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Introduction: Tai Chi Chuan (TCC) is an exercise regimen renowned for its

comprehensive benefits to both physical and mental health. The present

research endeavor aims to elucidate the neurocognitive impacts of TCC

compared to alternative exercise modalities or therapeutic interventions.

Methods: A systematic meta-analysis was undertaken, encompassing a rigorous

review of diverse datasets, wherein 422 scholarly articles were examined, with a

subset of 18 articles meeting the stringent criteria for inclusion in the analytical

framework.

Results: The study cohort comprised 677 participants, characterized by a mean

age of 56.52 ± 14.89 years and an average educational attainment of 11.06 ±

3.32 years. Noteworthy alterations in functional neural activity were identified

within the superior frontal gyrus.

Discussion: This comprehensive analysis provides significant insights into the

enduring neural modifications and the distinctive contributions of TCC to

cognitive health. Nevertheless, it is imperative to acknowledge the potential

for bias in smaller functional magnetic resonance imaging studies owing to

their inconclusive outcomes. This observation underscores the critical need for

collaborative, multicenter research initiatives with expanded sample sizes to

enhance the robustness and generalizability of future findings.

KEYWORDS
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Introduction

Tai Chi Chuan (TCC) is a holistic practice encompassing physical and mental

dimensions, frequently utilized as a complementary and alternative therapeutic modality

(Wayne et al., 2014). TCC comprises intricate movements integrating components such

as squatting and deep breathing, purported to promote relaxation and alleviate pain (Kong

et al., 2016). As of the conclusion of the year 2022, TCChas proliferated its reach to over 150

countries and regions, garnering a substantial global adherent base exceeding 400 million

individuals (Yang et al., 2021). Numerous clinical trials and systematic reviews have been

conducted to investigate the efficacy of TCC. The most recent Cochrane review on physical

activity and chronic pain indicates that interventions such as TCCmay effectively mitigate

chronic pain and enhance overall quality of life (Geneen et al., 2017). Additionally, there

has been an escalating emphasis on elucidating the central nervous system mechanisms
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underlying TCC to comprehensively understand its functional

dynamics and efficacy from a neurological standpoint (Wang et al.,

2022). However, these studies’ quality, design, and outcomes have

exhibited variability and needmore robust and conclusive evidence.

The elucidation of CNS mechanisms constitutes a focal point

of consensus and intensive inquiry within the burgeoning field of

neuroscience research on TCC. Many researchers have investigated

the mechanisms by which TCC enhances cognitive function,

the long-term impacts of TCC exercise on the brain, and its

effects on neurological disorders, examining these phenomena

from structural and functional perspectives (Yu et al., 2018). TCC

training has been demonstrated to effectively augment spontaneous

functional neural activity and enhance participants’ cognitive

capacities, including memory, executive control, and emotional

regulation. Functional magnetic resonance imaging (fMRI) serves

as a pivotal tool, offering a visual and quantitative methodology

for delineating the effects of TCC on the CNS. A rigorously

designed fMRI study has the potential to yield robust neural

activity features that can be instrumental in diagnostic, therapeutic,

and machine-learning applications. Nevertheless, discrepancies

in study designs, imaging acquisition protocols, preprocessing

pipelines, and data analysis methodologies have precipitated

heterogeneous findings, thereby complicating the synthesis of

consistent conclusions.

To date, a comprehensive systematic evaluation of the impact

of TCC on CNS remains lacking, and extant descriptive studies

have not succeeded in accurately quantifying and summarizing the

findings (Yu et al., 2018). An activation likelihood estimation (ALE)

analysis represents the appropriate methodology for validating

these effects as it facilitates the synthesis of all current studies

and the derivation of consistent conclusions (Eickhoff et al.,

2009). The ALE approach assesses the overlap of activation

foci by modeling them as probability distributions centered on

their respective coordinate locations (Turkeltaub et al., 2012).

We posit that TCC exerts distinct neuromodulatory effects,

manifesting variably among healthy individuals and those afflicted

with specific conditions. These neuromodulatory influences are

amenable to observation through diverse imaging methodologies.

Moreover, different imaging modalities and analytical techniques

can capture distinct facets of TCC’s neuromodulatory impact.

This hypothesis lends credence to the proposition that ALE

constitutes the most appropriate investigative methodology. In

contradistinction to prior MRI studies on TCC, the present

investigation employs ALE analysis. ALE analysis is an imaging-

based approach that diverges from conventional meta-analytic

methods, which commonly integrate effect size metrics such as risk

ratios. Instead, ALE analysis prioritizes the spatial coordinates of

neuroimaging results, thereby more precisely evaluating the brain

regions affected by TCC practice. This approach will delineate

regions of interest pertinent to the neurological effects of TCC,

thereby providing a reliable foundation for the design and analysis

of future TCC research. Consequently, the primary objective of

this study is to investigate the neural mechanisms underlying TCC

and proffer recommendations for neuroimaging studies on TCC.

This will be achieved through a systematic process encompassing

standardized literature retrieval and screening, comprehensive

literature evaluation, and application of ALE analysis.

Methods

This report follows the Preferred Reporting Items of

the Systematic Reviews and Meta-Analyses (Page et al.,

2021) (PRISMA; Supplementary Table 1) and Neuroimaging

Meta-Analyses Guidelines (Muller et al., 2018).

Literature search and study selection

To retrieve studies as comprehensively as possible, we used

Medical Subject Headings (MeSH). Specifically: (1) the MeSH

words “Tai Ji" and “Magnetic Resonance Imaging" were used for

searching in PubMed; (2) all entry terms in the mesh words

were used as topic terms for mesh-like searches in Web of

Science; (3) the ScienceDirect, Scopus, and Google scholar as

supplemental database, with the same search expression as Web

of Science. The publication year was before 1 September 2024

(Figure 1). After removing duplicates, the preliminary studies

library was filtered by title and abstract. We retained only

studies meeting the following criteria: (1) research written in

English; (2) original fMRI studies; (3) the study reports whole-

brain activation coordinates, not region of interest (ROI) or

small volume correction (SVC) results; (4) TCC as a primary

intervention. Exclusion criteria: (1) studies that did not report

certain required information (including number of subjects, age,

coordinates); (2) no comparisons were reported for this study; (3)

no significant results.

Data extraction

Starting with an initial screening of titles and abstracts,

a comprehensive review of 32 potentially relevant papers was

performed according to the above selection criteria (Figure 1).

Extracted data were analyzed using the MNI coordinate system,

and coordinate transformations were performed for studies using

Talairach coordinates. Record retrieval, inclusion and exclusion,

and coordinate extraction were independently completed by two

researchers and then cross-validated. A third person was required

to vote for records and data with objections.

Literature quality evaluation

Since fMRI research needs to focus more on image acquisition

and processing, and there is no recognized quality evaluation

method for fMRI research, existing tools such as Cochrane Risk of

Bias tools (Minozzi et al., 2020) and GRADE (Viswanathan et al.,

2018) cannot reasonably evaluate neuroimaging quality, so we use

a more recognized evaluation method. A form is designed with ten

questions on subject quality, research methods, image acquisition

and analysis quality, results, and conclusion quality and uses 0,

0.5, and 1 for scoring. It can effectively quantitatively evaluate the

research methods in fMRI research (Strakowski et al., 2000).
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FIGURE 1

PRISMA flowchart of literature search and selection process.

Publication bias

The prevalence of coordinate-based meta-analyses has been

hampered by the exclusion of unpublished studies, often due to

a lack of statistically significant findings (David et al., 2013). We

used correlation analysis to ensure the robustness of ALE-analysis

results to this publication bias by calculating the relationship

between the number of participants and the number of reported

significant findings (number of foci reported) (David et al., 2018).

We consider the negative correlation between sample size and

number of foci typical of analyses with publication bias, in which

studies with small samples are published only when their results

match the a priori hypothesis (Alegria et al., 2016). Based on the

above assumptions, we will use Pearson’s correlation analysis to

verify the relationship between the sample size and the number

of foci.

Activation likelihood estimation

We performed ALE analysis using GingerALE 3.0.2 software

(Turkeltaub et al., 2012) to determine neurological effects of

TCC. We found that multiple comparisons from the same set of

subjects may create dependencies between experimental plots,

thereby reducing the validity of the meta-analysis results. To

prevent this problem, for each meta-analysis, we studied all

coordinates of related contrasts, which were combined into one

experiment to adjust for within-group effects. ALE scores were

tested against ALE scores obtained under the null distribution

with a threshold of P < 0.05, corrected for voxel-level family-wise

error, and a minimal volume threshold set at volume >100 mm3.

GingerALE automatically generated anatomical labels for all

clusters. In addition, we also used the dpabi toolbox (Yan et al.,

2016) for double-checking these localizations and the presentation

of results.

Results

General literature information

The search strategy resulted in 422 relevant articles, and

18 articles were included in this meta-analysis (Figure 1). These

studies reported that resting state functional connectivity (rs-

FC) changes the most. Six hundred and seventy-seven subjects

were enrolled in the current review with 56.52 ± 14.89
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TABLE 1 General literature information.

Study ID Sample size Gender (male/female) Age (years) Education (years)

Tao, J. 2016 21 8/13 62.38± 4.55 9.61± 3.02

Tao, J. 2017a 21 8/13 62.38± 4.55 9.61± 3.02

Tao, J. 2017b 21 8/13 62.38± 4.55 9.61± 3.02

Liu, Z. 2018 26 8/18 65.19± 2.30 10.46± 1.79

Wu, M. 2018 16 3/13 64.9± 2.8 13.8± 2.4

Cui, L. 2019 12 2/10 21.83± 2.48 16.33± 2.23

Kong, J. 2019 21 1/20 53.10± 11.58 N.A.

Liu, J. 2019a 28 6/22 40–70 N.A.

Liu, J. 2019b 28 6/22 40–70 N.A.

Liu, J. 2019c 21 8/13 62.38± 4.55 9.61± 3.02

Chen, L. 2020 22 7/15 52.36± 6.88 12.18± 3.03

Liu, Z. 2020 31 10/21 64.93± 2.37 10.52± 1.91

Xu, A. 2020 16 6/10 46.5± 18.5 N.A.

Yue, C. 2020a 20 0/20 62.90± 2.38 9.05± 1.80

Shen, Q. 2021 12 2/10 21.83± 2.48 16.33± 2.23

Shen, H. 2022 20 15/5 66.90± 7.17 N.A.

Zhang, J. 2023 9 2/7 24.20± 4.07 N.A.

Liu, J. 2024 28 6/22 40–70 N.A.

rs-FC, resting-state functional connectivity; ReHo, regional homogeneity; VMHC, voxel-mirrored homotopic connectivity; ALFF, amplitude of low-frequency fluctuation; N/A, not applicable.

years of age and 11.06 ± 3.32 years of education (Table 1;

Supplementary Table 2).

Literature quality

The average total score of all 18 records was 8.306, with a low

of 6 and a high of 9 for a single publication. Among all records,

overall quality performed better on question 6 (standard space)

and worse on question 2 (baseline information) and question 8

(multiple comparison correction; Figure 2).

Publication bias

Against this possible confound, for pooled ALE meta-analyses,

we observed no significant negative correlation between sample

size and number of foci action relational: r = 0.099, P = 0.609

(Figure 3).

Activation likelihood estimation

After activation likelihood estimation, two clusters have

undergone significant functional changes, including the right

superior frontal gyrus (SFG.R) (centered at 12, 56, 15) and left

superior frontal gyrus (SFG.L) (centered at –12, 54, 16). Cluster

SFG.R has 296 mm3 volume, and cluster SFG.L has 192 mm3

volume (Table 2; Figure 4).

Discussion

We combed studies that used TCC as the primary intervention

method with fMRI imaging. The search strategy resulted in 422

relevant articles, 18 of which were included in this meta-analysis.

Six hundred seventy-seven subjects were enrolled in the current

review. Among all study types, cross-sectional studies (8, 44%)

and clinical control studies (7, 39%) were the most numerous.

Among all subjects, healthy subjects were the majority (3, 61%).

Disease-related studies included musculoskeletal diseases (4, 57%),

anxiety and depression (2, 28%), and respiratory diseases (1, 15%).

Yang-style 24-form TCC is the most common intervention; the

average training course duration is 5 days/week for 12 weeks.

Beck depression inventory score is the most common scale

for evaluating cognitive function. Among all analysis methods,

functional connectivity was the most common (10, 56%), followed

by ALFF (3, 17%), and there were other analysis methods such as

ReHo and VMHC. Regarding the reported brain regions, the most

results came from the prefrontal lobe (12, 67%), followed by the

cingulate cortex (4, 22%; Figure 5; Supplementary Table 2).

TCC research designs can generally be divided into two types.

The first type investigates the neuromodulatory effects of TCC

in resting state. These effects are typically categorized into two

subtypes: (1) effects on healthy individuals and (2) effects on
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FIGURE 2

Literature quality. The figure shows the quality evaluation of the included studies. Green circle with checkmark represents the question with a score of

1, yellow circle with a question mark represents the question with a score of 0.5, and red circle with a cross represents the question with a score of 0.

individuals with diseases. These studies focus on long-term effects

and align with the traditional understanding of TCC, which

suggests that its benefits require a sustained period to manifest.

It is crucial for these studies to distinguish between the effects of

TCC and conventional exercise. To achieve this, a control group

should be included in the analysis, or the number of samples should

be increased to ensure the collection of specific TCC effects. From

a population perspective, TCC is generally more accepted among

college students and the elderly. College students often engage in

TCC to fulfill exercise requirements, while the elderly believe in

its long-term health benefits. When selecting elderly participants,

careful attention must be given to the collection of MRI data.

Extremely old individuals or those with significant age disparities

can lead to unstable MRI data. From an analytical standpoint, rs-

fMRI analysis is the most common and accepted method. Another

approach involves structural MRI analysis, which is often used in

TCC research. Structural MRI analysis is based on the theory of

neuroplasticity, and short-term exercise may not yield noticeable

structural differences. Additionally, structural changes are highly

sensitive to age variations; therefore, it is recommended to apply

structural analysis mainly in healthy subjects.

Another approach to studying the neuromodulation effects of

TCC is hypothesis-driven research. For example, it is hypothesized

that TCC can regulate working memory. To test this hypothesis,

an experimental paradigm related to working memory is required

to detect changes following TCC practice. This type of research

lacks a specific standard model and is susceptible to various

factors, such as the mental state of the subjects. Therefore, it

necessitates support from psychology-related backgrounds and

the use of appropriate scales to assess mental states. Due to

the limitations of MRI imaging equipment, analyzing neural

activity during TCC is not feasible. Typically, this research

employs functional near-infrared spectroscopy, which is less prone

to interference and was not used in the present study. The

methods for analyzing TCC’s neuromodulatory effects based on

task design are not standardized. For instance, block design

can only analyze regional activation within a certain period,

related to hemodynamic response functions. Event-related design

provides valuable temporal information about neuronal activity but

requires numerous experiments to achieve a sufficient signal-to-

noise ratio and statistical power. Mixed designs, which combine

elements of block and event-related designs, allow the study of
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FIGURE 3

Publication bias. The figure shows the relationship between the

number of participants and the number of reported significant

findings.

both “maintained" and “transient" neural activities but present

challenges in estimating the hemodynamic response function.

The findings indicate that cognitive control function constitutes

a complex, high-order neural activity that involves the integration

of multiple brain regions. This function is primarily responsible

for the establishment of goals, the formulation of plans, the

implementation of tasks, as well as the detection and maintenance

of task-related activities (Botvinick and Braver, 2015). With

advancing age, there is a tendency for a decline in executive control

functions, including human working memory and attention.

Additionally, there is a significant reduction in cognitive control

functions and the functional connectivity between brain regions.

These declines result in diminished consistency between goals

and behavior and a reduction in executive control capabilities

(Luna et al., 2010). Studies have shown that long-term regular

TCC can effectively reshape the structure and functional activities

of cognitive control brain areas in middle-aged and older adults

and enhance the response to task stimuli and executive control

abilities (Tao et al., 2017). They are reflected explicitly in positively

improving the function of the prefrontal cortex and significantly

reshaping the brain structure, especially the gray matter structure

of multiple cognitive control brain areas such as the insula,

hippocampus/parahippocampal gyrus, thalamus, anterior cingulate

gyrus, and temporal lobe. Improve its functions, significantly

improve response speed (Halassa and Kastner, 2017), reduce

reaction time (Parent, 2016), and reduce the probability of errors

during execution (Wu et al., 2019). Also, compared with healthy

controls of the same age, the hippocampus and thalamus of the

brains of long-term regular TCC exercisers, the volume of gray

matter increases, and the thickness of the cortex of the anterior

insula, precentral gyrus, middle frontal sulcus, superior temporal

gyrus, medial occipitotemporal sulcus, and lingual sulcus increase

(Wei et al., 2014).

According to our results, SFG is the most critical brain

region in the neurological effects of TCC. The prefrontal cortex

is the core brain area of the default mode network (Smallwood

et al., 2021). It can widely receive and process information from

other brain areas and promptly send regulatory instructions to

different brain areas (Carlén, 2017). It has individual cognitive

behavior (Hanganu-Opatz et al., 2023), decision-making, and

memory (Euston et al., 2012). Complex cognitive functions such

as encoding and retrieval and emotion perception play the role

of the brain’s center; the impact of many neurological diseases on

the prefrontal cortex has also been confirmed (Xu et al., 2019).

Research shows that TCC, as a complex exercise that integrates

body movements, mind meditation (Deepeshwar et al., 2015),

and breathing, has an upbeat positive regulatory effect (Moriarty

et al., 2019) on the structure and function of the brain’s prefrontal

lobe. Long-term regular TCC can effectively improve the health

of middle-aged and older adults (Silveira et al., 2019). It can

improve cognitive ability, enhance memory and decision-making

ability, reduce mood swings, effectively increase the volume of

gray matter in the prefrontal lobe, and enhance the performance

of spontaneous functional activities. This finding is particularly

evident in patients with Alzheimer’s disease and patients with

mild cognitive impairment (Colangeli et al., 2016). Related studies

have shown that these two groups’ mental and memory abilities

are associated with decreased prefrontal gray matter volume and

decreased brain functional activity (Haeger et al., 2019). At the same

time, the central nervous system regulation mechanism of TCC

targets not only neurological diseases but also non-nervous system

diseases, which can be improved in various ways through TCC. As

a result, regular TCC effectively reshapes the structure and function

of the prefrontal lobe, improves cognitive memory in middle-aged

and older adults, and delays brain aging.

Despite the ALE results demonstrating significance in only

two regions, the insights derived from other studies warrant

consideration. Empirical research has demonstrated that regular

engagement in Tai Chi Chuan (TCC) exercise substantially

influences the brain functional activities of middle-aged and older

adults. This includes enhancements in spontaneous functional

brain activities and the synchrony of these activities (Wei et al.,

2014). Furthermore, regular TCC exercise under task-specific

conditions has been empirically validated to augment brain

function in middle-aged and older adults when performing tasks

(Wu et al., 2018). Specifically, following a 12-week regimen

of traditional TCC, participants exhibited increased activation

in the left superior frontal gyrus (SFG) and the right middle

frontal gyrus during task execution. Correlation analyses revealed

that alterations in functional activity signals within the left SFG

and right middle frontal gyrus were negatively correlated with

task-switching error rates. Additionally, another study indicated

that the calcarine cortex, occipital cortex, and frontal pole

exhibited significant activation in individuals with long-term

regular TCC practice when engaged in attention tasks (Liu

et al., 2018). These findings collectively suggest that regular TCC

practice can effectively enhance spontaneous functional activities
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TABLE 2 Neurological e�ects of Tai Chi Chuan.

Cluster x y z ALE-value Z-value Volume Atlas Label

SFG.R 12 56 15 0.0217 5.29 296 Frontal Lobe: SFG, MFG

SFG.L –12 54 16 0.0198 5.00 192 Frontal Lobe: SFG, MFG

ALE, activation likelihood estimated; SFG, superior frontal gyrus; MFG, medial frontal gyrus; L, left hemisphere; R, right hemisphere.

FIGURE 4

Neurological e�ects of Tai Chi Chuan. The figure shows the significant clusters of the activation likelihood estimated analysis. The color bar

represents the Z-value of the clusters. The two clusters are the right superior frontal gyrus and left superior frontal gyrus.

and the synchrony of brain functional activities and augment

participants’ cognitive memory, executive control, and emotional

regulation functions.

Although the extensive body of fMRI literature, the studies

analyzed in this investigation exhibited sample sizes considered

minor by conventional standards and did not adhere to a rigorous

sample size calculation formula (Szucs and Ioannidis, 2020).

In the publication bias analysis, no correlation was observed

between sample size and the number of reported foci, suggesting

that the inflation of asserted foci may disproportionately impact

smaller studies within the literature. TCC is an exercise modality

widely practiced by individuals across diverse demographic groups.

Regardless, the extant research does not focus on specific

populations, necessitating reliance on studies encompassing

healthy individuals and those with various pathologies. Subgroup

analyses should have accounted for the heterogeneity in subject

populations. Nevertheless, robust findings are precluded due to

the limited number of studies concentrating on disease-specific

populations (fewer than 10). This constraint may have influenced

the outcomes of the ALE analysis, potentially leading to an

overemphasis on the prefrontal cortex while overlooking regulatory

effects originating from other brain regions. Furthermore, small-

scale fMRI studies yielding inconclusive, invalid, or less promising

results (e.g., few identified foci) may need to be published (Carp,

2012). From a study design perspective, researchers investigating

TCC have often conceptualized it primarily as a medical

intervention. However, compared to studies of pharmacological or

other types of interventions, TCC training studies have reported

limited items. Notably, aspects such as the evaluation of TCC

training have yet to be consistently reported across studies. Another

critical issue that requires addressing is the inconsistency in

assessing subjects’ mental states. Nearly half of the studies did not

conduct evaluations of participants’ mental conditions, with the

Beck Depression Inventory score being the most frequently utilized

assessment tool. When employing fMRI for research purposes, the

influence of mental states on the results must be considered. Future

studies should utilize a wide array of scales to evaluate distinct

mental states comprehensively.
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FIGURE 5

Reported brain regions.
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