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brain-behavior relationships 
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Understanding brain-behavior relationships is the core goal of cognitive neuroscience. 
However, these relationships—especially those related to complex cognitive and 
psychopathological behaviors—have recently been shown to suffer from very 
small effect sizes (0.1 or less), requiring potentially thousands of participants to 
yield robust findings. Here, we focus on a much more optimistic case utilizing 
task-based fMRI and a multi-echo acquisition with trial-level brain-behavior 
associations measured within participant. In a visual object identification task for 
which the behavioral measure is response time (RT), we show that while trial-level 
associations between BOLD and RT can similarly suffer from weak effect sizes, 
converting these associations to their corresponding group-level effects can yield 
robust peak effect sizes (Cohen’s d  =  1.0 or larger). Multi-echo denoising (Multi-
Echo ICA or ME-ICA) yields larger effects than optimally combined multi-echo 
with no denoising, which is in turn an improvement over standard single-echo 
acquisition. While estimating these brain-behavior relationships benefits from 
the inclusion of a large number of trials per participant, even a modest number 
of trials (20–30 or more) yields robust group-level effect sizes, with replicable 
effects obtainable with relatively standard sample sizes (N  =  20–30 participants 
per sample).

KEYWORDS

effect size, correlation, BOLD fMRI, test–retest reliability, response time

Introduction

A primary goal of neuroscience  - and cognitive neuroscience in particular  - is to 
understand the brain mechanisms that support behavior. Studies that attempt to empirically 
examine the relationship between brain and mind require direct examination of which sources 
of neural variability are actually related to behavioral variability in cognitive domains of 
interest. A common approach in task-based neuroimaging studies such as those using fMRI 
is to correlate the mean BOLD response in a certain task across participants with a behavioral 
measure taken from the same participants (for discussion, see Rousselet and Pernet, 2012; Vul 
et al., 2009; Yarkoni and Braver, 2010). A similar approach to examining inter-individual 
differences has also been taken using task-free or “resting-state” studies in fMRI, in which 
participants monitor a fixation cross or close their eyes and endogenous variation in brain 
activity is measured (e.g., Fox and Raichle, 2007). In these contexts, correlation of BOLD 
activity is calculated across pairs of brain regions or networks of interest for a given participant, 
which is then correlated across participants with behavioral measures of interest. This has been 
done in neurologically intact participants when studying particular domains of cognition, as 
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well as in clinical studies of particular patient groups (e.g., Finn et al., 
2015; Gotts et al., 2012, 2013; Jasmin et al., 2023; Kaiser et al., 2015; 
Ramot et al., 2019; Rosenberg et al., 2016; Sheffield and Barch, 2016; 
Stevens et  al., 2017; Zhu et  al., 2011; for discussion, see Martin 
et al., 2012).

A recent study has demonstrated some practical limits on our 
ability to achieve this goal, at least for inter-individual differences in 
behavior (Marek et al., 2022, “Reproducible brain-wide association 
studies require thousands of individuals”; see also Elliot et al., 2020). 
Marek et al. (2022) examined the sample sizes needed for replication 
in order to associate brain measures such as cortical thickness and 
resting-state functional connectivity with complex behavioral 
measures such as overall cognitive ability and psychopathology 
(referred to as Brain Wide Association Studies, or BWAS). Using the 
largest neuroimaging datasets that are publicly available (e.g., Human 
Connectome Project, Van Essen et al., 2013; ABCD, Casey et al., 2018; 
UK Biobank, Sudlow et al., 2015) they found that effect sizes were 
much weaker than expected (approximately 0.1 or below), and that 
thousands of participants were required for robust replication. This 
contrasts to the typical sample size of most BWAS studies 
(approximately N = 25), explaining the lack of replicated findings. 
These effect sizes might be improved by restricting the samples to 
those of high quality (improved signal, decreased sensitivity 
to scanning artifacts such as motion) and restricting acquisitions to 
single scanning sites (e.g., Spisak et al., 2023; c.f. Tervo-Clemmens 
et al., 2023). Nevertheless, even if these effect sizes were doubled, the 
overall expectations of smaller effect sizes (an effect size of 0.2 will 
require approximately 200 participants to detect an effect of p < 0.05 at 
80% power) is still that much larger samples will be  required to 
reliably observe brain-behavior associations than those typically 
acquired in individual labs.

However, Marek et  al. (2022) also highlighted the potential 
utility of certain smaller-sample neuroimaging studies for assessing 
brain-behavior relationships, particularly those employing within-
person designs with “induced” effects (such as tasks), as opposed to 
resting-state functional connectivity. Such studies can have increased 
measurement reliability and effect sizes. Here we provide a concrete 
example of this alternative, utilizing a task-based fMRI design with 
participants overtly naming pictures of common objects. Picture 
naming indexes several large cognitive domains including vision, 
conceptual processing, language, and motor functioning (e.g., 
Gilmore et al., 2019; Glaser, 1992; Gotts et al., 2021; Johnson et al., 
1996; Kan and Thompson-Schill, 2004). In order to estimate single-
trial responses to the task, we adopt a slow-event related design 
rather than the more common rapid-event related design (Figure 1A; 
see Bandettini and Cox, 2000; Gotts et al., 2021, for discussion). This 
allows us to isolate better the BOLD response to individual trials for 
which we have a measure of behavioral performance in the task, 
namely response time (RT). While the temporal variation in RT is 
small relative to the overall time course of the BOLD signal (e.g., RT: 
500–1,500 msec; BOLD signal: ~ 16 s), different trial durations are 
expected to manifest as different amplitudes in the BOLD response 
(e.g., Yarkoni et al., 2009; Rao et al., 2014; Yamasaki et al., 2017). 
We  further utilize multi-echo imaging to aid with reducing 
movement artifacts from overt speech and compare this to more 
standard single-echo acquisition. The data presented here are taken 
from a previous fMRI study examining the role of task (picture 
naming versus recognition memory) on stimulus repetition effects 

(Gilmore et al., 2019). However, we have previously only reported 
the condition averages from this prior study—not aspects of the 
single-trial responses, and here, we only analyze the data from the 
first two scanning runs prior to any stimulus repetition (Initial 
Naming Phase).

Critical to the evaluation of effect sizes is some form of cross-
validation to avoid inflated estimates within-sample due to overfitting 
(e.g., Marek et al., 2022; Spisak et al., 2023). We satisfy this requirement 
here in a relatively simple way, using an orthogonal effect to the effect 
of interest: the mean BOLD response to the task versus the correlation 
of trial-level BOLD responses and behavior. Selecting voxels based on 
the mean BOLD response across trials has no biased relationship to 
the estimation of the trial-to-trial variability around the mean as it 
covaries with an independent behavioral measure.

Materials and methods

Participants

Data from 40 participants (23 female) previously reported in 
Gilmore et al. (2019) were included in the current study. Only data 
from the first two scanning runs (Initial Naming Phase) of Gilmore 
et al. (2019) are analyzed here (out of 6 total runs), and only summary 
behavioral data were previously reported for these two runs (percent 
correct and mean reaction time, Figure 2 in Gilmore et al., 2019); all 
analyses presented in the current study are novel. Participants had a 
mean age of 24.6 years (range: 18–35), were right-handed, and were 
neurologically healthy native English speakers with normal or 
corrected-to-normal vision. Informed consent was obtained from all 
participants, and the experiment was approved by an NIH Institutional 
Review Board (protocol 93-M-0170, clinical trials number  
NCT00001360).

Stimuli

Task stimuli consisted of 100 photographic images of common 
animals, plants, and man-made objects (from the Initial Naming 
phase of Gilmore et al., 2019, runs 1 and 2; 50 trials per run). Images 
were resized to 600 × 600 pixels and presented in the center of a 100 Hz 
MR-compatible monitor (screen resolution: 1920 × 1080 pixels) 
located at the head of the scanner bore and viewed through a mirror 
attached to the head coil. Images subtended approximately the central 
8° of the visual field. A fixation cross (48-point Arial type) separated 
image presentations, and all stimuli were presented against a gray 
background (RGB value of 75, 75, 75). Stimuli were presented using 
Presentation software (Neurobehavioral Systems) from an HP desktop 
computer running Windows 10.

Task design

As discussed above in the section on Participants, data from the 
Initial Naming phase (runs 1 and 2) of Gilmore et al. (2019) were 
used in the current study. Participants overtly named images 
presented on the screen (Figure 1B). Each image was preceded by a 
1 s orange fixation cross, which served as an onset cue for the 
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upcoming stimulus. The image itself was presented for 300 ms and 
was replaced immediately by a white fixation cross for a variable 
period of 5,300–11,900 ms, occurring in fixed increments of the 
scanner repetition time (TR = 2,200 s). Participants were instructed 
to name aloud each image as quickly and accurately as possible. 
Responses were spoken into an MR-compatible microphone that 
was attached to the head coil and was placed 3–5 cm from the 
participant’s mouth.

Audio recording equipment

Participants spoke all responses into an Octo-Acoustics 
FOMRI-III NC MR-compatible microphone with built-in noise 
cancelation. Audio signals from this microphone were routed into 
an M-Audio FastTrack Ultra 8-R USB audio interface, which in 
turn was connected to a Dell Precision M4400 laptop. Responses 
were recorded as .wav files using Adobe Audition. In addition to a 
spoken audio recording, the stimulus presentation computer sent 
out a square wave pulse at the onset of each picture presentation 

that was captured on a parallel audio track by the recording laptop. 
A Matlab program (written by SJG) calculated the time difference 
between the square wave pulse onset and the voice response onset 
in each trial, allowing for the calculation of voice onset reaction 
times (RTs).

MRI data acquisition

All images were acquired with a General Electric Discovery 
MR750 3.0 Tesla scanner, using a 32-channel head coil. A high-
resolution T1 structural image was obtained for each participant 
(TE = 3.47 ms, TR = 2.53 s, TI = 900 ms, flip angle = 7°, 172 slices with 
1 mm3 isotropic voxels). Functional images were acquired using a 
BOLD-contrast sensitive multi-echo echo-planar sequence [Array 
Spatial Sensitivity Encoding Technique (ASSET) acceleration 
factor = 2, TEs = 12.5, 27.7, and 42.9 ms, TR = 2,200 ms, flip angle = 75°, 
64 × 64 matrix, in-plane resolution = 3.2 mm × 3.2 mm]. Whole-brain 
EPI volumes of 33 interleaved, 3.5 mm-thick oblique slices (manually 
aligned to the AC-PC axis) were obtained every 2,200 ms.

FIGURE 1

Slow event-related fMRI designs help to isolate BOLD responses on individual trials. (A) The plot on the left shows the idealized BOLD response to 
stimulus onsets S1-S3 convolved with a standard hemodynamic response function. The height of any one of the individual responses is ambiguous due 
to temporal overlap. The plot on the right shows that when the stimuli S1-S3 are separated by approximately 10  s each, the individual BOLD responses 
are better isolated, allowing estimates of the individual trial responses. (B) The design of the slow event-related fMRI paradigm used in the current 
study. An orange fixation cross was presented for 1,000  ms to alert the participant to the start of the trial. Stimuli were presented for 300  ms. 
Participants were instructed to overtly name each object (e.g., “tiger”), with responses recorded by an MR-compatible microphone. Stimuli were 
immediately followed by a white fixation cross of a variable duration (5,300–11,900  ms). Individual BOLD responses were estimated by averaging the 
3rd and 4th TRs post stimulus-onset (4.4–8.8  s).
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fMRI data preprocessing

fMRI data were processed using AFNI (Cox, 1996) to reduce noise 
and facilitate across-participant registration. Initial preprocessing 
steps included: (1) eliminating the first four TRs of each run to allow 
for steady-state magnetization (3dTcat), (2) despiking of time series 
in each voxel (3dDespike) by squashing outlying time points to within 
4 standard deviations of the mean, (3) adjusting for slice-time 
acquisition (3dTshift), and (4) volume registration of each TR to the 
initial kept frame from the first run. After these preliminary steps, data 
from all three acquired echoes were used to remove additional noise 
sources with multi-echo independent component analysis (ME-ICA, 
Kundu et al., 2012, 2013; implemented as meica.py within AFNI). In 
brief, this procedure initially uses a weighted averaging of the different 
echo times to reduce thermal noise. Subsequently, spatial ICA and the 
known linear properties of T2* signal decay are used to separate 
putative BOLD from non-BOLD components (including those having 
to do with head motion, hardware artifacts, etc.). Components were 
identified and classified automatically using the default options 
present in AFNI’s meica.py and tedana.py. Optimally combined (OC) 
data, multi-echo data without additional ME-ICA denoising, were 
generated by taking a weighted summation of the three echoes using 
the exponential weighting approach for T2* in Posse et al. (1999). 
Single-echo estimates simply utilized the middle echo datasets (at 
TE = 27.7 ms), with this TE chosen a priori to conveniently 
approximate the TE needed to optimize T2* contrast. All three 
preprocessing versions (ME-ICA, OC, and single-echo) were 
converted to units of percentage signal change (dividing the voxelwise 
timeseries by their corresponding means) and were then aligned to 
the skull-stripped anatomical image (integrated as part of meica.py for 
multi-echo data and using align_anat_epi.py for the single-echo data), 

resampled to 3 mm3 isotropic voxels and linearly transformed into 
Talairach and Tournoux (1988) atlas space. No additional spatial 
smoothing was applied to any of the three pipelines.

fMRI data analyses

GLM analyses
Functional scans for each run consisted of 237 TRs and 50 stimuli, 

which after discarding the initial 4 TRs amounted to 233 TRs (8 min, 
32.6 s per run). As discussed above, only the 1st two runs (Initial 
Naming) from Gilmore et al. (2019) are analyzed in the current study. 
All runs had transient motion (AFNI’s @1dDiffMag) <0.3 mm/
TR. Traditional task analysis was performed on all 3 preprocessing 
conditions (ME-ICA, OC, and single-echo) using a General Linear 
Model (GLM) (AFNI’s 3dDeconvolve), in which the data at each 
timepoint are treated as the sum of all effects thought to be present at 
that timepoint, plus an error term. The GLM included a 4th order 
polynomial baseline, one stimulus condition for correct trials and one 
condition for error trials, both modeled with TR-specific TENT 
regressors (over 6 time points: 0, 2.2, 4.4, 6.6., 8.8, and 11.0 s) to 
empirically estimate the BOLD response in each voxel across the two 
runs. This approach assumes that all stimuli in the single condition 
share one response shape, although it does not presume the shape of 
that response. For purposes of statistical testing (both within and across 
participants), response magnitudes to correct trials were estimated by 
averaging the 3rd and 4th time points of the TENT regressors (beta 
coefficients) in each voxel, corresponding to the expected peak of the 
BOLD signal at 4.4–8.8 s post-stimulus onset. Group-level effects of 
stimulus condition (Stimulus versus a baseline of 0 during fixation) were 
assessed with one-sample t-tests in each voxel, with multiple 

FIGURE 2

Test–retest reliability of individual picture naming trial response times (RTs) from Gotts et al. (2021). Participants in Gotts et al. (2021) named a set of 100 
pictures three times. Responses to stimuli that were named correctly all three times (N  >  80 on average per participant) were correlated across item 
repetitions (repetition 1 with 2, 1 with 3, and 2 with 3), with the average test–retest reliability (Pearson’s r) calculated for each individual participant. 
Cohort 1 corresponded to the 26/28 participants with recorded RTs in the pre-fMRI session (assigned during fMRI to the Covert Naming condition). 
Cohort 2 corresponded to the 32 participants who were assigned to the Overt Naming condition. Mean test–retest reliability across all 58 participants 
was r  =  0.1681. Data re-plotted from Figure S1 in Gotts et al. (2021).
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comparisons corrected by False Discovery Rate to q < 0.05 (Genovese 
et al., 2002). For replication tests, stimulus effects for participants were 
randomly divided into two halves (N = 20 participants in each), with 
tests conducted separately in each half and corrected for multiple 
comparisons to FDR q < 0.05 prior to conjunction (see Nichols et al., 
2005, for discussion). This process was then repeated 100 times, with 
the likelihood of replication across the halves calculated.

Correlation of single-trial BOLD amplitudes with 
response time

Single-trial estimates of the BOLD response were not explicitly 
modeled. Rather, the assumed peak response (average of the 3rd 
and 4th TRs post-stimulus) to each stimulus was notched out of 
the overall time series (AFNI’s 3dTcat) in each voxel after first 
detrending the time series in each run with a 4th order polynomial 
(using AFNI’s 3dDetrend). Pearson correlations between the trial-
wise BOLD responses and the trial-wise response times on correct 
trials were then calculated in each voxel (up to 100 correct trials 
per participant) and Fisher z’-transformed [atanh(r)] to yield 
normally distributed values. Statistical testing could then 
be performed in each voxel at the single-participant level using 
the number of trials (traditional r-test) or at the group level by 
conducting one-sample t-tests on the mean trial-level correlation 
across participants, with multiple comparisons corrected by False 
Discovery Rate to q < 0.05 (see Yamasaki et al., 2017, for a similar 
approach in the Stop Signal Reaction Time task). For replication 
tests, correlation tests for participants were randomly divided into 
two halves (N = 20 participants in each), with tests conducted 
separately in each half and corrected for multiple comparisons to 
FDR q < 0.05 prior to conjunction (see Nichols et al., 2005, for 
discussion). This process was then repeated 100 times, with the 
likelihood of replication across the halves calculated.

In addition to whole-brain voxelwise tests, group-level effects 
of BOLD-RT correlations were also assessed by selecting on an 
orthogonal effect, namely the GLM task response. The two effects 
are orthogonal because selecting on a value of the mean stimulus 
response does not bias the correspondence between individual 
trials varying around the mean and the independently acquired 
trial-level behavioral measure (i.e., RT). Effects of BOLD-RT 
correlation were assessed at the group level in 4 conditions: a 
whole-brain mask, the top  10,000 voxels in the task-positive 
stimulus response, the top 5,000 voxels, and the top 1,000 voxels. 
The selective masks were constrained to be task-positive to avoid 
the potential for positive–negative cancelation of the BOLD-RT 
correlation when estimating the magnitudes. For each mask, 
BOLD-RT correlations were averaged across the voxel set for each 
participant. Statistical tests were carried out using a linear mixed 
effects (LME) model with within-participant factors of 
Preprocessing (ME-ICA, Optimally Combined, Single-Echo) and 
Voxel Mask (top 1,000, top 5,000, and top 10,000 voxels in the 
mean task response) and Participant treated as the random 
intercept. Post-hoc paired comparisons were conducted with 
paired t-tests across participants, and multiple-comparisons were 
corrected by FDR to q < 0.05.

Effect size and sample size estimations
Effect sizes for one-sample t-tests were estimated using Cohen’s d, 

which is simply the mean divided by the standard deviation of the 

tested population of values. Effect sizes for Pearson correlation 
coefficients here are simply the Fisher z’-transformed Pearson r-values. 
Given these specifications, we used the formula given by Lachin (1981; 
Eq. 8) to estimate the needed sample size, N, to detect effects at p < 0.05 
and 80% power (a Type-II error rate of 0.2):

 

2Z Z
N

d
α β+ 

=  
 

where Zα is the value of the two-tailed normal distribution 
corresponding to α = 0.05, Zβ is the one-tailed normal distribution 
corresponding to the power level (0.8), and d is the effect size. For 
fixed p < 0.05 and 80% power, this equation simplifies to:

 2
7.849N

d
=

These analyses were carried out on BOLD-RT correlations when 
selecting voxels on the orthogonal effect of the mean task response in 
order to avoid inflated within-sample biasing (for discussion, see 
Spisak et  al., 2023; Tervo-Clemmens et  al., 2023). Sampling 
distributions for the effect sizes were estimated from the measured 
data through bootstrap resampling (10,000 iterations), which 
permitted calculation of 95% confidence limits (2.5%-ile and 97.5%-
ile of the bootstrapped distributions).

Dependence on number of trials
The impact of trial number on the ability to observe BOLD-RT 

correlations was investigated by including the first X trials from each 
participant (5, 10, 20, 30, 40, 50, or all correct trials—mean = 91.59 
trials across participants, range = 78–99 trials) and recalculating the 
BOLD-RT correlations, effect sizes and needed sample sizes. 
Comparisons of mean BOLD-RT correlations across the 7 trial 
number conditions were carried out by paired t-tests across 
participants, with multiple comparisons corrected by FDR to q < 0.05. 
Comparisons of Cohen’s d effect sizes across the 7 trial number 
conditions were carried out through bootstrap resampling (10,000 
iterations). On a given iteration, participants were randomly selected 
with replacement to equal 40 participants. Effect sizes were then 
calculated for each trial condition and the difference in effect sizes for 
each pair of conditions was recorded. Over 10,000 iterations, the 
p-value for a given comparison corresponded to the percentile rank 
of 0 in the distribution, converted to 2-tailed p-values by multiplying 
the 1-tailed p by 2.0. Multiple comparisons were corrected by FDR to 
q < 0.05.

Results

In the current experiment, we  evaluate the feasibility of 
detecting brain-behavior correlations at a trial-level per participant 
during object naming. Since test–retest reliability of a measure 
constrains its possible correlation with other measures (e.g., 
Nunnally, 1959), it is useful to estimate these values when possible. 
While we do not have ready estimates of test–retest reliability of 
the single-trial fMRI BOLD responses from prior studies, the 
pre-fMRI behavior-only phase of Gotts et al. (2021) involved each 
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participant naming a set of 100 pictures three times (using the 
same pictures as in the current study, but with different 
participants). From this experiment, we are able to estimate the 
test–retest reliability of our response time (RT) measure by 
correlating the single-trial RTs across different naming attempts of 
the same pictures by each person. It is important to note that the 
very act of repeating a stimulus will alter behavioral and neural 
responses to it, leading to faster RTs and decreases/increases in 
BOLD (see Gilmore et al., 2019, for discussion). The decreased 
range of RTs to repeated stimuli in the presence of measurement 
noise/variability may therefore lead to slightly decreased estimates 
of test–retest reliability, but these empirical benchmarks still 
provide useful context. The test–retest estimates are shown in 
Figure  2 for the 58 participants from Gotts et  al. (2021) with 
pre-fMRI naming data (Cohort 1 participants were assigned to the 
Covert Naming condition during fMRI for this experiment, Cohort 
2 participants were assigned to the Overt Naming condition; all 
participants performed Overt Naming in the pre-fMRI session). 
Overall, participants had very low test–retest reliability of the 
single-trial RTs (mean = 0.1681), although values covered a large 
range for individual participants (−0.012–0.496). This suggests 
that many trials would be required for BOLD-RT correlations to 
be  significant for the average participant (for an effect size of 
0.1681, the expected N in trials to detect an effect at p < 0.05 with 
80% power is 278 trials; Lachin, 1981), and many more still would 
be required if the test–retest reliability of the single-trial BOLD 
responses is low and/or if the true BOLD-RT correlation is low. 
Based on this prior experiment, we should not expect the mean 
BOLD-RT correlation across participants observed in the current 
study to be much larger than 0.17.

A single-participant example of the main quantities of interest in 
the current study for the ME-ICA processed data is shown in Figure 3. 
Figure  3A shows the stimulus effect (Stimulus vs. a baseline of 0 
during fixation) on the BOLD response in the top panel (p < 0.005, 
FDR-corrected to q < 0.0193) and the correlation between BOLD and 
RT across trials in the bottom panel (p < 0.05, uncorrected). Despite 
the expected low correlations between BOLD and RT, the uncorrected 
map is quite similar to the overall task response—and similar to the 
brain regions known to be involved in picture naming from prior 
studies (e.g., left lateral frontal cortex, the fusiform gyrus bilaterally 
and the anterior cingulate; Gotts et  al., 2021). As in prior picture 
naming studies, the distribution of response times for this participant 
ranges from 600 ms up to 1,500 ms with a mean of approximately 
909 ms (Figure 3B). In Figure 3C, we have shown the first 100 TRs of 
the BOLD response (220 s) from a voxel in left frontal cortex showing 
both a significant task response and a correlation between BOLD and 
RT (highlighted by the green crosshairs in Figure 3A). Vertical red 
lines are placed at the beginning of the expected BOLD peak (4.4 s 
after stimulus onset) for each correctly named stimulus during that 
period (N = 23 correct responses). Visually, there is quite good 
correspondence between the BOLD peaks and the expected onsets for 
this voxel. Finally, a scatterplot of the single-trial BOLD peaks (x-axis) 
with the single-trial RTs (y-axis) is shown in Figure 3D for the same 
highlighted voxel (at T–T coordinate −43, +12, +27). As in previous 
studies examining BOLD-RT correlations in task-positive regions 
(e.g., Rao et al., 2014), there is a positive slope between BOLD and RT, 
with slower trials having larger BOLD responses [r(93) = 0.2848, 
p = 0.0052].

Group effects of task and BOLD-RT 
correlations

Next, we turn to the effects of picture naming on the mean BOLD 
response at the group level for the three preprocessing conditions 
(ME-ICA, Optimally Combined, and Single-Echo), as well as the 
group average of the trial-level correlations between BOLD and 
RT. The top panels of Figure 4 show voxels where the group mean task 
response is significantly different from zero (either above-baseline in 
red or below baseline in blue) (p < 0.005, q < 0.0033 across all three 
conditions). The task positive (above-baseline) responses here accord 
well with those previously described in Gotts et al. (2021), with positive 
BOLD responses throughout visual, temporal, somatomotor and 
prefrontal cortex. There are also significant task-negative responses in 
all three preprocessing conditions in regions of the canonical “default 
mode” network (e.g., Fox et al., 2005). Tests of the group mean of the 
trial-level BOLD-RT correlations versus zero are shown for the three 
preprocessing conditions in the bottom panels of Figure 4. Despite the 
expected weak within-participant BOLD-RT correlation values (based 
on the results in Figure 2), the corresponding group-level tests of the 
mean of these values across participants yield robust effects, with 
positive mean BOLD-RT correlations in frontal, temporal, and parietal 
regions and negative mean BOLD-RT correlations in regions of the 
default mode network (p < 0.005, q < 0.0259 across all three conditions).

Effect of preprocessing and mean task 
response on trial-level BOLD-RT 
correlations, effect sizes, and needed 
sample sizes

In order to avoid inflated estimates of trial-level BOLD-RT 
correlations and their corresponding effect sizes, we selected voxels 
based on an orthogonal effect, namely the mean task response across 
participants. Selecting on the mean value of the BOLD response pools 
responses across all trials and does not differentially bias particular 
trials, nor does it bias the correspondence of individual trial values to 
independent behavioral measures (RT). However, if both measures 
index the same cognitive ability (picture identification), they should 
nevertheless identify similar sets of voxels. In other words, voxels with 
a larger mean BOLD response might be expected to be similar to those 
with a large BOLD-RT correlation if the underlying neural activity is 
engaged in picture identification. We therefore thresholded the mean 
BOLD response across participants at several different levels: the 
top 10,000 voxels with a task-positive response (voxels with the largest 
group-level effect size), the top 5,000 voxels, and the top 1,000 voxels. 
We also included a whole-brain mask for comparison. Note that task-
positive voxels should tend to have BOLD-RT correlations with the 
same slope (positive; see Figure 4) so that positive/negative effects do 
not cancel in the estimates (whereas this is possible in the whole-
brain mask).

The results are shown in Figure 5. Figure 5A shows the masks 
with the different thresholds in the top panel along with the group 
mean effect of the BOLD-RT correlations (using the ME-ICA 
processed data as an example). The top voxels in the task response 
do appear to correspond to the larger BOLD-RT correlations 
spatially. Figure  5B shows the BOLD-RT correlations, averaged 
within the respective masks and across participants for the three 
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different preprocessing conditions (error bars depict the 95% 
confidence interval of the mean). The first thing to note is that the 
individual BOLD-RT correlation values are indeed capped (as 
expected) by the test–retest reliability estimates of single-trial RTs 
shown in Figure  2 (r = 0.17). All of the individual conditions 
(including those for the whole-brain mask) are nevertheless 
significantly different from zero when considering the group means 
of the conditions (p < 0.0029, q < 0.05 for all). The three Preprocessing 
conditions (ME-ICA, Optimally Combined, Single-Echo) and the 
selective Voxel Mask conditions (top 1,000, 5,000, and 10,000 voxel 
masks) were entered as factors in a linear mixed effects (LME) model 
with Participant as the random intercept. Significant main effects of 
Preprocessing [F(2,312) = 46.73, p = 1.77×10−18, q < 0.05] and Voxel 
Mask [F(2,312) = 37.67, p = 2.22×10−15, q < 0.05] were observed, with 
no significant interaction between the factors [F(4,312) = 0.16, 
p > 0.9]. Underlying the main effect of Preprocessing, ME-ICA had 
larger BOLD-RT correlations than both Optimally Combined 
[paired t(39) = 3.525, p < 0.0011, q < 0.05] and Single-Echo conditions 
[paired t(39) = 4.080, p < 0.0003, q < 0.05], and Optimally Combined 
had greater BOLD-RT correlations than Single-Echo [paired 
t(39) = 2.189, p < 0.0347, q < 0.05]. Underlying the main effect of 

Voxel Mask, the top  1,000 task voxels yielded higher BOLD-RT 
correlations than both the top 5,000 [paired t(39) = 3.128, p < 0.0034, 
q < 0.05] and top 10,000 masks [paired t(39) = 5.096, p < 1.0×10−5, 
q < 0.05], and the top 5,000 task voxels yielded higher BOLD-RT 
correlations than the top  10,000 mask [paired t(39) = 8.785, 
p < 1.0×10−10, q < 0.05]. Thus, ME-ICA denoising improved 
BOLD-RT correlations relative to multi-echo acquisition without 
additional ICA denoising (or to single-echo), and there was also an 
advantage to multi-echo acquisition over single-echo acquisition 
(when neither has additional denoising applied). Similarly, 
thresholding higher on the mean task response led to higher 
BOLD-RT correlations, with the highest BOLD-RT correlations 
observed when using the top 1,000 voxels of the task response.

The effect sizes of the BOLD-RT correlations shown in Figure 5B 
are small when considering the individual values (a mean correlation 
of approximately 0.0734  in the top  1,000 voxels condition of the 
ME-ICA preprocessing). However, when using these values as data 
themselves in a group-level analysis, the mean across participants is 
robustly different from zero. Therefore, we next characterized the 
effect sizes of the group-level effects. Each condition from Figure 5B 
is re-plotted in the top panel of Figure 6 as group-level effect sizes (the 

FIGURE 3

Single-participant example of the measured task effect and BOLD-RT correlation effect during picture naming. (A) Top row shows locations where the 
BOLD response was significantly above (below) zero in red (blue) colors p  <  0.005 (corrected by FDR to q  <  0.0193). Bottom row shows locations where 
the correlation between BOLD and RT across 95 correct trials is greater than (red colors) or <0 (blue colors) (p  <  0.05, uncorrected). As in prior studies 
of picture naming, prominent task-related activity is seen in occipito-temporal and frontal cortex. (B) Distribution of RTs across trials for this participant, 
with mean RT of 908.72  ms. (C) The first 100 TRs from a voxel in left frontal cortex highlighted by the green crosshairs in (A) (T–T coordinate −43, +12, 
+27). The x-axis shows TR number and the y-axis shows the BOLD responses in units of % signal change. The expected onsets of the BOLD peaks on 
individual trials are shown with vertical red lines at 4.4  s post stimulus-onset. On average, there is good correspondence visually between the expected 
and actual BOLD peaks on single trials. (D) The correlation of BOLD (% signal change) and RT (ms) on individual trials is shown for the highlighted voxel 
in (A) and (C). The scatterplot of individual trials reveals a positive correlation, with slower RTs associated with higher amplitude BOLD responses 
[r(93)  =  0.2848, p  =  0.0052].
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mean divided by the standard deviation of the single-participant 
values), with error bars representing the 95% confidence intervals 
obtained with bootstrap resampling (10,000 iterations). While the 
individual values of BOLD-RT correlation are quite weak (below 0.1), 
they are reliably above zero across participants, and their 
corresponding group-level effect sizes for the selective voxel masks 
have Cohen’s d’s of approximately 1.0 (the highest being the top 1,000 
voxel mask for ME-ICA preprocessing: mean d = 1.221; the lowest 
being the top 10,000 voxel mask for Single-Echo preprocessing: mean 
d = 0.9031). These higher effect sizes have a large impact on the sample 
sizes needed to detect an effect at p < 0.05 with 80% power (shown in 
the bottom panel of Figure  6). Using the formula for sample size 
calculation given by Lachin (1981) (see Materials and Methods), the 
needed sample size is fewer than 10 participants for all of the selective 
voxel masks and all three preprocessing conditions. If one instead 
considers a slightly more rigorous threshold of p < 0.05 with 90% 
power, the needed sample size only increases to 13 participants for 
these conditions.

These results suggest that our total sample size (N = 40) should 
be larger than needed to observe replications across independent 
subsamples of the data. We investigated this by dividing participants 
into two equal groups (N = 20  in each) by random assignment, 
conducting the tests separately in each subsample, correcting for 
multiple comparisons (for all p < 0.05, FDR q < 0.05), and then 
forming conjunctions of the results to detect replications across the 
subsamples. This process was then repeated over 100 total iterations 
to estimate the overall likelihood of replication in each voxel 
(ranging from 0.0 to 1.0). Replication likelihood across random 
subsamples is shown in Figure  7 for the three preprocessing 
conditions (effects of mean task response in the top panel and mean 
BOLD-RT correlation in the bottom panel). As anticipated from the 
results shown in Figure  6, all effects do indeed replicate, with 
similar extents observed for the mean effect of task across 
preprocessing conditions (red voxels indicate which voxels show 
replication across all 100 random iterations). More spatially 
extensive replication was observed for the mean effect of BOLD-RT 

FIGURE 4

Group-level effects of task response and BOLD-RT correlations by trial. In the top rows, the locations where the mean BOLD response to picture 
naming trials differed from zero across participants in the three preprocessing conditions (ME-ICA, Optimally Combined, and Single-Echo) are shown, 
with above-baseline responses shown in red and below-baseline (task-negative) responses shown in blue (p  <  0.005, q  <  0.0033 for all). Mean task-
responses were quite similar across all three preprocessing conditions. In the bottom rows, the locations where the group mean across the 
participant-level BOLD-RT correlations (calculated by trial) differs from zero (positive correlations in red, negative correlations in blue) are shown by 
preprocessing condition (p  <  0.005, q  <  0.0259 for all). The correlations were more spatially extensive and higher amplitude in the ME-ICA condition 
than in the Optimally Combined for Single-Echo conditions.
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correlations when using ME-ICA preprocessing than for the other 
two preprocessing conditions.

Effect of number of trials included on 
trial-level BOLD-RT correlations, effect 
sizes and needed sample sizes

The results discussed above highlight a counterintuitive situation. 
A statistical test conducted for each participant over trials should fail 
to be significant (much less corrected for multiple comparisons) due 
to small effect sizes (<0.1). However, when utilized as a datum rather 
than a statistical test, these quantities are reliably different from zero at 
the group-level. What this suggests is that while the values of the 
BOLD-RT correlations for each participant over trials are not strong, 
they are approaching stable values with the numbers of trials included 
in this experiment (on average 91.59 correct trials per participant). 

We investigated this issue further by analyzing different numbers of 
trials per participant (5, 10, 20, 30, 40, 50, and all trials) and 
recalculating the BOLD-RT correlations, group effect sizes, and 
needed sample sizes. Results for ME-ICA preprocessing and the 
top 1,000 voxel mask are shown in Figure 8. Surprisingly, the mean 
BOLD-RT correlation values are not strongly affected by the number 
of trials (Figure 8A). Indeed, there are no significant differences in the 
mean values among any combination of the trial conditions (p > 0.2 for 
all; see matrix of t-values to the right in Figure 8A). However, the 
variability of the values across participants decreases strongly with a 
greater number of trials included (as seen by the shrinking of the 95% 
confidence intervals around the means with increasing numbers of 
trials in Figure 8A). This decrease in variability is what drives larger 
effect sizes at the group level (Figure 8B). When considering effect sizes 
at the group level, the values of Cohen’s d improve from 0.1466 for 5 
trials up to 0.8022 for 50 trials (and 1.221 for all trials). Using bootstrap 
resampling to generate sampling distributions of the conditions (and 

FIGURE 5

BOLD-RT correlation magnitudes when selected on the orthogonal effect of mean task activation. (A) Voxel masks used to estimate BOLD-RT 
correlations are shown in the top row. The largest responses in the group mean BOLD response were selected at differing levels: the top 1,000 voxels 
(red), the top 5,000 voxels (yellow), and the top 10,000 voxels (green), with a whole-brain mask (cyan) for comparison. The voxel masks are overlapped 
such that the top 1,000 voxels are also part of the top 5,000 voxel mask and the top 10,000 voxels masks (and the top 5,000 voxel mask is part of the 
top 10,000 voxel mask). The bottom row shows where the group mean BOLD-RT correlations differ from zero (shown also in Figure 4). (B) The voxel 
masks in (A) were applied to the individual participants’ BOLD-RT correlation maps. The BOLD-RT correlations (Fisher’s z’-transformed Pearson r-
values, rz’) were averaged across all voxels in a given mask, with the mean across participants compared to zero (and among the conditions). BOLD-RT 
correlations were larger for voxels with larger amplitude task responses (top 1,000 versus top 5,000 or top 10,000 voxels) and larger for multi-echo 
acquisition than for single-echo (ME-ICA and Optimally combined larger than Single-Echo), with ME-ICA BOLD-RT correlations also greater than 
Optimally Combined within the multi-echo conditions. Error bars represent the 95% confidence limits of the group means.
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of the differences of the conditions; see matrix of z-values to the right 
in Figure 8B), we find that 5 trials is significantly weaker in effect size 
than all other conditions (p < 0.0225, q < 0.05 for all), and All trials is 
significantly greater in effect size than all other conditions (p < 0.0140, 
q < 0.05 for all). No other combinations of trial conditions survived 
correction for multiple comparisons. The corresponding needed 
sample sizes for these effect sizes are shown in Figure 8C. With only 5 
trials included (effect size of 0.1466), the expectation is that more than 
360 participants would be needed to find an effect at p < 0.05 and 80% 
power. This number decreases dramatically even by 10 trials (36 
participants) and is within the typical sample size of most studies in 
the field (approximately 25 participants) by 20–30 trials. Taken 
together, the results suggest that BOLD-RT correlations measured 
across trials, despite weak effect sizes for individual participants, can 
be robust and replicate when evaluated at the group level with 20–30 
participants and 30 or more trials per participant.

Discussion

In an experiment with 40 participants performing an object 
naming task, we have observed robust and replicable effects of task 

and of trial-level BOLD-RT correlations. ME-ICA denoising of multi-
echo data yielded the strongest BOLD-RT correlations in our 
experiment (Cohen’s d’s > 1.0), but strong effects (Cohen’s d’s of 
0.9–1.0) were observed even for more traditional single-echo data. The 
slow event-related design used here is undoubtedly an impactful 
choice, allowing the improved isolation of individual trial responses 
over more traditional rapid event-related designs—which are 
primarily concerned with estimating condition-level mean BOLD 
responses across trials. Without the ability to estimate trial-level 
effects, we  would be  restricted to calculating brain-behavior 
correlations across participants as in most previous studies, potentially 
more limited in effect sizes (estimates of 0.4–0.6, e.g., Vul et al., 2009). 
While the BOLD-RT correlation magnitudes for individual 
participants were observed to be weak (correlation effect sizes of <0.1), 
these values were reliably different from zero across participants—
permitting much larger effect sizes when considering the group-level 
means. As anticipated, this group-level reliability hinged on the 
number of trials included, with reasonably robust effects observable 
with 30 or more trials included (see Chen et al., 2022, for related 
discussion). With all correct trials included (more than 90 trials per 
participant on average), we estimated that as few as 10 participants 
might be needed in a sample to observe replicable results at p < 0.05. 

FIGURE 6

Effect sizes and estimated sample sizes needed to detect group-mean BOLD-RT correlations. The top panel shows the effect sizes (Cohen’s d) of the 
group-level effects that correspond to the mean of single-participant values shown in Figure 5B. Bootstrap resampling (10,000 iterations) permitted 
estimates of the confidence limits on the group-level effect sizes (errors bars represent the 95% confidence limits of the bootstrapped samples). While 
the individual participant BOLD-RT correlation effect sizes (by trials) are <0.1 for all conditions, the effect sizes of the corresponding group-mean 
effects are approximately 1.0. The bottom panel shows the estimates of the sample sizes needed to detect the group-level effects (from top panel) at 
p  <  0.05 with 80% power. All of the selective voxel conditions are estimated to require 10 participants or fewer to find effects.
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This is not to suggest that small sample sizes will suffice for all such 
effects; the needed sample size for a given study will depend on the 
particular effect sizes involved and the desired level of significance 
and power.

The conclusions of Marek et al. (2022) that BWAS studies will 
likely require thousands of participants to detect reliable findings has 
predictably set off intense discussion within the field of cognitive 
neuroscience about whether the current state of affairs is really so dire 
(e.g., Bandettini et  al., 2022; Gratton et  al., 2022; Liu et  al., 2023; 
Rosenberg and Finn, 2022; Botvinik-Nezer and Wager, 2022; Spisak 
et al., 2023; Tervo-Clemmens et al., 2023; Westlin et al., 2023; Wu 
et  al., 2022). In the current paper, we  have detailed a task-based 
alternative to detecting brain-behavior relationships that primarily 
utilizes inter-trial variability in the BOLD response and behavior 
rather than inter-individual variability. Taking this approach in the 
current study turned trial-level effect sizes similar to what Marek et al. 
(2022) reported (< 0.1) into group-level effect sizes that are an order 
of magnitude larger (1.0 or more). The savings in sample size to 
produce replicable findings is dramatic, going from thousands to tens. 
For domains of cognition that can be studied with impulse-response 
type tasks with fMRI (stimulus duration of approximately 1 s or less, 
followed by an immediate response), this type of design provides a 
good option for making quick progress in individual labs. It is also 

worth revisiting the task-based approach reviewed by Vul et al. (2009) 
(see also Rousselet and Pernet, 2012; Yarkoni and Braver, 2010) that 
utilizes inter-individual variability in task activation and behavior. If 
unbiased effect sizes are actually in the range of 0.4–0.6, sample sizes 
of 30–40 participants may be sufficient to detect replicable effects. In 
one of our recent studies (Gotts et  al., 2021), we  correlated the 
magnitude of repetition-related BOLD decrease (referred to as 
“repetition suppression”) in left frontal cortex with the magnitude of 
behavioral repetition priming across 60 participants. This particular 
analysis was conducted as a replication of prior studies (e.g., Dobbins 
et al., 2004: N = 16 participants; Horner and Henson, 2008: N = 18; 
Maccotta and Buckner, 2004: N = 54), and indeed, it did replicate—
despite utilizing inter-individual variability in BOLD and RT 
differences (OLD vs. NEW stimuli) [r(58) = 0.367, p < 0.004].

We observed larger BOLD-RT correlations and group-level effect 
sizes using ME-ICA processing. This adds another data point in favor 
or utilizing multi-echo acquisitions, and using ME-ICA, in particular 
(see also Beckers et al., 2023; Kundu et al., 2013; Gilmore et al., 2022; 
Reddy et al., 2024; Steel et al., 2022). The advantage in using ME-ICA 
here likely results from the removal of non-BOLD variation from the 
total variation, improving the signal-to-noise ratio (SNR) of the 
retained signal and strengthening the BOLD-RT correlation. Similarly, 
the likely benefit of the Optimally Combined preprocessing over 

FIGURE 7

Replication of mean task effects and group-mean BOLD-RT correlation effects for the three preprocessing conditions across random independent 
subsamples of participants (the total sample of 40 participants randomly divided into 2 subsamples of 20 participants each, repeated 100 times). The 
top rows show the locations where the mean BOLD response during picture naming replicates across subsamples of participants (p  <  0.05, q  <  0.05 for 
each subsample). The color scale indicates the average likelihood of replication across the 100 random iterations, with red voxels marking locations 
with a replication likelihood of 1.0. The spatial extent of replication was similar across the three preprocessing conditions for the mean BOLD response 
to task. The bottom rows show the locations where the group mean of the participant-level BOLD-RT correlations differs from zero and replicates 
across subsamples (p  <  0.05, q  <  0.05 for each subsample). There was a greater spatial extent of replication for ME-ICA preprocessing relative to the 
other two conditions.
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FIGURE 8

The effect of number of trials on BOLD-RT correlations, effect sizes, and needed sample sizes. (A) The left panel shows the mean of the participant-
level BOLD-RT correlations for the ME-ICA preprocessing condition (top 1,000 voxel mask) with different numbers of trials included per participant 
(ranging from 5 trials to All trials, on average  >  90 trials per participant). Error bars reflect the 95% confidence limits on the means. The right panel 
shows that the mean BOLD-RT correlation value across participants does not differ significantly with different numbers of trials included (t-values 
reflect one-sample t-tests on the difference of the condition with the larger number of trials minus the smaller number of trials; all values non-
significant). Rather, the variability around the mean shrinks with more trials included. (B) Due to the shrinking variability of the individual participant-
level values around the mean with larger numbers of trials included, the effect sizes of the corresponding group-level effects increase with a greater 
number of trials. In the left panel, the error bars reflect the 95% confidence intervals of the bootstrapped samples (10,000 iterations). The right panel 
shows that the trial conditions do differ significantly in the effect size estimates, with 5 trials yielding effect sizes smaller than all other conditions and 
All trials yielding effect sizes larger than all other conditions (p  <  0.0225, q  <  0.05 for all; yellow squares denote trial condition combinations that differ 
and that survive FDR-correction over all comparisons). The p-values of the condition differences estimated with bootstrap resampling were converted 
to z-values (shown in the matrix), indicating the z-test of the condition with the larger number of trials minus the condition with the smaller number of 
trials. (C) The mean effect sizes from (B) were used to estimate the needed sample sizes to detect an effect to p  <  0.05 at 80% power. For 5 trials, more 
than 360 participants would be needed to detect an effect, whereas this drops to fewer than 40 participants for 10 trials, fewer than 30 participants for 
20 trials, and down to fewer than 10 participants when using All trials (>90 per participant).
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Single-Echo is the reduction of thermal noise that occurs when 
averaging across the three echoes at each TR. At a field strength of 3 
Tesla with 3-mm isometric voxel resolution, thermal noise still makes 
up a sizable portion of the time series SNR (e.g., Triantafyllou et al., 
2005), and reducing it through local averaging (either temporally for 
multi-echo or spatially for single-echo acquisitions) should lead to 
larger brain-behavior correlations as observed here. Given the 
reduction of thermal noise when using multi-echo acquisitions 
without the need for spatial averaging, an added advantage of multi-
echo protocols is improved spatial localization within 
individual participants.

While we do not have an explicit estimate in the current study 
of test–retest reliability of single-trial BOLD responses, they 
appear to have sufficient reliability that detection of BOLD-RT 
correlations is possible—despite the poor reliability of individual 
RTs (approximately 0.17). This suggests that slow event-related 
designs have a notable advantage over rapid-event related designs, 
namely that both the mean of individual conditions can 
be  estimated as well as the values of individual trials. As can 
be  seen from the single-participant example in Figure  3C, the 
peaks of individual trial responses are visible by eye without 
complex statistical analyses (see also Bandettini and Cox, 2000). 
This is the case in the current study, even without requiring 
interstimulus intervals greater than or equal to the full duration 
of the BOLD response (approximately 16 s); the average 
interstimulus interval in the current study was 9.6 s (minimum 
6.3 s, maximum 12.9 s). A wide range of cognitive tasks can 
be conducted using this range of trial timings without participants 
losing focus. The loss in number of stimulus presentations when 
compared to rapid event-related designs is also mitigated by the 
fact that no additional baseline periods are needed in slow event-
related designs (whereas approximately 30% of each run duration 
in rapid event-related designs are reserved for baseline periods). 
A final added advantage of this type of slow event-related task 
design is that it can provide a way to more cleanly estimate task-
based functional connectivity in fMRI in a manner that is less 
confounded by the local stimulus response itself. Recently, Gotts 
et al. (2021) in the domain of repetition priming in picture naming 
showed how to use trial covariation as a measure of functional 
connectivity separate from the mean BOLD response to the task. 
By eliminating the up-and-down contour of the evoked response 
and focusing on the peak response to each trial, one can evaluate 
the covariation of individual trial amplitudes across pairs of voxels 
or brain regions, investigating differences in functional and/or 
effective connectivity for different stimulus conditions (e.g., OLD 
vs. NEW), as well as correlating task-based connectivity measures 
with behavior.

The current approach is limited to investigating brain-
behavior correlations using the BOLD response in fMRI. This 
approach has the advantage of whole-brain coverage and good 
spatial resolution. However, the temporal resolution is relatively 
poor, and the averaging inherent in the BOLD response does not 
allow unambiguous estimates of the underlying neural activity. 
Combining this approach with a method like EEG that has the 
temporal resolution of milliseconds (e.g., simultaneous fMRI-
EEG) may help to undercover additional features of brain-
behavior relationships that are not possible to study with either 
neuroimaging method used in isolation. The behavioral task 

examined here is also relatively simple. More complex tasks that 
are more extended in time will likely require more sophisticated 
analyses (for example, see Gilmore et  al., 2021; Jasmin et  al., 
2023). In these situations, the trial-level approach may 
be less applicable.

How could we  extend the current approach to a richer 
investigation of behavior? Firstly, cognitive psychology has utilized 
response time and accuracy as primary measures of behavioral 
variability in tasks since the 1970s. These measures are themselves 
demonstrably rich. However, one can think of alternative ways to 
gain further insights. For example, if one were to norm a stimulus 
set on a variety of behavioral measures in an independent set of 
participants, one could then seek trial-level correlations with the 
BOLD response using these “external” measures of behavior per 
trial. Here, we  could have used lexical frequency of the object 
names (e.g., Kucera and Francis, 1967), familiarity, or visual 
complexity (e.g., Snodgrass and Vanderwart, 1980) as trial-level 
measures to correlate with our single-trial BOLD responses rather 
than the simultaneously acquired response times. The role of the 
naming task then would be to force participants to deeply process 
and engage with the stimuli such that these alternate behavioral 
facets might be expressed in a subset of the brain regions detected 
in the task overall.
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