

MetaEmotionNet

(Ning et al., 2023)

0.612/0.083 0.589/0.102 0.479/0.114

DSP-EmotionNet 0.659/0.078 0.652/0.119 0.542/0.108

STRNN, 3D-CNN, CDCN, and MMResLSTM based on deep

learning outperform traditional machine learning methods in

terms of performance. Recently proposed methods like ACRNN,

STFFNN, and TSception model both the temporal and spatial

dimensions of EEG signals, improving classification stability

by introducing attention mechanisms, integrating discriminative

features, and capturing temporal dynamics, resulting in better

results on the SEED or SEED-IV datasets. Our proposed DSP-

EmotionNet model not only captures spatial local features

of EEG signals but also captures the correlations between

different regions of EEG signals. MetaEmotionNet utilizes two

streams of spatial-temporal and spatial-frequency information,

along with attention mechanisms, to comprehensively extract

spatial-frequency-temporal features of EEG signals, thus achieving

optimal performance in metrics. Moreover, meta-learning methods

effectively enhance the adaptability of the model. Compared to

the MetaEmotionNet method, our proposed DSP-EmotionNet

model employs Domain Adversarial Neural Networks (DANN) to

improve the generalization ability of the model. DANN technology

enables the model to gradually adapt to the data distribution

of new domains during the training process, thereby enhancing

its generalization ability on new domains and improving the

recognition rate of the model in cross-subject EEG emotion

recognition tasks. Our proposed DSP-EmotionNet model not only

exhibits high performance in emotion recognition tasks but also

demonstrates stronger adaptability and generalization capabilities.

For more detailed classification results, the confusion matrices of

the proposed DSP-EmotionNet are respectively shown in Figure 4.

3.4 Ablation experiments

To validate the impact of different components in our proposed

model on EEG emotion recognition tasks, we conduct ablation

experiments on the SEED and SEED IV datasets. Our proposed

method, named DSP-EmotionNet, consists primarily of three

parts: spatial activity feature extractor, spatial topological feature

extractor, and domain adversarial neural network. To verify the

effectiveness of these three key components in our approach,

we conduct ablation experiments on DSP-EmotionNet. Table 4

illustrate the impact of these three key components of DSP-

EmotionNet on cross-subject EEG emotion recognition tasks.

“SAE” denotes using only the spatial activity feature extractor

for cross-subject EEG emotion recognition tasks. “STE” denotes

using only the spatial topological feature extractor for cross-

subject EEG emotion recognition tasks. “SAE-STE” represents

combining the spatial activity feature extractor and spatial

topological feature extractor for cross-subject EEG emotion

recognition tasks, excluding domain adversarial neural network.

“SAE-DANN” represents combining the spatial activity feature

extractor with domain adversarial neural network for cross-

subject EEG emotion recognition tasks, excluding the spatial

topological feature extractor. “STE-DANN” represents combining

the spatial topological feature extractor with domain adversarial

neural network for cross-subject EEG emotion recognition tasks,

excluding the spatial activity feature extractor.

The accuracy of “SAE” on the SEED dataset is 69.7%, and on

the SEED IV dataset, it is 51.4%. In comparison, “STE” achieves an

accuracy of 72.6% on the SEED dataset and 55.6% on the SEED IV

dataset. This indicates that the spatial topological feature extractor

performs better than the spatial activity feature extractor in cross-

subject EEG emotion recognition tasks. Furthermore, “SAE-STE”

outperforms “SAE” and “STE” on both the SEED and SEED IV

datasets, demonstrating the effectiveness of combining EEG spatial

activity features and EEG spatial topological features. On the SEED

dataset, “SAE-DANN” and “STE-DANN” achieve accuracies of

72.2% and 76.7%, respectively, outperforming “SAE” and “STE”.

On the SEED IV dataset, “SAE-DANN” and “STE-DANN” achieve

accuracies of 56.1% and 59.7%, respectively, also outperforming

“SAE” and “STE”. This indicates that DANN technology enables

the model to gradually adapt to the data distribution of new

domains during training, thereby improving the generalization

ability of the model on new domains. DSP-EmotionNet achieves

accuracies of 82.5% and 65.9% on the SEED and SEED IV

datasets, respectively, surpassing the results of other methods in the

ablation experiments. These results collectively demonstrate that

the integration of feature fusion and domain adaptation contributes

to the enhancement of model recognition performance in cross-

subject EEG emotion recognition tasks.

To visually understand the effectiveness of DSP-EmotionNet,

we randomly select a participant from the SEED dataset and use

their EEG samples as the test set. We visualize the data using

t-SNE (Van der Maaten and Hinton, 2008) scatter plots, as shown

in Figure 5. Specifically, we select six methods for visualization

experiments: “SAE”, “STE”, “SAE-STE”, “SAE-DANN”, “STE-

DANN”, and “DSP-EmotionNet.” Data points are color-coded

to represent three different emotions: negative emotions in red,

neutral emotions in green, and positive emotions in blue. It is
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FIGURE 4

The confusion matrices of DSP-EmotionNet on SEED and SEED IV datasets.

TABLE 4 Ablation experiments on the major components of

DSP-EmotionNet were conducted on the SEED and SEED IV datasets.

Model Accuracy (%) Another
Metric (%)

SAE 69.7% 51.4%

STE 72.6% 55.6%

SAE-STE 77.1% 60.1%

SAE-DANN 72.2% 56.1%

STE-DANN 76.7% 59.7%

DSP-EmotionNet 82.5% 65.9%

worth noting that the range of the data after dimensionality

reduction varies depending on the participant. Here, we only show

the visualization results of our method. The figure displays scatter

plots for the six different methods. As shown in Figure 5a, data

points corresponding to the three emotions clearly intermingle,

exhibiting significant overlap. This suggests that “SAE” may

face challenges in distinguishing emotions in cross-subject EEG

emotion recognition tasks. In Figure 5b, the clusters appear

somewhat separated, but there is still considerable overlap between

emotions, especially between negative and neutral states. This

indicates that although “SAE-DANN” improves upon “SAE”,

it may not be sufficient for optimal emotion recognition on its

own. In Figure 5c, clusters for each emotion seem more distinct

compared to “SAE”, indicating that “STE” significantly enhances

the discernibility of emotions. As shown in Figure 5d, clusters

for positive and neutral emotions are notably different and

well-separated. In Figure 5e, clusters for each emotion perform

better than individual “SAE” and “STE” methods, indicating

that “SAE-STE” can extract more effective features. As shown

in Figure 5f, DSP-EmotionNet exhibits notably distinct and

well-separated clusters for each emotion compared to “SAE-

STE,” particularly the positive (blue) cluster, which is almost

completely isolated from the other two emotions. This further

emphasizes that the integration of feature fusion and domain

adaptation significantly contributes to enhancing the recognition

performance of the model in cross-subject EEG emotion

recognition tasks.

4 Conclusion

In this paper, we introduce a domain adaptation EEG signal

spatial feature perception network, named DSP-EmotionNet, for

cross-subject EEG emotion recognition tasks. Initially, we extract

DE features and spatially map them based on electrode position

distribution to generate representations of EEG signal spatial

activity features, and similarly for spatial graphmapping to produce

representations of EEG signal spatial topological features. These

two features serve as the input for our proposed model. Then,

we design a dual-branch network, named SATFEM, utilizing a

spatial activity feature extractor branch to capture EEG signal

spatial activity features and a spatial topological feature extractor

branch to capture EEG signal spatial topological features. The

features extracted from both branches are effectively fused and

classified in the feature fusion and classification layer. Finally, we

employ SATFEM as the feature extractor and design a domain

adaptation network to better adapt the model to the features of

the target domain, thereby enhancing the accuracy of the model

on cross-subject EEG emotion recognition tasks. The proposed

DSP-EmotionNet achieved average recognition accuracies of 82.5%

and 65.9% on the SEED and SEED-IV datasets, respectively,

surpassing state-of-the-art methods. To evaluate the impact of

different components in DSP-EmotionNet on the EEG emotion

recognition task, we conduct ablation experiments on the SEED

and SEED-IV datasets. The experimental results show that the

combination of the spatial activity feature extractor branch and the

spatial topological feature extractor branch can effectively enhance

the capability of the model for feature extraction, and applying a

domain adaptation network allows the model to better adapt to

the features of the target domain, improving the generalizability

of the model. The proposed DSP-EmotionNet represents a new
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FIGURE 5

The performance of various methods in cross-subject EEG emotion recognition tasks was visualized using t-SNE. (a) SAE. (b) SAE-DANN. (c) STE. (d)

STE-DANN. (e) SAE-STE. (f) DSP-EmotionNet.
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approach to cross-subject EEG emotion recognition. This method

can also be easily applied to other EEG classification tasks, such

as motor imagery and sleep stage classification. However, the

current model still has some limitations in practical applications.

For instance, the proposed dual-branch structure has higher

computational complexity compared to single-branch models,

and it also lacks the capability for real-time online processing.

In future work, we will investigate model compression and

acceleration, as well as the real-time online capabilities of DSP-

EmotionNet in cross-subject EEG emotion recognition, aiming

to further enhance the generalizability and practicality of the

model.
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