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Introduction: Attention classification based on EEG signals is crucial for brain-
computer interface (BCI) applications. However, noise interference and real-time 
signal fluctuations hinder accuracy, especially in portable single-channel devices. 
This study proposes a robust Kalman filtering method combined with a norm-
constrained extreme learning machine (ELM) to address these challenges.

Methods: The proposed method integrates Discrete Wavelet Transformation 
(DWT) and Independent Component Analysis (ICA) for noise removal, followed by 
a robust Kalman filter enhanced with convex optimization to preserve critical EEG 
components. The norm-constrained ELM employs L1/L2 regularization to improve 
generalization and classification performance. Experimental data were collected 
using a Schulte Grid paradigm and TGAM sensors, along with publicly available 
datasets for validation.

Results: The robust Kalman filter demonstrated superior denoising performance, 
achieving an average AUC of 0.8167 and a maximum AUC of 0.8678 on self-
collected datasets, and an average AUC of 0.8344 with a maximum of 0.8950 
on public datasets. The method outperformed traditional Kalman filtering, LMS 
adaptive filtering, and TGAM’s eSense algorithm in both noise reduction and 
attention classification accuracy.

Discussion: The study highlights the effectiveness of combining advanced 
signal processing and machine learning techniques to improve the robustness 
and generalization of EEG-based attention classification. Limitations include the 
small sample size and limited demographic diversity, suggesting future research 
should expand participant groups and explore broader applications, such as 
mental health monitoring and neurofeedback.
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Introduction

Attention, characterized by distinct EEG activity patterns, refers to the ability to focus on 
specific stimuli (Wang et  al., 2021). In everyday life, differences in attention levels affect 
performance in many areas. With advancements in neuroscience, EEG signals are increasingly 
utilized for analyzing attention states. For instance, Al-Nafjan and Aldayel (2022) applied 
EEG-based attention assessments in online learning environments, identifying changes in student 
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attentiveness. In the music domain, EEG signals detect attentiveness to 
different music, facilitating personalized recommendations (Zhang et al., 
2021). In the driving field, attention signals assess driving fatigue. 
Kashihara (2017) classified brain activity from wavelet signals during 
attention tasks to identify road signs, developing a system to prevent car 
accidents. Similarly, Atilla and Alimardani (2021) monitored drivers’ 
attention to detect fatigue. Du et al. (2017) applied physiological signals 
such as EEG and EOG to driving fatigue detection and proposed a 
multimodal method combining partial EEG and frontal EEG to enhance 
driving fatigue detection. In healthcare, EEG-based assessments 
effectively diagnose and treat attention deficit hyperactivity disorder 
(ADHD) in children (Miranda et al., 2020). Brain-Computer Interface 
(BCI) technology enables direct interaction with external devices using 
electroencephalogram (EEG) signals (Thomas, 2023).

This study focuses on the use of single-channel EEG for attention 
classification, where the quality of the signal is a key factor in achieving 
accurate results. Compared to multi-channel EEG systems, single-
channel approaches offer a more convenient and faster solution, 
beneficial for expanding BCI applications.

Related work

Studies have shown that EEG signals vary under different attention 
tasks. Wang et al. (2021) extracted significant patterns from EEG signals 
and proposed an attention-based multi-scale convolutional neural 
network-dynamic graph convolutional network (AMCNN-DGCN) 
model, tested in fatigue driving environments. Changes in attention 
states are related to fluctuations in specific EEG frequency bands 
(Kamiński et al., 2012; Klimesch et al., 2012; Arns et al., 2013; Liu et al., 
2013; Pitchford and Arnell, 2019). Increased Beta (β) wave activity 
indicates heightened attention. High-frequency bands in Delta (δ), 
Theta (θ), Alpha (α), and Beta (β) rhythms are commonly used as EEG 
features. Huang et al. (2016) used Granger causality bias coherence 
analysis for different psychological tasks, such as gaming and resting, to 
measure local and global network efficiency. They found that local 
efficiency in the β band was higher during tasks and lower during rest, 
while global efficiency showed the opposite trend. This distinction can 
differentiate attention tasks. Common EEG classification features 
include frequency band energy and power spectral density (Tang and 
Huang, 2020). These applications demonstrate the potential of BCI 
technology in studying and monitoring attention.

However, existing research faces challenges such as noise interference 
common in EEG signals, which affects the accuracy of attention detection 
(Jiang et al., 2019). Traditional methods for removing EEG artifacts, such 
as wavelet with higher-order statistics (Castellanos and Makarov, 2006), 
independent component analysis (ICA) (Jung et al., 2001), and principal 
component analysis (PCA) (Lagerlund et al., 1997), require multiple EEG 
channels or simultaneous electrooculography (EOG) signal acquisition, 
which is impractical for portable single-channel EEG devices. Recent 
advancements have addressed these limitations. Chintala and Thangaraj 
(2020) recorded horizontal and vertical electrooculogram (EOG) signals 
as reference signals and employed finite impulse response filters for 
processing. Somers et  al. (2018) proposed an algorithm based on 
multichannel Wiener filtering, which substituted the pseudo-signal 
covariance matrix with a low-rank approximation based on generalized 
eigenvalue decomposition. However, when using filtering methods, the 
EEG is contaminated by eye signals, and the EOG reference signal is also 
contaminated by the EEG, leading to a bidirectional contamination issue. 
To overcome these drawbacks, Ge et al. (2018) proposed a method using 

higher-order statistical tensors through an Underdetermined Blind Source 
Separation (UBSS) model to separate artifacts from EEG signals. Saini et al. 
(2020) proposed a framework based on Variational Mode Decomposition 
(VMD) and turning-point counting, validated across three standard 
databases. Research indicates that most eye artifact removal techniques 
require the collection of multiple EEG channels or simultaneous collection 
of EOG signals as references, which is not suitable for portable single-
channel EEG devices. Despite their effectiveness, these methods often lack 
real-time processing capabilities, leading to delays in practical applications. 
Traditional adaptive filtering methods, such as the Least Mean Squares 
(LMS) algorithm (Mowla et  al., 2018) and Kalman filter (Hesar and 
Mohebbi, 2021), face challenges with real-time, nonlinear, and non-smooth 
signals. The Kalman filter’s adaptive adjustment capabilities optimize filter 
parameters based on real-time data, making it suitable for dynamic EEG 
signals, but it may misclassify sparse noise as Gaussian noise.

This study proposes an innovative and robust method for 
accurately estimating attention levels in EEG signals, focusing on real-
time noise reduction and signal stability. To address real-time noise 
reduction and signal fluctuations, we  propose a novel approach 
combining a robust Kalman filter for noise removal with a norm-
constrained Extreme Learning Machine (ELM) for handling dynamic 
attention changes. The robust Kalman algorithm preserves critical EEG 
components through signal preprocessing and optimized estimation. 
The norm-constrained ELM introduces nonlinear mapping for correct 
estimation, retaining relevant dynamic information and improving 
attention assessment accuracy and stability.

Methods

Data acquisition

Since attention signals are spontaneous EEG, a specific 
experimental paradigm is required to elicit EEG signals based on 
attention mechanisms. In this study, eight subjects participated in the 
experiment. Data collection was conducted using a 5 × 5 Schulte Grid, 
as shown in Figure 1.

The Schulte Grid is a classic psychological experimental tool 
commonly used to measure individual attention, concentration, and 
visual perception speed. By asking participants to find randomly 
arranged numbers in turn, the Schulte Grid tests participants’ attention 
concentration, visual field range, and visual search ability. It is widely 
used in the field of attention assessment and is especially suitable for 
assessing individual attention fluctuations in a short period of time (Lu 
et al., 2022). Schulte Grids are based on a visual search task, which has 
been demonstrated by multiple studies to reliably induce attention-
related brain wave changes, particularly attention states associated with 
alpha and beta waves. It is simple to operate and easy to implement, 
making it suitable as an experimental paradigm for EEG signal 
acquisition. Therefore, future research could consider using more 
complex experimental paradigms, such as the Continuous Performance 
Test (CPT) or the N-back task, which can more systematically induce 
sustained attention and test the stability of attention under increased 
cognitive load.

The experimental paradigm is as follows: To maintain focus, 
subjects were allowed to rest before the test began. During the test, 
subjects sequentially identified the positions of Arabic numerals from 
1 to 25 on the Schulte Grid. The experiment included a 4-min 
stimulation period followed by a 1-min interval. Each subject 
completed three phases, totaling 15 min.
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The TGAM sensor was used with three contact points: EEG (EEG 
acquisition point), REF (reference point), and GND (ground point). 
The TGAM default port rate is 57,600, with approximately 513 packets 
per second, and raw EEG data is output at 512 Hz (Wu and Xie, 2020). 
The data collection process was conducted as follows: A personal 
computer (PC) served as the data processing center, receiving packets 
from the EEG module TGAM via a Bluetooth serial communication 
protocol. The PC paired with the TGAM biosensing chip module via 
Bluetooth to facilitate data transmission.

This paper also utilized experimental data for monitoring 
individual attention published by Acı et al. (2019). Each file contained 
data obtained from the EEG device during the experiment, with raw 
data sampled at 128 Hz. This study used only the AF3 data channel 
from 0–10 min (focused) and 10–20 min (unfocused).

Algorithm overview

Conventional EEG processing algorithms often overlook the 
dynamic interdependencies within EEG signal changes, leading to 
inaccurate recognition of attention states. Therefore, our study 
introduces a robust Kalman filter method for dynamic attention 
detection. The Kalman filter’s ability to update signal estimates in real-
time allows for the dynamic capture of changes in attentional 
mechanisms, addressing the shortcomings of traditional methods in 
terms of real-time performance and adaptability. The algorithm 
designed in our study is depicted in Figure 2.

The proposed algorithm includes three main improvements. First, 
the preprocessing stage combines Discrete Wavelet Transformation 
(DWT) and Independent Component Analysis (ICA) to better remove 
noise and retain dynamic useful information from EEG signals. Second, 
an improved Kalman filter algorithm integrates convex optimization 

techniques and Bayesian theory to enhance signal estimation, utilizing 
an augmented reality model and incorporating sparse noise control. 
Third, L1/L2 norm regularization in the Extreme Learning Machine 
(ELM) algorithm is chosen for its benefits in simplifying the model and 
improving generalization capability. Specifically, L1 regularization aids 
in feature selection, while L2 regularization helps in learning more 
effective features. By incorporating these regularization constraints, the 
ELM algorithm’s generalization performance is significantly enhanced.

Denoising

This study employs the Independent Component Analysis (ICA) 
algorithm to decompose and evaluate EEG signals. The Sample 
Entropy algorithm (Liu et  al., 2023) calculates the entropy of the 
decomposed signal components to determine the entropy information 
of each component. Removing lower-entropy components effectively 
eliminates noise and artifacts.

Robust Kalman target tracking model

In Equation 1, the system was first expressed as a convex optimization 
problem by constructing an attention state tracking model for single-
channel EEG, introducing tuning parameters to balance data fit and noise 
sparsity. The optimal estimate is obtained by optimizing the objective 
function, dynamically updating the state estimate of the EEG by considering 
both prior and measurement information to improve the system’s adaptive 
ability. Specifically, the attention level tracking model is expressed as:

 
1t t t

t t t t

x Ax w
y Cx v z

−= +
= + +  

(1)

FIGURE 1

Experimental procedure for data collection.
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where N
tx R∈  denotes the clean EEG at time t, M

ty R∈  is the 
original EEG signals at time t, A is the dynamic change matrix of the 
brain’s attentional state, C maps state vectors to observation vectors, 

N
tw R∈  denotes the noisy EEG, M

tv R∈  represents measurement 
noise, and M

tz R∈  denotes sparse noise, which can cause signal 
distortion, introduce artifacts, and reduce the signal-to-noise ratio.

The estimation of attention level involves predicting the next time 
point’s attention level based on known original EEG signals 1tx + . To 
obtain the optimal probability estimate of ( )1|t tp x y+ , the maximum 
likelihood estimation theory (Sur and Candès, 2019) constructs the 
likelihood function ( )1|t tL y x + :

 

( ) ( ) ( )
( )

( )

1
1

1

T 1
m 1/2

|

1 1exp
22

t t
t t

t

t t

p x p v
L y x

p x

v V v
Vπ

+
+

+

−

=

 = − 
 

 

(2)

where V denotes the covariance matrix of the measurement noise 
tv , 1V −  reflecting the statistical properties of the observation noise. 

According to the full probability formula, the maximum likelihood 
function ( )1tL x +  is expressed as:

 

( )
( )

( ) ( )( )

1 n 1/2

1
| 1 | 1ˆ

1

2 V

exp ˆ

t

T
t t t t

L x

x x V x x

π
+

−
− −

=

− −
 

(3)

A tuning parameter λ is introduced to balance data fitting and 
noise sparsity tz . The conditional probability ( )1|t tp x y+  is obtained by 
minimizing the power exponent in Equations 2, 3 to calculate the 
optimal estimate:

 

( ) ( )
1

1
| 1 | 1 1min ||ˆ ˆ

. .

||
t t t

TT
t t t t t t t

x v y

t t t

v V v x x x x z

s t y Cx v z

λ
−

−
− −+ − − +

= + +

∑

 

(4)

In Equation 4, from t t tv y Cx z= − − , define the optimization 
objective function ( ), tF x z  as:

 

( ) ( ) ( ) ( )
( )

1 1
| 1

| 1 1

ˆ,
||||ˆ

TT
t t t t t t t

t t t

F x z y Cx z V y Cx z x x V
x x zλ

− −
−

−

= − − − − + −

− +
 (5)

Applying the partial derivative to x  in Equation 5, one obtains.

 

( ) 1 1 1

1 1

,
2 2 2

2 ˆ2

t T T T
t t

t

F x z
C V Cx C V y C V z

x

x x

− − −

− −

∂
= − +

∂

+ −∑ ∑  
(6)

The optimal state estimate is obtained by setting Equation 6 
to zero:

FIGURE 2

System flowchart.
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( ) ( )

1
ˆ T T
t t tx x C V C C e z

−
= + ∑ + ∑ −

 
(7)

In Equation 7, ˆT T te Z cx= − , c is a constant; by updating the real-
time estimate of non-stationary noise at each iteration, the optimal 
estimate x̂  of attention level is obtained by weighting the observed 
and predicted values. The improved convex optimization Kalman 
expression is:
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( )
( )

( ) ( )

1
t

11

1 1

1
1

m

|

in e

|| |

T
T T

t

T T

TT T T

T
t t t

z I C C V C C

V I C C V C C

C V C C C

V C C e z zλ

−

−−

− −

−

 − − ∑ + ∑ 
 

 − ∑ + ∑ 
 

+∑ + ∑ ∑ ∑

+ ∑ − +
 

(8)

In Equation 8, the sparse noise tz  is the only variable. Controlling 
tz  aiding in the detection and analysis of attention-related signal 

features while reducing noise effects.

Norm-constrained ELM classifier

In the second step, the ELM algorithm with L1/L2 norm 
constraints is used to correct the EEG estimates. The EEG state 
estimates serve as inputs to construct an ELM model with T  hidden 
layer nodes, introducing regularization constraints to improve 
generalization. The specific steps are:
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 (9)

In Equation 9, where Φ  is the hidden layer output matrix, β  is 
the hidden layer weight matrix, and t is the training set target matrix. 
The output weights connecting the hidden and output layers jβ  are 
solved by minimizing the squared difference algorithm with the 
objective function (Yıldırım and Özkale, 2023):

 
2 †
2

1arg min || ||
2

ˆ t tβ β= Φ − = Φ
 

(10)

In Equation 10, where: †Φ  is the pseudo-inverse; β̂  is the 
estimated value of the target output;

 
2

1 1 2 22
1arg min || || || ||
2

ˆ || ||tβ β λ β λ β= Φ − + +
 

(11)

The values of 1λ  and 2λ , which are regularization hyperparameters 
constrained by L1 and L2 norms, are primarily used to enhance the 
generalization capability and stability of the model. Formula 11 is 
defined in the following matrix form:

 
2

2
1 ,

0
t

t
I

λ
λ

∗ ∗Φ   
Φ = + =         

(12)

Let 1 1 2 2/ , 1γ λ λ λ β λ β∗= + = + , and combined with 
formula 12, then formula 11 can be expressed as shown below.
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2
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Since 2λ  is a set constant, Equation 17 can be  further 
expanded to get.

 

2

ˆ 1
2

1
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In Equation 14, where the ,γ β∗ parameter is a constraint function 
that mainly corrects the estimate of the attentional state.

Equation 13 takes the partial derivative of β∗ and makes the 
derivative zero, resulting in a weight estimate that minimizes the 
number of targets as in Equation 15.

 
( ) 1ˆ T TI tβ λ

−∗ ∗ ∗ ∗ ∗= Φ Φ + Φ
 

(15)

The final robust Kalman is corrected to obtain an expression for 
the estimate as in Equation 16:

 
ˆ T Toutput β∗ ∗= Φ  (16)

To evaluate the proposed algorithm’s performance, we conducted 
experiments on both self-collected and public EEG datasets, focusing 
on key evaluation metrics such as AUC (Area Under the Curve) and 
ROC curve (Receiver Operating Characteristic Curve) to assess 
classification accuracy (Nahm, 2022). Below, we provide a detailed 
comparison of the results across different algorithms.

By definition, the AUC can be obtained by summing the area of 
each part under the ROC curve. The ROC curve is assumed to form 
( )1x 0, 1mx= =  by connecting points in sequence with coordinates 
( ) ( ) ( ){ }1 1 2 2x ,y , x ,y , , ,m mx y… , the AUC is calculated as:

 
( )( )

m 1
i 1 i i i 1

i 1

1AUC x x y y
2

−

+ +
=

= − +∑
 

(17)
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Result

Denoising experiment

In the experiment, a small amount of sparse noise was added to 
the original signal. The denoising capabilities of different algorithms 
were then compared to validate the effectiveness of the proposed 
algorithm. The experimental results showed that the robust Kalman 
model proposed in this study had the highest similarity with the 
original signal, indicating that it was least affected by sparse noise. 
The results of the denoising experiment are shown in Figure 3A. By 
calculating the mean square error (MSE) values (Papaioannou et al., 
2021) for various comparison algorithms, it is evident that the 
proposed algorithm can accurately track the signal and provides 
superior filtering performance, as shown in the MSE results in 
Figure 3B. The mean squared error (MSE) values after applying the 
Kalman filter fluctuate around an average of 0.2. This is because, 
when sparse noise is present in the signal data, the traditional Kalman 
algorithm mistakenly identifies other noise signals as Gaussian noise, 
thereby affecting the denoising accuracy. LMS adaptive filtering 
exhibited larger MSE fluctuations due to over-filtering. In contrast, 
the MSE values after using the robust Kalman filter are lower than 
those of the traditional Kalman filter. This further indicates that the 
robust Kalman model proposed in this study is capable of removing 
noise while retaining as much effective information from the original 
signal as possible.

Assessing effectiveness

In the experiment, considering that Extreme Learning Machine 
(ELM) uses random weights as initial model weights, ELM may overfit 
these noisy points due to the presence of outliers in some data, thereby 
lacking an accurate fit to the true data situation. To further prevent 
overfitting in ELM, which can decrease the model’s generalization 
performance, regularization terms (L1 or L2) were added to constrain 

the model parameters, reducing model complexity. Figure 4 compares 
the experimental results of the conventional ELM and the ELM 
algorithm based on L1/L2 regularization terms.

As shown in the experimental results in Figure  5, the data 
processed by the robust Kalman algorithm achieved an AUC of 0.8678 
after applying the ELM algorithm with L1/L2 regularization. In 
comparison, the traditional Kalman filter algorithm had an AUC of 
0.8168, the traditional adaptive filtering algorithm had an AUC of 
0.6971, and the eSense algorithm in the TGAM module with the 
robust Kalman algorithm had an AUC of 0.7379.

If the ROC curve of one learner is completely “enclosed” by the 
curve of another learner, the performance of the latter is superior. If 
the ROC curve of the two learners crosses, it is difficult to claim the 
superiority of the two; in that case, the reasonable criterion is to 
compare the area under the ROC curve, AUC.

In this study, EEG signals were collected from eight participants, 
and different processing methods were applied to each participant’s 
data. The experimental results are shown in Table  1. The results 
indicate that the proposed robust Kalman algorithm achieved an 
average AUC of 0.8167 on the test sets of the 8 participants, with the 
difference between the training and test set AUCs ranging from 0.02 
to 0.04. In contrast, the traditional Kalman filter algorithm achieved 
an average AUC of 0.7417 on the test sets, the adaptive LMS algorithm 
achieved an average test set AUC of 0.6214, and the eSense algorithm 
(López-Ahumada et al., 2023) integrated into the TGAM module 
achieved an average test set AUC of 0.7011. This further demonstrates 
that the proposed robust Kalman algorithm has strong classification 
performance and effectively suppresses overfitting.

Additionally, to further validate the performance of the proposed 
algorithm on other datasets, this study used a publicly available datasets 
published by Acı et al. (2019) on Kaggle. This dataset contains data 
related to two states (focused and unfocused) of individuals. For this 
study, only the AF3 channel data from the public dataset was used. As 
shown in Table 2, the robust Kalman algorithm achieved an average 
AUC of 0.8344 on the test sets of three groups of subjects. This indicates 
that the proposed algorithm also performs well on other datasets.

(a) Signal Plot (b) Mean Squared Error
FIGURE 3

Results of denoising experiments. (A) Signal plot. (B) Mean squared error.
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The experimental results show that the robust Kalman algorithm 
produces an average AUC of 0.8167 and a maximum AUC of 0.8678 
on the in-house collected datasets. It also showed good performance 
on the public datasets, with an average AUC of 0.8344 and a 
maximum AUC of 0.8950. These results highlight the effectiveness of 
the algorithm in accurately estimating levels of attention, significantly 
surpassing conventional methods such as LMS adaptive filtering and 
the conventional Kalman filter. The study demonstrates that the 
robust Kalman algorithm proposed significantly improves the 
accuracy of attention level estimation, showing superior classification 
accuracy and robust model generalization capability. These results 
offer strong evidence for the practical implementation of this novel 
approach in tasks related to monitoring attention states.

Discussion

This study addresses a critical gap in the current field of attention 
tracking, specifically in evaluating and monitoring attention levels using 
electroencephalogram (EEG) signals. We  present an effective and 
practical method for estimating attention levels from EEG signals. 
Although various methods exist to assess attention, the issue of noise and 
artifacts in EEG signals limits the practical application of these 
techniques, especially in portable single-channel devices (Grosselin et al., 
2019). This study proposes an enhanced Extreme Learning Machine 
(ELM) algorithm that integrates L1/L2 norm regularization with DWT 
and employs ICA for preprocessing. Additionally, convex optimization 
techniques are utilized to enhance the Kalman filter, thereby improving 
signal estimation and model generalization. By combining advanced 
signal processing and machine learning methods, this research aims to 
enhance the accuracy and robustness of attention level estimation.

Experimental results indicate that the proposed model not only 
improves signal integrity but also achieves real-time adaptability, 
making it highly suitable for practical Brain-Computer Interface 
(BCI) applications. Compared to previous studies, the proposed 
algorithm demonstrates substantial superiority in real-time 
processing and noise reduction. Traditional EEG artifact (Jiang 
et al., 2019) removal methods typically require multi-channel EEG 
signals or synchronous acquisition of Electrooculography (EOG) 
signals as references and are predominantly offline batch processing 
methods, leading to delays and a lack of real-time application 

FIGURE 4

Comparison results of different ELM algorithms.

FIGURE 5

ROC curves of different algorithms.

TABLE 1 AUC results for different algorithms on 8 subjects.

AUC Robust 
Kalman 

train

Robust 
Kalman test

Kalman 
train

Kalman test LMS 
train

LMS test eSense 
train

eSense test

1 0.8629 0.8170 0.7528 0.7482 0.7054 0.6971 0.7289 0.6913

2 0.8127 0.8055 0.7825 0.7782 0.6606 0.6203 0.7816 0.7454

3 0.8832 0.8658 0.7789 0.7523 0.6100 0.5548 0.8139 0.7772

4 0.7455 0.7265 0.6517 0.6191 0.5336 0.5188 0.7506 0.6640

5 0.8767 0.8514 0.8172 0.7852 0.7204 0.7034 0.7293 0.6715

6 0.8172 0.8058 0.7667 0.7416 0.6236 0.6096 0.7796 0.6774

7 0.9065 0.8678 0.8425 0.8168 0.7241 0.6971 0.7492 0.7379

8 0.8110 0.7937 0.7062 0.6922 0.5891 0.5703 0.6666 0.6442

ave 0.8395 0.8167 0.7623 0.7417 0.6459 0.6214 0.7500 0.7011
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capabilities. Adaptive filtering methods and the Kalman filter face 
challenges in handling real-time, nonlinear, and non-smooth 
signals. The Kalman filter tends to treat sparse noise as Gaussian 
noise (Roth et al., 2017), whereas adaptive filtering methods have 
the problem of overfiltering in the filtering wave (Wang et al., 2023). 
In contrast, the robust Kalman algorithm introduced in this study 
can effectively mitigate noise interference through real-time 
adjustment of filter parameters while preserving the integrity of the 
original signal. These findings have profound implications for the 
application of BCI technology in fields such as education and 
healthcare, providing valuable insights for both theoretical 
advancement and practical application (Bonci et  al., 2021). For 
example, the adaptive characteristics of the robust Kalman filter 
make it particularly suitable for real-time applications, ensuring 
minimal delay and high responsiveness, while effectively handling 
sparse noise to enhance signal integrity and retain essential signal 
components necessary for accurate attention assessment. 
Furthermore, the observed robust generalization capabilities across 
various datasets underscore its broad potential in a range of BCI 
applications, from educational tools to medical diagnostics.

The study acknowledges certain limitations, particularly the reliance 
on a relatively small participant group, which may affect the 
generalizability of the results. The small sample size, which does not 
encompass individuals from different age groups and health statuses, 
may limit the applicability of the results to a broader population 
(Vasileiou et al., 2018). Additionally, despite the high accuracy achieved 
by the proposed algorithm in signal processing, the inherent variability 
of EEG signals in real-world environments may significantly impact its 
performance (Souza and Naves, 2021). Future research should aim to 
validate the robustness and applicability of the algorithm using larger 
and more diverse datasets. Furthermore, future research can explore the 
findings from multiple perspectives, such as increasing the sample size 
and incorporating more diverse populations to enhance the robustness 
of the results. Additionally, applying the robust Kalman filter in other 
domains, such as mental health monitoring, cognitive training, and 
neurofeedback, could provide a deeper understanding of the method’s 
capabilities. Through these additional studies, we hope to enrich the 
understanding of this field and offer practical recommendations.

Conclusion

The robust Kalman processing algorithm proposed in this paper 
demonstrates excellent performance in tracking and assessing 
attention levels. This algorithm utilizes convex optimization 
techniques on top of the Kalman filter to eliminate noise and obtain 
optimal estimates, followed by secondary corrections using extreme 

learning machines based on L1/L2 norms to improve system 
robustness and generalization. Experimental results show that the 
model achieves a maximum Test_AUC of 0.8167 and an average 
Test_AUC of 0.8678 on self-collected single-channel datasets, as well 
as a maximum Test_AUC of 0.8950 and an average Test_AUC of 
0.8344 on the AF3 channel of public datasets. These results 
outperform traditional comparative algorithms, laying the foundation 
for EEG feature extraction and classification research.

The success of attention classification using single-channel EEG 
in this study highlights the importance of signal quality. Single-
channel EEG provides a more efficient and portable solution without 
compromising accuracy. This makes it especially useful for real-time 
and practical applications in education, healthcare, and other fields.
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