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Background: Although the application of brain-computer interface (BCI) 
technology in rehabilitation has been extensively studied, a systematic and 
comprehensive bibliometric analysis of this area remains lacking. Thus, this 
study aims to analyze the research progress of BCI technology in rehabilitation 
through bibliometric methods.

Methods: The study retrieved relevant publications on BCI technology in 
rehabilitation from the Web of Science Core Collection (WoSCC) between 
January 1, 2004, and June 30, 2024. The search was conducted using thematic 
queries, and the document types included “original articles” and “review 
articles.” Bibliometric analysis and knowledge mapping were performed using 
the Bibliometrix package in R software and CiteSpace software.

Results: During the study period, a total of 1,431 publications on BCI technology 
in rehabilitation were published by 4,932 authors from 1,281 institutions across 
79 countries in 386 academic journals. The volume of research literature in this 
field has shown a steady upward trend. The United States of America (USA) and 
China are the primary contributors, with Eberhard Karls University of Tübingen 
being the most active research institution. The journal Frontiers in Neuroscience 
published the most articles, while the Journal of Neural Engineering was the 
most cited. Niels Birbaumer not only authored the most articles but also 
received the highest number of citations. The main research areas include 
neurology, sports medicine, and ophthalmology. The diverse applications of 
BCI technology in stroke and spinal cord injury rehabilitation, as well as the 
evaluation of BCI performance, are current research hotspots. Moreover, deep 
learning has demonstrated significant potential in BCI technology rehabilitation 
applications.

Conclusion: This bibliometric study provides an overview of the research 
landscape and developmental trends of BCI technology in rehabilitation, 
offering valuable reference points for researchers in formulating future research 
strategies.
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1 Introduction

Rehabilitation is crucial for enhancing patients’ functional 
recovery, yet technological innovation and application face notable 
limitations (Cieza et al., 2020). To meet the increasing demand, novel 
technologies such as flexible exoskeletons, virtual reality, and brain-
computer interface (BCI) technology have been developed, providing 
more tailored and diverse rehabilitation solutions (Draaisma et al., 
2020; Bedar et al., 2023; Moulaei et al., 2023). BCI technology is 
particularly noteworthy, as it deciphers patients’ neural activity using 
sophisticated decoding algorithms to discern behavioral intentions, 
thus enabling direct communication with computer systems or 
precise control of external devices (Hramov et al., 2021). A standard 
BCI rehabilitation system includes a brain signal acquisition unit, a 
signal processing and decoding module, and a feedback mechanism 
(van Dokkum et al., 2015). The brain signal acquisition unit primarily 
captures electrophysiological, magnetophysiological, hemodynamic, 
and electrochemical signals. The choice of signal acquisition methods 
depends on the specific rehabilitation application’s requirements, 
such as resolution, invasiveness, cost, and ease of use (Abiri et al., 
2019). The signal processing and decoding module involves 
preprocessing, feature extraction, feature selection, and decoding, 
translating brain signals into user intentions or action commands 
through various algorithms (Liu et  al., 2021). The feedback 
mechanism ensures patients perceive their intentions as accurately 
recognized by the system, employing multisensory feedback such as 
visual, auditory, tactile, and proprioceptive cues (Cervera et  al., 
2018). Through a closed-loop interaction mode, BCI not only 
controls assistive devices to compensate for functional loss but also 
promotes neural circuit compensation and repair, reducing neural 
deficits and advancing the development of BCI-based rehabilitation 
treatment plans.

Rehabilitation BCI technology decodes electrical, magnetic, and 
metabolic signals arising from central nervous system activity and 
interfaces with external components such as computers, robots, and 
functional electrical stimulation to establish a communication or 
feedback loop (Soekadar et al., 2015). This loop facilitates real-time 
interaction between a patient’s thoughts and the external 
environment, as well as supports closed-loop training that emulates 
normal neural impulses. The ultimate aim of this technology is to 
enhance the patient’s physical, psychological, and social capabilities, 
thereby optimizing the quality of life in the context of rehabilitation. 
Despite extensive studies on the application of BCI technology in 
rehabilitation, a systematic quantitative analysis to comprehensively 
elucidate this research landscape is still lacking, leading to an 
incomplete understanding of its developmental trajectory. 
Bibliometrics, employing mathematical and statistical methods for 
both qualitative and quantitative literature analysis, facilitates an 
in-depth exploration of research topics through published works and 
their citation relationships (Cheng et  al., 2022). This approach 
identifies potential trends and emerging hotspots within specific 
fields (Bornmann and Mutz, 2015). Compared to traditional reviews, 
bibliometric analysis significantly enhances the objective 
presentation of the conceptual structure and potential 
interconnections within a large body of literature (Donthu et al., 
2021). Previous bibliometric analyses have evaluated scientific 
advancements in innovative technologies such as repetitive 

transcranial magnetic stimulation, virtual reality, and rehabilitation 
robotics, and have quantitatively assessed the effectiveness of 
rehabilitation treatments and BCI applications in stroke recovery 
(Huang et al., 2016; Zheng et al., 2020; Li et al., 2023; Wen et al., 
2024). Nevertheless, to our knowledge, no comprehensive 
bibliometric analysis has been conducted on BCI applications in 
rehabilitation. From a bibliometric perspective, there is an urgent 
need for a systematic analysis of the knowledge structure, evolution 
paths, and research hotspots of BCI within the rehabilitation field. 
Accordingly, this study utilizes bibliometric tools in CiteSpace and 
R software to perform a visual analysis of relevant literature on BCI 
technology in rehabilitation research, constructing a knowledge map 
of the field, systematically organizing development hotspots and 
trends, and providing scientific evidence and innovative insights for 
future research.

2 Materials and methods

2.1 Data sources and search strategy

Data for this study were sourced from the Web of Science Core 
Collection (WoSCC), one of the largest global electronic scientific 
literature databases, widely used in bibliometric research (Hou 
et al., 2018). We employed a thematic search strategy covering the 
period from January 1, 2004, to June 30, 2024. The types of 
documents retrieved included “original articles” and “review 
articles,” restricted to the English language. The specific search 
strategy was as follows: #1 TS = (brain computer interface* OR 
brain-computer interface* OR brain-machine interface* OR brain 
machine interface*); #2 TS = (rehabilitation OR habilitation); 
#3 = (#1 AND #2). Results were based on the “full record and cited 
references” and recorded in “plain text” format. Ultimately, 1,431 
original or review articles were included in the analysis. Figure 1 
illustrates the study flowchart.

2.2 Data analysis

The downloaded files were imported into CiteSpace (6.3.R3 
Advanced) software and the Bibliometrix package in R(4.4.1) software 
for bibliometric analysis. To ensure data quality and the accuracy of 
analysis results, we implemented a series of data preprocessing steps 
prior to formal analysis, including the standardization of synonyms, 
removal of irrelevant terms, and normalization of variations in the 
spelling of author names and institutional affiliations (Jin et al., 2023). 
CiteSpace, developed by Chaomei Chen, is a knowledge mapping tool 
proficient in tracking the formation, accumulation, diffusion, 
transformation, and evolution paths of citation clusters and their 
knowledge turning points, enabling diverse, temporal, and dynamic 
complex network analyses (Chen et al., 2010). The R-Bibliometrix 
package facilitates quantitative analysis of publications by countries 
and authors, identification of core journals, and tracking the evolution 
of publication volumes by core institutions (Moral-Munoz et  al., 
2020). By combining the functionalities of CiteSpace and 
R-Bibliometrix, we  systematically explored the current state of 
research on BCI technology in rehabilitation, identified key research 
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areas, hotspots, and emerging issues, and conducted an in-depth 
analysis of their evolutionary processes.

3 Results

3.1 Annual publication growth trend

A total of 1,431 publications concerning the application of BCI 
technology in rehabilitation were sourced from the WoSCC database. 
Figure 2 depicts the annual trends in the number of publications (Np), 
citations (Nc), and the H-index. From 2004 to 2007, the Np remained 
relatively low. However, starting in 2008, there has been a consistent 
upward trend in Np, notwithstanding a minor dip in 2016. Between 
2004 and 2013, the H-index generally displayed a fluctuating upward 
trend, stabilizing from 2014 to 2020. Due to time constraints, the 
H-index has declined since 2021. Moreover, throughout the study 
period, the Nc has exhibited a continuous upward trend, suggesting 
that research on BCI technology in rehabilitation is likely to keep 
garnering increasing scholarly attention.

3.2 National or regional collaboration 
analysis

Over the past two decades, 79 countries or regions have engaged in 
research related to BCI technology in rehabilitation. Figure 3A illustrates 
the close collaboration network among countries, featuring 79 nodes 
and 444 connections, signifying strong cooperative relationships. The 
purple circular nodes denote high betweenness centrality (≥0.1), with 
the top five countries being the USA (0.35), India (0.23), Italy (0.2), 
China (0.17), and Austria (0.15). Table 1 ranks the top 10 countries by 
the Np and Nc. China (Np: 398) and the USA (Np: 291) are the leaders, 
followed by Germany (Np: 144) and Italy (Np: 107), each with over 100 
publications. Notably, while China surpasses the USA in Np, the latter 
has nearly double the Nc (10,501 vs. 5,382) (Figure 3B). Although the 
USA ranks second in Np, it leads in both Nc and betweenness centrality, 
highlighting its dominance in the field. Asian countries such as China, 
Singapore, India, and Japan have shown robust research capabilities. 
India, in particular, despite its relatively lower Np, ranks second in 
betweenness centrality, reflecting the high academic quality and 
international recognition of its research. While China ranks first globally 

FIGURE 1

Flowchart of publication screening and analysis.
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in Np, its betweenness centrality is comparatively lower, possibly due to 
its relatively late entry into the field. Despite recent significant 
investments leading to rapid growth in Np, the depth and breadth of 
China’s collaborative network still require further development.

3.3 Institutional collaboration analysis

Over the past two decades, 1,281 institutions published research 
on the application of BCI technology in rehabilitation, primarily 
concentrated in higher education institutions globally, as depicted in 
the collaboration network in Figure 4A. As shown in Table 2, the 
leading five institutions by Np are: Eberhard Karls University of 
Tübingen, Germany (Np: 68), Aalborg University, Denmark (Np: 41), 
Swiss Federal Institutes of Technology Domain (Np: 39), Xi’an Jiaotong 
University, China (Np: 29), and the Chinese Academy of Sciences (Np: 
28). In terms of betweenness centrality, the top institutions are: 
Eberhard Karls University of Tübingen (0.17), State University System 
of Florida (0.15), University of California System (0.12), Chinese 
Academy of Sciences (0.11), and Swiss Federal Institutes of Technology 
Domain (0.09). These institutions are predominantly located in 
Europe, the USA, and China. Notably, Eberhard Karls University of 
Tübingen ranks first in both Np and betweenness centrality, 
underscoring its scientific prowess and leading role in BCI 
rehabilitation research. Figure 4B highlights the publication trends, 
indicating significant growth in research outputs from the University 
of Wisconsin System, Eberhard Karls University of Tübingen, and 
Swiss Federal Institutes of Technology Domain over the past 5 years. 
Continued attention to research from these institutions is anticipated.

3.4 Author collaboration analysis

Over the past two decades, 4,932 authors contributed to research 
on BCI technology in rehabilitation. Figure  5A illustrates the 

collaboration network among these authors. In terms of Np, the top five 
authors are Niels Birbaumer (Np: 28), Mads Jochumsen (Np: 21), Cheng 
Guan (Np: 17), Kok Kiong Ang (Np: 17), and Ihsan Khan Niazi (Np: 
17). Notably, Niels Birbaumer ranks first in both Np and betweenness 
centrality. Table 3 and Figure 5B highlight the top 10 authors by Np and 
Nc in BCI rehabilitation research. Niels Birbaumer from Eberhard Karls 
University of Tübingen leads with 28 publications and 1,251 citations, 
followed by Alejandro Ramos-Murguialday from the Autonomous 
University of Madrid, Spain (Np: 10, Nc: 670). These data underscore 
their significant contributions to the field of BCI rehabilitation and the 
high level of academic recognition their research has garnered.

3.5 Journal analysis

Over the past two decades, publications related to BCI technology 
in rehabilitation were distributed across 386 academic journals. 
Table  4 shows that the journal with the highest number of 
publications is Frontiers in Neuroscience (Np: 91), followed by IEEE 
Transactions on Neural Systems and Rehabilitation Engineering (Np: 
85), Frontiers in Human Neuroscience (Np: 77), and Journal of Neural 
Engineering (Np: 73). Among the top 10 journals by citation count, 
seven have more than 1,500 citations. The most frequently cited 
journals are Journal of Neural Engineering (Nc: 3,045) and IEEE 
Transactions on Neural Systems and Rehabilitation Engineering (Nc: 
2,629). Figure 6A presents a dual-map overlay of journals, providing 
a visual representation of journal distribution, citation trajectories, 
and shifts in research focus. Overall, in the field of BCI rehabilitation 
research, journals in the MOLECULAR/BIOLOGY/IMMUNOLOGY 
and NEUROLOGY/SPORTS/OPHTHALMOLOGY categories 
frequently cite articles from MOLECULAR/BIOLOGY/GENETICS 
journals. Figure 6B illustrates the results of journal grouping based 
on Bradford’s Law. The core zone (Zone 1) includes eight journals, 
the secondary core zone (Zone 2) includes 60 journals, and the 
non-core zone (Zone 3) encompasses 318 journals.

FIGURE 2

Evolution of publication volume and citations.
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3.6 Reference analysis

The studies with high centrality in Figure 7A primarily examine 
the applications and potential of BCI technology in facilitating 

communication, motor control, and functional recovery. Through 
co-citation clustering analysis, the knowledge structure of the research 
field is objectively presented (Liao et  al., 2018). In Figure  7B, the 
research is divided into 15 categories based on article relevance, 

FIGURE 3

Analysis of countries involved in BCI in rehabilitation research. (A) Country co-occurrence map. The node size represents co-occurrence frequency, 
and the lines indicate co-occurrence relationships. (B) Top 10 countries by total citations.
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forming the foundation of cluster classification. Among these, #0 deep 
learning is the largest cluster. The earliest clusters include #9 
augmentative communication, #5 electrocorticography, #6 
amyotrophic lateral sclerosis, #7 BCI illiteracy, and #4 pattern 
classification. Subsequent research gradually expanded into relatively 
interconnected clusters such as #3 robotic rehabilitation, #13 
sensorimotor cortex (SM1), and #8 movement-related cortical 
potential (MRCP). In recent years, the connections between research 
fields have become increasingly tight, with clusters like #1 stroke, #2 
spinal cord injury, #0 deep learning, and #20 disorder of consciousness 
becoming more densely interconnected.

By analyzing reference clustering dependencies (Figure  7C), 
we  can more clearly identify current research hotspots and the 
evolution relationships among clusters (Donthu et al., 2021). Early 
clusters such as #9 augmentative communication and #5 
electrocorticography form the foundation of the entire field and 
gradually evolved into other clusters. Clusters like #2 spinal cord 
injury, #3 robotic rehabilitation, #1 stroke, and #11 motor imagery 
classification exhibit high link density, having evolved from multiple 
clusters while also giving rise to others, thus playing a central role. 
These clusters are likely the knowledge hotspots in recent BCI 
rehabilitation research. Cluster #0 deep learning largely evolved from 
other clusters but did not further evolve into new clusters, indicating 
that this topic may represent frontier knowledge in BCI 
rehabilitation research.

Citation burst phenomena refer to the significant and sudden 
increase in the number of citations for a particular article within a 
specific period (Wu et al., 2021). In Figure 7D, we  list the top 25 
articles with the strongest citation bursts. The earliest citation burst 
occurred in 2008. The strongest burst (strength = 111.66) appeared in 
2013 with Ramos-Murguialday et al.’s article “Brain-machine interface 
in chronic stroke rehabilitation: A controlled study,” published in 
Annals of Neurology, which explored the application of BCI in stroke 
patient rehabilitation, particularly promoting motor function recovery 
through EEG recording and real-time feedback. Biasiucci A et al.’s 
2018 article “Brain-actuated functional electrical stimulation elicits 
lasting arm motor recovery after stroke,” published in Nature 
Communications, also exhibited a strong citation burst 
(strength = 93.95) and has remained in a burst state since 2019. 
According to the results, 2013 saw the most citation bursts, followed 

by 2017 and 2022, indicating that high-burst articles from these years 
sparked research trends. Notably, five references are still experiencing 
citation bursts.

3.7 Keyword analysis

The timeline view of keywords plays a crucial role in analyzing 
the evolution of these keywords across different clusters (Cortese 
et al., 2022). In Figure 8A, we can visually observe the progression of 
keywords related to BCI in rehabilitation and the research focus at 
each stage. Among the 11 clusters, 10 (excluding #10 smart 
wheelchair) are still active in ongoing research. The #0 motor 
imagery cluster is the largest, with early keywords including 
“classification,” “sensorimotor cortex,” and “movement-related 
cortical potential.” The most recent cluster is #6 functional MRI, with 
primary keywords such as “movements,” “arm,” and 
“machine learning.”

Keywords with strong citation bursts are another important 
indicator for identifying research hotspots and emerging trends (Chen 
et al., 2020). Burst detection is represented by the red segments on the 
blue timeline, indicating the start year, end year, and duration of the 
burst. As shown in Figure 8B, among the top 25 keywords with the 
strongest citation bursts, “deep learning” (9.82) exhibits the highest 
burst strength, followed by “communication” (9.62), “reorganization” 
(6.68), “chronic stroke” (6.42), and “movements” (6.40). Notably, 
keywords such as “deep learning,” “neural networks,” “brain modeling,” 
“stroke,” and “machine learning” are still experiencing ongoing bursts.

4 Discussion

4.1 General information

Throughout the research period, an analysis of the WoSCC 
database reveals that 4,932 authors from 1,281 institutions across 79 
countries published 1,431 research articles on the application of BCI 
technology in rehabilitation in 386 academic journals. From 2004 to 
2010, this field was in its nascent stage with a relatively weak research 
foundation. Between 2011 and 2019, the annual publication volume 
of BCI-related rehabilitation literature exhibited fluctuating growth. 
Despite slight declines in 2013 and 2016, the citation frequency 
remained stable, and the H-index was consistently high, indicating the 
field’s progression into systematic research. Since 2020, the Np has 
grown steadily and rapidly, reaching nearly six times the 2013 figure 
by 2023, suggesting that BCI applications in rehabilitation have 
become a significant research hotspot, attracting widespread 
academic attention.

In the visualization analysis of countries (regions), the 
co-occurrence density between countries is 0.14, reflecting the highly 
collaborative nature of global BCI rehabilitation research. This 
international collaboration positively impacts the long-term academic 
development of the field. Europe is one of the most active regions in 
this area, with five local institutions ranked among the global top 10. 
Although China ranks first globally in terms of publication volume, 
its intermediary centrality is relatively low. This could be attributed to 
China’s recent large-scale investments in the field, leading to a rapid 
increase in Np. However, due to its later start in this technology, 

TABLE 1 The top 10 productive countries (regions) with publications 
concerning BCI in rehabilitation.

Rank
Countries 
(regions)

Np Centrality Nc
Countries 
(regions)

1 China 398 0.17 10,501 USA

2 USA 291 0.35 5,714 Germany

3 Germany 144 0.09 5,382 China

4 Italy 107 0.2 3,366 Spain

5 Spain 95 0.09 2,548 Switzerland

6 Japan 80 0.14 1747 Italy

7 England 77 0.11 1728 Austria

8 India 70 0.23 1,484 Japan

9 Canada 67 0.02 1,390 Korea

10 Switzerland 59 0.04 1,337 Singapore
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China’s performance in international academic collaboration has been 
relatively limited. Countries with high centrality nodes play a key 
bridging role in the global collaboration network, particularly the 

USA, which holds a central leadership position in BCI rehabilitation 
research. Additionally, institutions such as the University of Tübingen 
in Germany and the University of California system in the USA 

FIGURE 4

Analysis of institutions involved in BCI in rehabilitation research. (A) Institution co-occurrence map. (B) Temporal distribution of publications by 
institution.
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dominate global cooperation in BCI rehabilitation research. The 
institutional co-occurrence map reveals collaboration patterns 
between research institutions in different countries. Although there is 
a sizeable international collaboration network, the primary 
collaborations remain within their respective countries, indicating a 
need for further strengthening international academic exchanges 
and cooperation.

From an author perspective, Niels Birbaumer of the University of 
Tübingen in Germany has made significant contributions to BCI 
rehabilitation research, publishing the most articles and receiving the 
highest citations, establishing himself as a pioneer in the field. His 
contributions are particularly notable in aiding communication for 
patients with severe motor impairments and in stroke rehabilitation 
(Birbaumer, 2006; Chaudhary et al., 2016; Cervera et al., 2018). Other 
authors who rank among the top five in both Np and Nc include Kai 
Keng Ang from the Singapore Agency for Science, Technology, and 
Research, who has explored various aspects of EEG signal applications, 
including support vector machines, linear discriminant analysis, 
motor imagery tasks, and asymmetric characteristics of EEG signals, 
contributing significantly to enhancing the performance and 
practicality of BCI systems (Ang et  al., 2015; Cheng et  al., 2020; 
Mansour et  al., 2022). The co-occurrence map of core authors 
highlights distinct research groups within the BCI field, each led by 
prominent figures and comprising active scholars. However, cross-
group collaboration is still limited, indicating that further inter-group 
cooperation is essential for fostering broader development and 
innovation in the field. In this context, extensive collaboration 
between research institutions becomes particularly significant. First, 
such inter-institutional partnerships help mitigate and distribute the 
rising costs of research infrastructure while promoting cooperation in 
specialized areas such as basic and clinical medicine. Additionally, 
these collaborations act as bridges, facilitating interactions among 
researchers and setting the stage for new joint projects across various 
domains within basic and clinical medicine. Finally, by encouraging 
collaboration, institutional partnerships and joint projects enable 
scientists and scholars to explore different research systems, 
institutions, and funding opportunities, thereby enhancing overall 
research capabilities.

Analysis of journal data reveals that Frontiers in Neuroscience 
leads in the publication of BCI rehabilitation research papers and 
ranks within the top 10 journals based on citations. IEEE Transactions 
on Neural Systems and Rehabilitation Engineering and Journal of 

Neural Engineering also hold significant positions, ranking within the 
top five for both publication count and citations, thus playing a pivotal 
role in BCI rehabilitation research. The Journal Citation Reports (JCR) 
quartiles reflect the impact of journals. Journals are categorized into 
quartiles based on their impact factor, with those in the top 25% 
(including those at the 25th percentile) classified in JCR Quartile 1 
(Q1). Journals ranked between the 25th and 50th percentiles 
(including those at the 50th percentile) fall into JCR Quartile 2 (Q2). 
Notably, all 10 journals with the highest publication counts are high-
impact journals, classified in Q2 or above. The co-cited journals are 
similarly high-impact, underscoring the substantial academic value of 
BCI rehabilitation research within the global scholarly community. 
Employing Bradford’s law to categorize journals by their publication 
numbers can help identify core journals in this field, thereby 
enhancing research efficiency and contributing to the establishment 
of a comprehensive knowledge system (Donthu et  al., 2021). The 
interdisciplinary citation patterns in BCI rehabilitation research 
illustrate how the field extends beyond its own boundaries, fostering 
active academic exchange and knowledge integration across multiple 
disciplines. Experts from various fields collaborate to tackle challenges 
in applying BCI technology to rehabilitation, such as improving the 
accuracy of signal processing and decoding algorithms, developing 
more effective feedback mechanisms, optimizing user experience, and 
enhancing system stability. This interdisciplinary collaboration not 
only facilitates the exchange of knowledge and technology but also 
accelerates innovation by providing broader perspectives and diverse 
solutions for BCI applications in rehabilitation. For example, while 
computer scientists work on advanced decoding algorithms, 
neuroscientists contribute insights into brain information processing 
to create more efficient BCI systems. Additionally, interdisciplinary 
cooperation plays a crucial role in addressing ethical, legal, and social 
issues, ensuring that technological advancements align with the 
optimal interests of patients and society.

4.2 Research hotspots and Frontiers

Bibliometrics, by processing and analyzing vast amounts of data, 
provides researchers with insights into the hotspots and trends within 
specific research fields (Chen et al., 2009). By analyzing the references 
and keywords related to BCI in rehabilitation research, we can uncover 
shifts in research trends and highlight prominent themes, which are 

TABLE 2 The top 10 productive institutions with publications concerning BCI in rehabilitation.

Rank Institutions Countries (regions) Np Centrality

1 Eberhard Karls University of Tubingen Germany 68 0.17

2 Aalborg University Denmark 41 0.07

3 Swiss Federal Institutes of Technology Domain Switzerland 39 0.09

4 Xi’an Jiaotong University China 29 0.04

5 Chinese Academy of Sciences China 28 0.11

6 University of California System USA 26 0.12

7 Fudan University China 23 0.04

8 Universidad Miguel Hernandez de Elche Spain 22 0.01

9 Centre National de la Recherche Scientifique France 21 0.09

10 Graz University of Technology Austria 20 0.03
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crucial for understanding the evolution of this academic field. Before 
delving into a detailed analysis, it is necessary to overview the 
evolution of research hotspots in BCI rehabilitation from 2004 to 
2024. In the early stages, research primarily focused on defining and 

designing BCI paradigms and their early clinical applications in 
assistive communication. Subsequently, research expanded to explore 
the diverse applications of BCI in specific conditions such as stroke 
and SCI, along with their mechanisms of action, with performance 

FIGURE 5

Analysis of authors in BCI in rehabilitation research. (A) Author co-occurrence map. (B) Highly cited authors.
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evaluation of BCI systems becoming a key focus. In the past 3 years, 
the integration of BCI with deep learning has emerged as the most 
prominent research topic in the field.

4.2.1 BCI for post-stroke rehabilitation
Significant progress has been made in applying BCI technology to 

stroke rehabilitation, particularly in restoring upper limb motor 
function. Current research is concentrated on evaluating the efficacy 
of BCI technology for upper limb motor recovery and exploring its 
underlying central nervous system mechanisms. The upper limb Fugl-
Meyer Assessment (FMA-UE), a widely recognized quantitative tool, 
is commonly used to measure the effectiveness of BCI interventions. 
Findings from Cervera et al. (2018) indicate that, among six studies 
involving BCI interventions, all reported improvements in FMA-UE 
scores exceeding the Minimal Clinically Important Difference 
(MCID = 5.25), whereas only three studies in the control group 
achieved this benchmark. Additionally, Bai et al. (2020) highlighted 
that while BCI technology significantly enhances upper limb motor 
function in the short term, its long-term efficacy remains contested. 
To investigate the central mechanisms of BCI, researchers have 
employed various neuroimaging techniques, including 
electroencephalography (EEG), functional near-infrared spectroscopy 
(fNIRS), and functional magnetic resonance imaging (fMRI), to 
analyze the impact of BCI training from multiple perspectives. 
Current evidence suggests that BCI training effectively promotes the 

reorganization of brain function and structure, thus improving motor 
dysfunction caused by stroke (Nojima et al., 2022). However, there is 
ongoing debate about the specific mechanisms through which BCI 
training induces plastic changes in the central nervous system. Future 
research is anticipated to continue focusing on how BCI training 
affects motor brain activation and neural network reorganization. The 
integration of various feedback mechanisms, especially when 
combined with virtual reality and soft robotics, offers stroke patients 
a more natural and effective rehabilitation experience (Cheng et al., 
2020; Chen and Nuo, 2021). These studies not only empirically 
support the potential of BCI in stroke rehabilitation but also establish 
a robust foundation for future research directions and clinical 
applications. Emerging from reference and keyword clustering 
analyses, the focus on lower limb motor rehabilitation is gradually 
surfacing as a new hotspot, anticipated to attract increased attention 
and rapid development in the forthcoming years (Rea et al., 2014; 
Camargo-Vargas et al., 2021; Asanza et al., 2022). Current research is 
expanding beyond post-stroke motor recovery to encompass cognitive 
and language function recovery, as well as the assessment of disorders 
of consciousness (Carelli et al., 2017; Mane et al., 2022; Sun et al., 
2022). Zhao et al. (2022) demonstrated that robot-assisted training, 
controlled by BCI, not only improves cognitive function in subacute 
stroke patients but also increases the secretion of brain-derived 
neurotrophic factor (BDNF). Similarly, Yuan et al. (2021) found that 
BCI-mediated cognitive-motor processes, when integrated into a 

TABLE 3 The top 10 productive authors with publications concerning BCI in rehabilitation.

Rank Authors Np Centrality Nc Authors

1 Birbaumer, Niels 28 0.05 1,251 Birbaumer N

2 Jochumsen, Mads 21 0.01 670 Ramos-Murguialday A

3 Niazi, Imran Khan 17 0 524 Caria A

4 Guan, Cuntai 17 0.01 490 Wolpaw JR

5 Ang, Kai Keng 17 0.01 477 Ang KK

6 Azorin, Jose M 16 0.01 476 Cohen LG

7 Jia, Jie 15 0 460 Guan CT

8 Farina, Dario 13 0.02 439 Farina D

9 Chen, Shugeng 11 0 410 Broetz D

10 Millan, Jose del R 11 0.01 407 Phua KS

TABLE 4 The top 10 productive journals with publications concerning BCI in rehabilitation.

Rank Journals Np Country Nc Journals

1 Front. Neurosci. 91 Switzerland 3,045 J. Neural Eng.

2 IEEE Trans. Neural Syst. Rehabil. Eng. 85 USA 2,629 IEEE Trans. Neural Syst. Rehabil. Eng.

3 Front. Hum. Neurosci. 77 Switzerland 2,467 NeuroImage

4 J. Neural Eng. 73 UK 2,230 Clin. Neurophysiol.

5 Sensors 49 Switzerland 1,747 IEEE Trans. Biomed. Eng.

6 J. Neuroeng. Rehabil. 46 UK 1,573 Front. Neurosci.

7 IEEE Access 37 USA 1,513 J. Neuroeng. Rehabil.

8 Biomed. Signal Process. Control 30 Ireland 1,485 Front. Hum. Neurosci.

9 Front. Neurol. 24 Switzerland 1,411 Stroke

10 PLoS ONE 22 USA 1,202 PLoS ONE
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neurofeedback system, can lead to observable improvements in 
attention-related metrics for stroke patients. Although these areas of 
research are still nascent, their potential is increasingly recognized, 
suggesting that BCI may become pivotal tools in comprehensive 
stroke rehabilitation. To maximize clinical benefits, researchers are 
actively investigating the dose–response characteristics of BCI in 
stroke rehabilitation, including optimal rehabilitation frequency, 
duration, and intensity (Young et al., 2015; Chai et al., 2024). There is 
also a growing emphasis on optimizing BCI feedback modes and 
control strategies to develop personalized rehabilitation plans tailored 
to the specific needs of individual patients (Ma et al., 2024). Substantial 
research efforts are also advancing the development of invasive BCI 
systems, such as the BrainGate and Neuralink projects, which provide 
new communication and control options for fully paralyzed patients 
(Zhao et al., 2023). However, large-scale randomized controlled trials 
are necessary to validate the effectiveness of these BCI systems and 

further explore their long-term effects and individual differences in 
stroke rehabilitation. Journal data analysis underscores that recent 
advances in BCI for stroke rehabilitation reflect an innovative trend of 
multidisciplinary integration. This encompasses a wide range of 
topics, from exploring fundamental neuroplasticity mechanisms to 
clinical application practices. Multidisciplinary research approaches, 
combining expertise from rehabilitation, neuroscience, computer 
science, and biomedical engineering, will be crucial in advancing BCI 
to offer more precise and comprehensive rehabilitation solutions for 
stroke patients.

4.2.2 BCI for SCI rehabilitation
The field of BCI in SCI rehabilitation is currently undergoing 

pivotal research innovations. Current studies are centered on the 
development of highly personalized BCI systems, such as MindWalker 
and the Walk Again Project. These systems have showcased the 

FIGURE 6

Analysis of journals related to BCI in rehabilitation research. (A) Overlay of journal dual-map. (B) Journal grouping based on bradford’s law.
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immense potential of BCI technology in intricate motor control by 
accurately decoding brain signals and transforming them into specific 
motor commands for direct control of external devices (Seanez-
Gonzalez et  al., 2016; Akan et  al., 2023). Technologically, the 
incorporation of machine learning algorithms has greatly enhanced 
the classification accuracy and response speed of BCI systems, 
providing SCI patients with more precise control capabilities (Gongora 
et  al., 2013). The advent of wireless and minimally invasive BCI 
technologies has significantly improved patient comfort and mobility 
while mitigating the risks associated with surgical procedures (López-
Larraz et al., 2016). Additionally, multimodal BCI systems, which 
integrate signals from various brain regions, have improved signal 
stability and decoding reliability (Hernandez-Rojas et  al., 2022). 
Research into bidirectional BCI technology, particularly in delivering 
sensory feedback loops, has further simulated the experience of 
natural movement, which is crucial for boosting patient motivation 
and improving rehabilitation outcomes (Alam et al., 2016). Clinically, 
numerous ongoing trials are evaluating not only the safety and efficacy 
of BCI technology in SCI patients but also its long-term feasibility. 
These trials assess both the technical performance and the subjective 
experiences of patients, including enhancements in quality of life 
(Torregrosa and Koppes, 2015; Cui et al., 2022; De Miguel-Rubio et al., 

2023). Moreover, personalized BCI training programs tailored to 
individual patient differences are facilitating rapid learning and 
adaptation to BCI systems (Herbert, 2024). Levett et  al. (2024) 
analyzed data from 21 patients with cervical spinal cord injuries, all of 
whom exhibited significant recovery of motor function during specific 
tasks. However, there is substantial heterogeneity in the clinical 
outcome assessment standards across various studies. Although 
invasive BCI technology has demonstrated potential efficacy in 
treating spinal cord injuries, the goal of achieving complete restoration 
of patients’ autonomous function remains unrealized. Despite the 
promising prospects of BCI for SCI rehabilitation, several challenges 
persist, including technological maturity, user acceptance, and ethical 
and regulatory issues. Future research should address these challenges 
by focusing on improving system performance, optimizing user 
experience, and resolving ethical and regulatory concerns.

4.2.3 Performance evaluation of BCI in 
rehabilitation applications

The performance evaluation of BCI technology in rehabilitation 
applications involves several crucial metrics, including system 
effectiveness, accuracy, stability, user acceptance, and real-time data 
processing capabilities. Among these, the information transfer rate is 

FIGURE 7

Analysis of references related to BCI in rehabilitation. (A) Co-occurrence relationships between references. (B) Clustering of references based on 
similarity, forming 15 effective clusters: #0 deep learning, #1 stroke, #2 spinal cord injury, #3 robotic rehabilitation, #4 pattern classification, #5 
electrocorticography, #6 amyotrophic lateral sclerosis, #7 BCI illiteracy, #8 movement related cortical potential (MRCP), #9 augmentative 
communication, #10 performance evaluation, #11 motor imagery classification, #13 sensorimotor cortex (SM1), #17 laterality coefficient, #20 disorder 
of consciousness. (C) Dependency analysis between reference clusters, e.g., cluster #0 mainly evolved from clusters #2, #4, #6, #8, and #10. 
(D) Top 25 references with strong citation bursts. The red bars indicate periods of high citation rates.
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a vital indicator of a BCI system’s effectiveness in practical 
rehabilitation contexts, as it quantifies the amount of information 
transmitted per unit of time, relying on both classification speed and 
accuracy (Thompson et al., 2013). Classification accuracy measures 
the system’s capability to correctly interpret the user’s intentions, 
which is paramount in rehabilitation settings where misclassification 
can result in inappropriate device responses and adversely affect 
rehabilitation outcomes (Hong et al., 2018). It is important to note that 

BCI system performance evaluation extends beyond offline analysis 
to encompass online evaluation, ensuring the system’s effectiveness 
and robustness in real-world rehabilitation scenarios (Lotte et  al., 
2018). Online evaluation mimics real-world usage by processing real-
time data streams and adapting to noisy environments (de Seta et al., 
2022). Robustness in a BCI rehabilitation system necessitates 
adaptability to variations in brain signals across different patients and 
within the same patient over time (Liu et al., 2024). In this regard, 

FIGURE 8

Keywords related to BCI in rehabilitation. (A) Timeline view of keywords. (B) Top 25 keywords with the strongest citation bursts.
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adaptive BCI technology improves system control stability and 
robustness by dynamically adjusting paradigms according to the 
brain’s current state and updating recognition models in real-time 
(Chowdhury et al., 2018). Additionally, an exemplary BCI system 
should be  scalable and customizable to accommodate the diverse 
needs of various diseases and patients. Patient acceptance and ease of 
use are critical components of BCI system performance evaluation. 
Thus, the system should be designed to be intuitive and user-friendly, 
facilitating quick learning and adaptation while minimizing 
psychological and physical burdens on patients. Moreover, safety and 
ethical considerations cannot be neglected, as ensuring the physical 
and mental well-being of patients during BCI use is essential. 
Addressing BCI illiteracy, which refers to some patients’ inability to 
effectively use the brain-computer interface system during 
rehabilitation training, has become a focal point in performance 
evaluation research. Strategies to tackle this challenge include 
personalized adaptation, enhanced feedback mechanisms, multimodal 
signal integration, continuous training support, and algorithm 
improvements to enhance the effectiveness and adaptability of BCI 
systems (Choi et al., 2017). In conclusion, BCI performance evaluation 
is a comprehensive process involving multiple dimensions and 
metrics. Researchers must consider classification accuracy, model 
complexity, generalization ability, and the necessity for real-time 
online processing to ensure that BCI systems are not only theoretically 
viable but also efficient and reliable in practical rehabilitation  
applications.

4.2.4 Deep learning in BCI rehabilitation systems
In BCI systems, pattern classification involves categorizing 

features derived from brain signals to discern the user’s intentions or 
mental states (Brocal, 2023). This process is pivotal to BCI performance 
as it directly impacts signal decoding quality and the final control 
outcomes. Conventional pattern classification techniques include 
artificial neural networks, Bayesian methods, linear discriminant 
analysis, support vector machines, and adaptive classifiers (Tai et al., 
2024). Deep learning, a subset of machine learning, not only adopts 
traditional machine learning goals and techniques but also introduces 
innovative methods for tackling complex data analysis and pattern 
recognition tasks (Cao et  al., 2022). The synergy between BCI 
technology and deep learning has facilitated significant advancements 
in decoding brain signals and enabling human-computer interaction. 
Deep learning is primarily applied in three critical stages of BCI: data 
preprocessing, feature extraction, and classifier training. Initially, 
during data preprocessing, collected brain signals undergo filtering, 
denoising, and normalization to enhance data quality. Next, in the 
feature extraction phase, deep learning models autonomously learn 
intricate feature representations, superseding manually designed 
feature extractors used in traditional machine learning. For example, 
convolutional neural networks effectively capture spatiotemporal 
features in EEG signals, while recurrent neural networks are adept at 
processing sequential data, making them suitable for analyzing time-
series EEG signals (Hossain et  al., 2023). Finally, in the classifier 
training stage, deep neural networks learn and classify the extracted 
features. Research suggests that BCI systems employing deep learning 
decoders generally surpass traditional machine learning algorithms in 
performance. In tasks where users control a cursor through thought, 
BCI systems utilizing deep learning models exhibit superior 

non-invasive control capabilities (Ko et  al., 2021). Furthermore, 
transfer learning, a deep learning subfield, shows significant promise 
in the BCI domain, particularly in enhancing classification 
performance across different sessions and users. Transfer learning 
allows knowledge acquired in one task to be applied to another related 
task, reducing the need for extensive training data and improving 
model generalization (Tan et al., 2019; Wu et al., 2022). Despite the 
substantial performance enhancements deep learning brings to BCI, 
practical challenges such as signal quality, individual variability, and 
insufficient training data persist. To address these issues, researchers 
are focused on refining deep learning algorithms, optimizing data 
collection and processing protocols, and emphasizing user experience 
and interaction design to improve the usability and applicability of 
BCI systems. In summary, the application of deep learning in BCI is a 
rapidly evolving field that promises more convenient, natural, and 
efficient human-computer interaction methods in rehabilitation.

4.3 Limitations

In this study, there are still some limitations. Firstly, all data were 
sourced from the WoSCC, excluding other databases like PubMed and 
Embase. Although WoSCC covers a majority of publications, some 
articles not indexed in this database may have been overlooked, 
potentially affecting the analysis’s comprehensiveness and 
representativeness. Additionally, the study predominantly included 
English-language papers and reviews, with varying quality, which could 
somewhat undermine the reliability of the analysis results. Finally, the 
tools used, CiteSpace and VOSviewer, have inherent limitations. For 
instance, during clustering analysis, terms extracted from titles, abstracts, 
and keywords may exhibit high variability. Furthermore, the process of 
merging synonymous terms might not ensure the accurate integration 
of all synonyms, impacting the precision of the analysis results.

5 Conclusion

In conclusion, the global development of BCI applications in 
rehabilitation research is progressing continuously and steadily, with 
significant contributions from the USA, China, and various European 
countries. Notably, the journal Frontiers in Neuroscience has emerged 
as a leading publication in this field. Niels Birbaumer from Germany 
has made notable advancements in BCI applications for rehabilitation. 
Currently, the diverse uses of BCI technology in treating stroke and 
SCI, along with the performance evaluation of BCI systems, are 
prominent research areas. Deep learning has demonstrated substantial 
potential in BCI rehabilitation. This bibliometric analysis offers an 
objective perspective on BCI research within the rehabilitation 
domain, assisting scholars in tracking knowledge progress and 
identifying future research directions.
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