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Introduction: Motor Imagery (MI) Electroencephalography (EEG) signals are

non-stationary and dynamic physiological signals which have low signal-

to-noise ratio. Hence, it is di�cult to achieve high classification accuracy.

Although various machine learning methods have already proven useful to

that e�ect, the use of many features and ine�ective EEG channels often

leads to a complex structure of classifier algorithms. State-of-the-art studies

were interested in improving classification performance with complex feature

extraction and classification methods by neglecting detailed EEG channel and

feature investigation in predicting MI tasks from EEGs. Here, we investigate the

e�ects of the statistically significant feature selection method on four di�erent

feature domains (time-domain, frequency-domain, time-frequency domain, and

non-linear domain) and their two di�erent combinations to reduce the number

of features and classify MI-EEG features by comparing low-dimensional matrices

with well-known machine learning algorithms.

Methods: Our main goal is not to find the best classifier performance but to

perform feature and channel investigation in MI task classification. Therefore, the

detailed investigation of the e�ect of EEG channels and features is implemented

using a statistically significant feature distribution on 22 EEG channels for each

feature set separately. We used the BCI Competition IV Dataset IIa and 288

samples per person. A total of 1,364 MI-EEG features were analyzed in this study.

We tested nine distinct classifiers: Decision tree, Discriminant analysis, Logistic

regression, Naive Bayes, Support vector machine, k-Nearest neighbor, Ensemble

learning, Neural networks, and Kernel approximation.

Results: Among all feature sets considered, classifications performed with non-

linear and combined feature sets resulted in a maximum accuracy of 63.04% and

47.36% for binary and multiple MI task predictions, respectively. The ensemble

learning classifier achieved the maximum accuracy in almost all feature sets for

binary and multiple MI task classifications.

Discussion: Our research thus shows that the statistically significant feature-

based feature selection method significantly improves the classification

performance with fewer features in almost all feature sets, enabling detailed and

e�ective EEG channel and feature investigation.

KEYWORDS

brain-computer interface, electroencephalogram, feature and channel investigation,

feature selection, machine learning, motor imagery task classification
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1 Introduction

Brain-Computer Interface (BCI) is a particularly created

system to provide a direct path between the human brain and

a computer-aided device. Its main objective is the facilitation of

daily activities for specific individuals with severe motor disabilities

due to various neurodegenerative disorders like amyotrophic lateral

sclerosis, brain stem stroke, spinal cord injury, and various other

diseases (Wolpaw, 2002). In the process of a BCI system, the

main goal is the determination of the intent of an individual

from various electrophysiological signals. Fundamentally, many

BCI systems design a 5-stage algorithm, the stages of which are

data acquisition, data preprocessing, feature extraction, feature

selection, classification and performance evaluation (Isler, 2009;

Degirmenci et al., 2023).

The first stage of such systems is called data acquisition. At

this stage, data representing brain activities are collected. Various

neuroimaging techniques such as Electroencephalography

(EEG), functional Magnetic Resonance Imaging (fMRI),

Magnetoencephalography (MEG), Positron Emission Tomography

(PET), and optical imaging are available to collect brain activity

in the literature (Sayilgan et al., 2022). However, EEG is the

most popular technique among the different modalities due to

its various advantages, especially ease of use, cheaper equipment,

non-invasiveness, reliability, and disposability. Therefore, EEG

signals have been mainly used to detect brain activities for BCI

research studies (Chen et al., 2019; Sayilgan et al., 2022).

In prosthetic device design, various challenges were addressed

in the literature. Designing reliable, functional, robust, and cost-

effective BCIs as prosthetic systems is crucial for user acceptance.

Many EEG-based BCI systems were designed to process various

control signals (Wang et al., 2006; Sayilgan et al., 2022) and

enable paralyzed patients to control a prosthetic device. Among

these control signals, Motor Imagery (MI) is a well-structured

methodology for BCI control because it induces more patterns

of Event-Related Desynchronization/Synchronization (ERD/ERS)

in various frequency bands. The distinctive patterns in MI-

EEG signals enable the differentiation of multiple MI tasks.

Consequently, theMI-EEG signal classification has become amajor

focus in BCI research.

In recent decades, various pattern recognition methods have

been proposed to identify specific patterns within EEG-based

signals for MI tasks. Machine learning, as one of those methods

defines pattern recognition as a process consisting of the following

stages: data collection, feature extraction, feature selection, and

classification. In this respect, various feature extraction, feature

selection, and machine learning algorithmmethods have been used

to analyze EEG signals following the data acquisition stage. Feature

extraction, channel selection, and feature selection methods act as

significant sub-components of MI-based BCI systems (Bashashati

et al., 2007).

The feature extraction stage, which is the first crucial sub-

component, determines a set of EEG signal features for effective

discrimination of multiple MI tasks. The extracted features for MI-

EEG signals analysis can be divided into the following categories:

(i) time-domain features such as such as mean, mean absolute

value, variance and the Hjorth parameters (Vidaurre et al., 2009;

Sayilgan et al., 2021a), (ii) frequency-domain features such as

the frequency of maximum spectral power, and the signal power

within an extracted feature band using Fourier Transform (FT) and

Power Spectral Density (PSD) (Mensh et al., 2004; Djamal et al.,

2017), (iii) time-frequency domain features using various time-

frequency representation algorithms such as Short-Time Fourier

Transform (STFT) and Wavelet Transform (WT) (Ha and Jeong,

2019; Chaudhary et al., 2020), (iv) spatial features such as Common

Spatial Patterns (CSP) and their different types, (Blanco-Diaz

et al., 2022; Ang et al., 2012; Samek et al., 2013; Wu et al.,

2014), and (v) various transformation-based features such as

Empirical Mode Decomposition (EMD) and its various versions,

and Intrinsic Time-Scale Decomposition (ITD) (Mwata-Velu et al.,

2021; Degirmenci et al., 2024).

The second stage is called feature selection. The goal of feature

selection is to avoid the curse of dimensionality and enable the

design of cost-effective BCI systems. Feature selection methods

have been used to extract the most informative and discriminative

features and improve classifier performance for MI-based BCI

systems. Among the various feature selection methods, Genetic

Algorithms (GA) and Principal Component Analysis (PCA) have

substantially been employed and implemented in the development

of BCI systems (Bashashati et al., 2007; Mousa et al., 2016). Besides

these methods, several other feature selection methods have also

been used in BCI systems (Isler, 2009; Degirmenci et al., 2023;

Yesilkaya et al., 2023).

In the aforementioned MI task classification studies, various

pattern recognition methods have produced successful results.

Consequently, various feature extraction, feature selection, and

classification algorithms have been proposed for recognizing

patterns in EEG signals. The literature studies show that it is

important to utilize a combination of different types of feature

extraction methods, feature selection methods, and machine

learning algorithms and investigate them to design an efficient and

cost-effective MI-based BCI system. Exploring the most effective

combination of these methods through performance comparisons

is the subtle aspect as it is crucial for the same purpose. The detailed

comparison of different feature extraction methods together with

different combinations of feature selection methods and different

machine learning algorithms is relevant to explore effective

combination of these methods. Additionally, studying the impact

of the channel selection process is an important analysis for MI-

based BCI systems. It is thought that, the analysis of effectiveness

of different features from different feature categories and the

effectiveness of different EEG channels will greatly contribute to

this research area.

1.1 Related works

Recent studies have proposed or investigated various EEG

features, feature selection methods, and machine learning

algorithms to analyze MI-EEG signals.

Verma et al. (2014) conducted a study in 2014 by evaluating

Discrete Wavelet Transform (DWT) and cross-correlation based

features and implementing various classification algorithms to find

the best feature extraction method and classification algorithm.
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They used five different machine learning algorithms to classify

their feature sets. They achieved an average accuracy of 99.40%

using DWT and Least-Square Support Vector Machine (LS-SVM)

algorithm for binary-class extremity movement task classification

on Dataset IVa of BCI competition III.

Lotte et al. (2009) presented subject-independent and subject-

dependent BCI design that proposed a binary-class extremity

movement task classification using the BCI Competition IV dataset

IIa. They used the Filter Bank Common Spatial Pattern (FBCSP)

algorithm by providing multi-resolution frequency decomposition

and linear classification algorithms. Using these methods, they

achieved the highest accuracy of 70.99% and 81.56% for the subject-

independent and subject-dependent BCI design, respectively.

In 2020, Tabar and Halici (2016) proposed a deep learning-

based approach using BCI Competition IV dataset 2b for binary-

class extremity movement task classification. EEG signals were

converted into 2D time-frequency maps using STFT. These feature

maps were passed as inputs to Convolutional Neural Networks

(CNN) architecture. They concluded that their proposed methods

achieved a high accuracy of 77.60% for binary classification.

In 2017, Djamal et al. (2017) recommended a binary-class

extremity movement task classification study using Fast Fourier

Transform (FFT) and Learning Vector Quantization Network

(LVQN). They only used one EEG channel (FP1 EEG channel)

for EEG signal acquisition and signal processing. They obtained

accuracy value of 70.00% with the FFT-based method.

In 2020, Molla et al. (2020) performed binary-class extremity

movement task classification using the CSP method and

Neighborhood Component Analysis (NCA)-based feature

selection method. Their proposed methods using the Support

Vector Machine (SVM) algorithm achieved average accuracy

of 81.52% for subject-dependent binary classification on BCI

Competition IV dataset 2b.

In 2023, Kabir et al. (2023) proposed binary-class extremity

movement classification using CSP method for feature extraction

stage. On the other hand, they examined the effects of different

feature selection methods such as Correlation-based Feature

Selection (CFS), Minimum Redundancy and Maximum Relevance

(mRMR), and multi-Subspace Randomization and Collaboration-

based unsupervised Feature Selection (SRCFS). They demonstrated

the superiority of their proposed methods by using the SRCFS

method and the Linear Discriminant Analysis (LDA) algorithm.

Gaur et al. (2015) presented an EMD-based approach to classify

two different extremity movement tasks from BCI Competition IV

dataset IIa. They selected and used only three channels, namely C3,

C4, and/or Cz channels, for their proposed methods. Using these

selected channels and the EMD algorithm, they achieved an average

success of 70.20% with the LDA algorithm.

Mohamed et al. (2018) conducted a four-stage extremity

movement task classification study using the ITD algorithm

and Artificial Neural Networks (ANNs) algorithm. Using

their proposed method, they achieved an average success

of 92.20%.

In 2020, Dong et al. (2020) proposed a multi-class extremity

movement task classification study using a novel hybrid kernel

function relevance vector machine that combined the Gaussian

kernel function and the polynomial kernel function. They used

Phase Space Reconstruction (PSR) to project EEG data from

the time domain into high-dimensional phase space. Then, they

applied “One vs. One” Common Spatial Pattern (OVO-CSP)

method to evaluate the characteristics of the Phase Space Common

Spatial Pattern (PSCSP) features. These features were evaluated

with their proposed hybrid structure. They achieved an average

accuracy of 74.39% using Independent Component Analysis (ICA),

PSR, and CSP methods on BCI Competition IV dataset IIa.

In 2024, Amiri et al. (2024) proposed channel selection

using deep learning for multi-class extremity movement task

classification. They used a flat CNN architecture for their feature

extraction, channel selection, and classification process. They

compared their channel selection method with different feature

selection methods. According to their experimental results, they

achieved 72.01% accuracy with their proposed methods and this

accuracy value was higher than the success of other studies based

on channel.

As outlined above, there exist many pattern recognition

methods that were applied for the classification of extremity

movement task. Majority of the proposed studies implement a

complex classification algorithm that is unsuccessfully combined

with all extracted features or selected features. The methods

used generate a computational effort during classification and the

classification performance remains at low values despite the load.

Because these studies were not planned with detailed feature and

effective channel analyses, on the contrary, they were designed

and conducted to test the classification performance with more

complex approaches (e.g., deep learning-based feature extraction

and classification methods, and time-frequency representation

based feature extraction methods).

To date, the effect of channel selection together with feature

selection have not been investigated in literature. In this study,

we used various MI-EEG features from different feature domains,

such as time-domain, frequency domain, time-frequency domain,

and non-linear domain of EEG signals, to analyze the success of

feature extraction methods comparatively. We investigated four

different feature sets and their two different combination feature

sets. Additionally, we investigated the effects of the statistical

significance-based feature selection method on each extracted

feature set separately. One of the most important steps of this

study is that it is the first study to apply detailed features and

channel activity analysis, which also provides a different and new

perspective on MI task classification studies. Feature and channel

analysis were performed using statistically significant feature

distribution, which represent the selected statistically significant

feature distribution among 22 EEG channels for each feature

set (time-domain, frequency-domain, time-frequency domain,

and non-linear domain). We used nine different classification

algorithms to reveal the effect of these methods. The classification

was carried out using both all features and selected features to

investigate the effect of the statistically significant-based feature

selection method in this study.

1.2 Contributions

The primary contributions of this study are as follows:
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• Various feature domains, including time, frequency, time-

frequency, and non-linear domains, were implemented to the

feature extraction process, and the effects of these feature sets

were investigated for binary-class and multi-class extremity

movement task classifications separately.

• The effect of the statistical significance-based feature selection

method was investigated for each feature set on binary-class

and multi-class extremity movement task classifications.

• Feature and channel analysis were implemented using

channel-based statistically significant feature distribution

among 22 EEG channels for binary-class and multi-class

extremity movement task classifications.

• To show the effect of the statistically significant feature

selection method we comparatively evaluated nine different

classifier algorithms using six different feature sets of all

features.

Finally, it must also be noted that this is the first

study where the detailed feature and channel analysis

are implemented for each feature set in addition to the

investigation of the effects of different feature domains

on extremity movement task classification, to the best of

our knowledge.

2 Materials and methods

The design of this study includes five stages, which were

performed in the given order: data acquisition, feature extraction,

feature selection, classification, and performance evaluation. The

detailed background regarding each stage is provided in the

respective sub-headings. The visual workflow of the multi-class

extremity movement classification study is shown in Figure 1 with

its five stages. Furthermore, in this study, motor imagery tasks

of the right and left hands were differentiated for binary-class

extremity movement classification.

2.1 Data acquisition and dataset

As the source of data, BCI Competition IV Dataset IIa, which is

a publicly available dataset for motor imagery EEG signal analysis,

is adopted for binary and multiple extremity movement task

classifications (Brunner et al., 2008). It consists of 22-channel EEG

data that were recorded from 9 subjects (4 women and 5 men).

The sampling rate was set at 250 Hz and EEG data were recorded

via 22 Ag/AgCl electrodes. While recording of EEG signals, two

filters were applied, i.e., a band pass filter operating between 0.5 Hz

and 100 Hz and an additional 50 Hz notch filter, which is used to

suppress line noise (Yan et al., 2021). Acquisition of EEG signals

occurred during 4 MI tasks. Therefore, this dataset includes data

for 4 different MI tasks, which are the imagination of movement

of the left hand, right hand, feet, and tongue. The experiment

is scheduled as two different sessions, each of which include six

runs executed in two days. There are 12 trials available for each

motor imagery task in a run, giving a total of 48 trials available

for each run. Moreover, 288 trials were conducted after 6 runs

for each subject. Therefore, cue-based motor imagery signals were

recorded by imagining movements of four different extremity. The

corresponding 3 s motor imagery EEG signals were segmented

from long EEG signals for each trial before feature extraction and

in further stages.

2.2 Feature extraction

Within the scope of this study, time-domain, frequency-

domain, time-frequency domain, and non-linear features were

calculated by utilizing 22-channel EEG signals to provide feature

sets after extraction of MI EEG segments.

• Time-domain feature set: In the time-domain feature set,

24 different time-domain features were extracted using the

directly original field of the EEG signals. These time-domain

features are based on the amplitude and statistical changes of

the EEG signal (Yesilkaya et al., 2023; Degirmenci et al., 2023).

• Frequency-domain feature set: The frequency-domain

feature set was created using FT. Frequency-domain features

were extracted based on the frequency-domain representation

of the MI-EEG signal. The different EEG sub-bands, which

are delta (δ), theta (θ), alpha (α), beta (β), and gamma

(γ ), were embedded in frequency-domain of original EEG

signals. These EEG sub-bands were extracted from frequency

representation of EEG segments by utilizing the Fast Fourier

transform. Following the extraction of EEG sub-bands,

the relevant and distinctive MI frequency characteristics

were computed based on the energy, variance, and entropy

values of different EEG sub-bands for each EEG segment.

These frequency-domain features provide information about

how power, variance, and entropy (irregularity) change in

definite corresponding frequency bands. Their mathematical

evaluations are detailed as follows (Sayilgan et al., 2021a;

Degirmenci et al., 2023):

Energyf =
M∑

k=1

y(k)2 (1)

Variancef =
1

M − 1
·

M∑

k=1

(yk − y)2 (2)

Entropyf =
1

log(M)
·

M∑

k=1

P(y(k))log(P(y(k)) (3)

where f denotes the type of EEG sub-bands,M denotes the

maximum frequency, and y(k) denotes the FT of a real discrete

time EEG segment. In the formula, “y” indicates the average of

the “y” signal. The probability of the EEG segment, which is in

the corresponding frequency band, is denoted as P(y(i)).

• Time-frequency domain feature set: A time-frequency

domain feature set was obtained using Wavelet Transform

(WT). Using this algorithm, EEG signals were divided into

frequency bands (δ, θ , α, β , and γ ). Then, these frequency

bands’ energy, variance, and entropy values were calculated

as time-frequency domain features. DWT utilizes both time

and frequency domain information of EEG signals, and

its several filters and bandwidths provide multi-resolution
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FIGURE 1

The flowchart of the suggested multi-class extremity movement classification study.

analysis (Sayilgan et al., 2021a). It can be utilized as a

dual Finite-Impulse Response filter. Utilizing the frequency

responses of these filters, high-frequency and low-frequency

components of EEG signals are decomposed from EEG

signals. The identical wavelet coefficients are selected in both

Low-Pass (LP) and High-Pass (HP) filters for the multi-

resolution algorithm of WT (Gandhi et al., 2011). The

scaling parameter, defining the oscillatory frequency and

the length of the wavelet, is associated with the coefficients

of LP filter, while the wavelet function is associated with

the coefficients of HP filter. The outputs of these filters

are indicated as the approximate (a) coefficients and the

detailed (d) coefficients, respectively. The original EEG time

series are completely decomposed as (a) and (d) coefficients

based on the defined decomposition level. The subsets of

the corresponding coefficients of decomposition levels are

included depending on the frequency domain of EEG sub-

bands for the decomposition of five EEG frequency bands.

In the extraction of the time-frequency domain feature

set, the Wavelet packet decomposition is utilized, and the

decomposition of the EEG frequency bands was performed

at seven decomposition level for 250 Hz sampling frequency

of EEG time series (Degirmenci et al., 2023). The “Haar”

wavelet function is selected for Wavelet packet decomposition

application in the feature extraction process (Sayilgan et al.,

2021a; Degirmenci et al., 2023). Following the execution of this

algorithm, five different EEG sub-bands were extracted from

EEG signals and their energy, variance, and entropy values

evaluated as features. According to the followingmathematical

formulations, the energy of each decomposition level was

evaluated (Gandhi et al., 2011):

Energydi =
N∑

j=1

|dij|2, i = 1, 2, 3, ..., l (4)

Energyai =
N∑

j=1

|aij|2, i = 1, 2, 3, ..., l (5)

where the detail (dij) and approximate (aij) coefficients

indicate the corresponding subsets for each frequency band.

The wavelet decomposition level, which is defined in [1, l], is

indicated as i = 1,2,3, ...,l. N represents the number of d and

a coefficients.

The mathematical formula for computing variance of each

decomposition level is defined as follows (Gandhi et al., 2011):

Variancei =
1

N − 1
·

N∑

j=1

(dij − µi)
2, i = 1, 2, 3, ..., l

µi =
1

N
·

N∑

j=1

dij, i = 1, 2, 3, ..., l (6)

where µi denotes the mean of the decomposition level.
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The entropy of each decomposition level is evaluated

based on the following equation (Isler, 2009):

Entropyi =
N∑

j=1

dij
2log(dij

2), i = 1, 2, 3, ..., l (7)

• Non-linear feature set: In non-linear feature set, non-

linear parameters were calculated using Poincare plots of

EEG time series. Poincare plot measures provide the non-

linear dynamics that are embedded in MI-EEG signals.

These measures were adopted and computed in this study

considering their clinical ability demonstrated in similar

studies (Isler, 2009; Narin et al., 2014). A Poincare plot is

a simple 2-dimensional graph where each EEG sample (xi)

is located on the x-axis and the next EEG sample (xi+lag) is

located on the y-axis. After the indication of xi and xi+lag

intervals, Poincare plots were obtained for each EEG signal.

Thereafter, an ideal ellipse was applied to the graph of the

Poincare plot, and the standard deviation of the distance of

the points on these plots denoting the width (SD1) and length

(SD2) of the ellipse (Brennan et al., 2001) were evaluated.

The mathematical formulation of these measures is detailed

as follows (Isler, 2009):

xi = (x0, x1, ..., xN−m) (8)

xi+lag = (xm, xm+1, ..., xN) (9)

xa =
xi+lag − xi√

2

xb =
xi+lag + xi√

2
(10)

SD1 = SD(xa)

SD2 = SD(xb) (11)

In the Equations 8, 9, the EEG sample data and its

next interval EEG data are indicated as xi and xi+lag ,

respectively. SD1 and SD2 measures were evaluated using

defined EEG intervals based on the Equations 10, 11. The

standard deviation of the defined time interval vectors is

denoted as SD in Equation 11. Also, the selected intervals were

defined based on the m-lagged Poincare plot measurements.

lag=m was defined, and m was identified as 1 and 9

for the interval-defining process. The measures were also

calculated for the lag=9 condition due to its positive outcomes

from our previous study (Degirmenci et al., 2022a). The

designed non-linear feature set, which lag=9 condition

provided a relevant and effective feature set for MI-EEG

signals (Degirmenci et al., 2022a). Therefore, (SD1) and

(SD2) measures were calculated for each lag=m condition.

Additionally, the products (SD1SD2) and the rates (SD1/SD2)

were calculated to examine the relations of (SD1) and (SD2).

Four Poincare plot measures were calculated for each lag=m

condition. In the non-linear feature set, a total of 8 Poincare

plot measures were calculated from each EEG sample for two

different lag=m conditions.

2.3 Statistical significance-based feature
selection

Feature selection reduces the computational load by selecting

effective and relevant features for classification (Narin et al., 2014).

Selection of these features and application of them for classification

improve the classification performances (Yesilkaya et al., 2023).

There are several feature selection methods such as recursive

feature selection (Al Ajrawi et al., 2024), LASSO regression (Huang

et al., 2024; Muthukrishnan and Rohini, 2016), Correlation-based

Feature Selection (CFS) (Kabir et al., 2023), Maximum Relevance

Minimum Redundancy (MRMR) (Kabir et al., 2023), statistical

significance-based feature selection (Bulut et al., 2022; Degirmenci

et al., 2022b, 2023), and Genetic Algorithm (GA) (Ramos et al.,

2016) for MI task classification in BCI research area. In this

study, we preferred statistical significance-based feature selection

methods since it is an easy-to-use method and its effectiveness

has been proven in previous studies (Degirmenci et al., 2022b,

2023).

In this study, a total of four different feature sets were obtained,

and the statistical significance-based feature selection process

was performed for each of them separately. Additionally, motor

imagery EEG signal classification was performed for both binary-

class and multi-class extremity movement task classifications in

this study. Thus, two different statistical significance based feature

selection methods were employed to determine relevant and

discriminative features. These methods are the independent t-test

and one-way ANalysis Of VAriance (ANOVA), which are used for

binary-class and multi-class extremity movement classifications,

respectively. The class number of preferred classifications has an

effect on the selection of the types of proposed feature selection

method. The independent t-test was applied in feature selection

of binary extremity movement classification to determine the

relevant features of all provided feature sets. This method is

mostly preferred to appear significance of differences between

measures of two definite groups (Degirmenci et al., 2023; Narin

et al., 2014). On the other hand, the ANOVA test, which is

commonly utilized to show whether there is a difference between

the means in states where there are two or more groups,

was applied in multi-class extremity movement classification

to determine the relevant features. Using these methods, p-

values, which indicate the statistical significance of features,

were calculated first. Then, the statistically significant features

were determined considering the statistical significance level

(α) equal to 0.05 in this study. Therefore, the effect of the

independent t-test and ANOVA test was investigated on four

different feature sets. To investigate and prove the effectiveness

of these tests, the results of classifications performed using all

extracted features and selected statistically significant features

are compared.

2.4 Classification

In this study, EEG features in different feature sets have been

classified by utilizing nine well-known classification algorithms.

The selected classifiers and interrelated algorithms were applied by
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using the Classification Learner Toolbox, which is an element of

Statistics and Machine Learning Toolbox available in the Matlab

software package (Matlab, 2023). The technical information about

corresponding machine learning algorithms is described below:

• Decision tree: Decision Tree (DT) is a type of common

machine learning algorithm that creates and runs over

structures consisting of root nodes, child nodes (e.g., leaf

nodes), and branches (i.e., edges). The name of the classifier

was inspired by its tree-like structure. It is a fast classification

method and separates the data into various subgroups. In its

structure, a feature is represented with each internal node of

the tree; the feature combinations that result in classifications

are indicated as branches of the tree, and class labels are

indicated as leaves of the tree. The class of samples is predicted

in the decision tree structure by evaluating from root to leaf

(Tzallas et al., 2009; Sharma et al., 2022). The decision tree

classifiers named the fine, medium, and coarse algorithms

were employed in the classification process of this study.

• Discriminant analysis: The Discriminant Analysis (DA)

classifier is one of the pattern recognition methods, and

its main objective is to correctly separate the independent

variables in the data into homogeneous groups (Chakrabarti

et al., 2003). In this study, for the purpose of classification,

linear and Quadratic Discriminant Analysis (QDA)

algorithms were included in the study design. Among

these classifiers, the LDA algorithm defines the group

elements and estimates the probability that each element

belongs to different groups. Then, the sample is assigned

to the group with the highest probability result. It supposes

that the predictors have a Gaussian distribution and are

normally distributed. It also creates a linear discrimination

function that assumes that different classes have class-specific

elements and equal variance/covariance. Contrary to the LDA

algorithm’s assumption, variance/covariance equality is not

accepted in the Quadratic Discriminant Analysis algorithm.

In this algorithm, the covariance matrix may be different for

each class category. Hence, it constructs the discrimination

function to be quadratic (Lotte et al., 2018; Hart et al., 2000).

• Logistic regression: Logistic Regression (LR) is a commonly

applied machine learning algorithm for binary classification.

The fundamental process of this algorithm is based on

representative of the probability of an event. Binary

classification results are generated as outputs. In the technique

of this algorithm, the logistic function, which is also known

as the sigmoid function, is adapted to the corresponding data

using probability (Tzallas et al., 2009). It maps the data points

regarding a line, and all log-odds values are determined. These

values are expressed as inputs and transformed to probability

values. These calculated values are evaluated as the algorithm’s

outputs. Therefore, this input-output conversion is important

for fitting the sigmoid function. In the classification process

of this algorithm, the various line rotations are defined and

evaluated via calculating, logging, and summing conditional

probabilities for all steps. Then, the best sigmoid function that

provided the maximum probability is calculated (Alkan et al.,

2005).

• Naive Bayes: The Naive Bayes (NB) algorithm is a statistical

classification approach that uses the Bayes Theorem on

probability and variables’ independence and normal state

(Miao et al., 2017; Hart et al., 2000). Hence, all features

provide the same effect value on the prediction process. The

classification process is performed by employing the sample’s

likelihood of belonging to each class in the feature set. The

class that provides the highest probability of membership

is defined as the datum’s predicted class. The Gaussian and

kernel NB classifiers were incorporated and evaluated in

this study.

• Support Vector Machine: The SVM algorithm, which was

proposed by Vapnik (1999), is one of the well-known machine

learning algorithms. It can be used in both classification

and regression processes (Hart et al., 2000). It generates a

model finding decision boundaries defined by a hyperplane

to separate the data into categories based on the geometric

characteristics of the data set. The optimum hyperplane that

will best separate this data in space is selected to provide more

accurate classification performance. The data is assigned as an

element of a different class dependent upon which side of the

hyperplane it is located on Bascil et al. (2016). In this study,

various types of this algorithm, such as linear, quadratic, cubic,

fine Gaussian, medium Gaussian, and coarse Gaussian, were

adopted and run.

• k-Nearest Neighbor:The k-Nearest Neighbor (kNN) is a non-

parametric machine learning algorithm, and it is computed in

both classification and regression studies. It is a distance-based

learning model and predicts the datum’s class by evaluating

the distance of the implemented sample to all k neighbors and

assigning them as the one with the most prevalent neighbors

(Tzallas et al., 2009; Isler, 2009). Various distance calculation

methods are available (Hart et al., 2000). In this study,

fine, medium, coarse, cubic, cosine, and weighted algorithms

among the kNN classifiers are selected as classifiers. The

Euclidean distance measurement method is one of the most

computed distance calculationmethods, and it is implemented

for employing fine, medium, coarse, and weighted kNN

algorithms (Hart et al., 2000; Isler, 2009). In cubic and cosine

kNN algorithms, cubic and cosine distance measurement

methods were utilized, respectively.

• Ensemble learning: As the name implies, it is an ensemble

of classifier algorithms. Basically, different classifiers are

brought together as a combination to form a single classifier

algorithm. Ensemble methods, rather than the individual

classifiers that make them up, generally provide far more

accurate results thanks to different properties of classifiers

such as reduction of variance (bagging), reduction of bias

(boosting), and improvement predictions eliminating the

over-fitting problem. Ensemble methods assume that a single

prediction algorithm may not obtain precise and accurate

classification results owing to some problems such as possible

noise, overlapping data distributions, and outliers in the data

(Khare et al., 2022; Matlab, 2023). Therefore, this method

assumes that there is no single classifier that computes

best for every classification study (Sayilgan et al., 2021b).

Ensemble Learning (EL) algorithms have been frequently
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employed in recent research for the classification of different

biomedical signals (Sayilgan et al., 2021b,a, 2022, 2020, 2019;

Degirmenci et al., 2022a,b). In this study, Boosted, Bagged,

Subspace Discriminant, Subspace k-NN, and RUSBoosted

Trees algorithms are adopted.

• Neural networks: Neural networks (NN) classification

algorithms are typically coined to have good predictive

accuracy and can be used for multi-class classifications as

well as binary classifications. Compared to other machine

learning algorithms, the training process is longer due to the

number of layers in their structure andmany other parameters

(Narin and Isler, 2021). NNs’ architectural elements are layers

of nodes, namely, the input layer, fully connected hidden

layers, and output layer. Essentially, NNs’ NNs differ by the

number of fully connected hidden layers between the input

and output layers, which affects the complexity of classifiers.

Architectural complexity of NNs increases with the size and

number of fully connected layers (Narin and Isler, 2021).

The first fully connected layer of the neural network has a

connection from the network input (predictor data), and each

subsequent layer has a connection from the previous layer.

Each fully connected layer multiplies the input data with a

weight matrix and then adds a bias vector. An activation

function follows each fully connected layer. The final fully

connected layer and the next softmax activation function

generate the output of the network, i.e., classification scores

(next probabilities) and prediction labels (Narin and Isler,

2021; Richard and Lippmann, 1991; Pan et al., 2012). In a

NN, to reach the optimum number of fully connected layers,

as Geoffrey Hinton recommends, is to add layers until the

model starts to overfit the training set (LeCun et al., 2015;

Srivastava et al., 2014). In this study, narrow, medium, wide,

bi-layered, and tri-layered NN algorithms were run for the

classification process to investigate the effect of the size of the

fully connected layers.

• Kernel Approximation: Kernel Approximation (KA)

classifiers can be used to carry out non-linear classification

of data containing many samples (Lei et al., 2019; Maji et al.,

2008). In large datasets, KA classifiers tend to train and predict

faster than SVM classifiers with Gaussian kernels (Maji et al.,

2008). Gaussian kernel classification models map predictors

in a low-dimensional space to a high-dimensional space and

then generate a linear model to transform predictors in a

high-dimensional space (Lei et al., 2019; Maji et al., 2008). In

this study, support vector machine and logistic regression KA

classifiers were employed for the purposes of classification.

2.5 Performance evaluation metrics

In this study, a 5-fold cross-validation method was performed

to calculate the performance of the classification process by defining

train, test, and validation data. In the evaluation of classification

results, the reel labels of EEG segments were compared to those

predicted by the classification algorithms. The MI classification

results of machine learning algorithms consist of True Positive

(TP), True Negative (TN), False Positive (FP), and False Negative

(FN) in the binary and multiple classifications. Using these values,

the statistical measure of Accuracy (ACC), which is the number

of correctly predicted segments, is utilized for the evaluation of

proposed methods. The mathematical formula for the accuracy

performance metric is given in Equation 12 (Hart et al., 2000;

Degirmenci et al., 2024).

ACC =
TP + TN

TP + FN + TN + FP
(12)

3 Results and discussion

In this study, the binary-class and multi-class classification

problems of MI-EEG signals were analyzed with six different

feature sets, a statistical significance-based feature selection

method, and nine different classification algorithms. Firstly,

four different feature sets were extracted from 22-channel EEG

signals using time-domain, frequency-domain, time-frequency

domain, and non-linear domain. Additionally, two different

combinations of these feature sets were created. In addition to

the investigation of the effects of different feature sets, the effects

of the statistical significance-based feature selection method were

investigated for extremity movement task classification. To show

the effectiveness of this feature selection method, a classification

process was also performed on EEG features themselves without

any feature selection process. Afterward, all extracted feature

sets and their reduced feature sets after the feature selection

process was applied were evaluated with various machine learning

algorithms separately.

Table 1 represents the list of all extracted feature types from four

different domains and their abbreviations. Additionally, sizes of

all extracted feature sets and statistical significance-based selected

feature sets are represented in Table 2. The multi-class extremity

movement task classification performances of all feature sets

extracted through our suggested feature domains with ANOVA-

based feature selection and various classifiers are given in Tables 3,

4. The boldface numbers in the tables represent the highest

classification performance for that feature set. According to Table 3,

the highest accuracy value (47.08%) was achieved using the non-

linear feature set and support vector machine algorithm. However,

the lowest classification performance was obtained using the

time-frequency domain feature set. To investigate the advantages

of different combinations of feature sets, the performances for

combinations of feature sets are given in Table 4. The classification

that was performed using the second combination feature set

(TD+FD+WT+P) and ANOVA-based feature selection method

improved the classification performance. Using this feature set, the

highest accuracy value of 47.36% was achieved. Note here that

the TD+FD+WT+P+ANOVA feature set with the EL algorithm

provided the highest classification performance among all other

approaches. The EL classifier gave the highest accuracy for

almost all subjects for the multi-class extremity movement task

classification process.

In this study, the detailed feature and channel analysis

were implemented to analysis. The effects of different features

and channels on classification performance were investigated

by analyzing ANOVA-selected statistically significant features. In
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TABLE 1 The list of all time-domain, frequency-domain, time-frequency

domain, and non-linear features.

The code and name of all features

T1 Minumum value F1,W1 Energy of delta band

T2 Maximum value F2,W2 Variance of delta band

T3 Mean F3,W3 Entropy of delta band

T4 Standard deviation value F4,W4 Energy of theta band

T5 Integrated EEG value F5,W5 Variance of theta band

T6 Mean absolute value F6,W6 Entropy of theta band

T7 Simple square integral F7,W7 Energy of alpha band

T8 Variance F8,W8 Variance of alpha band

T9 Root mean square F9,W9 Entropy of alpha band

T10 Waveform length F10,W10 Energy of beta band

T11 Average amplitude change value F11,W11 Variance of beta band

T12 Absolute difference in standard

deviation

F12,W12 Entropy of beta band

T13 Kurtosis F13,W13 Energy of gamma band

T14 Skewness F14,W14 Variance of gamma band

T15 Hjorth parameters (Activity) F15,W15 Entropy of gamma band

T16 Hjorth parameters (Mobility) P1 SD1 where lag=1

T17 Hjorth parameters (Complexity) P2 SD2 where lag=1

T18 Signal range P3 SD1SD2 where lag=1

T19 First inter-quartile value (Q1) P4 SD1/SD2 where lag=1

T20 Second inter-quartile value (Q2) P5 SD1 where lag=9

T21 Third inter-quartile value (Q3) P6 SD2 where lag=9

T22 Mode value P7 SD1SD2 where lag=9

T23 Zero-crossing value P3 SD1/SD2 where lag=9

T24 Slope-change value

this direction, channel-based ANOVA-selected feature distribution

maps were obtained to determine whether there was a distribution

density in certain features or channels or not. If there were

a certain statistically significant feature distribution density,

its effect on performance after applying ANOVA-based feature

selection was investigated by examining the feature distribution

maps and classification results obtained. Channel-based ANOVA-

selected statistically significant feature distributions for time-

domain, frequency-domain, time-frequency domain, and non-

linear domain are given in Tables 5–8.

A total of 345 statistically significant time-domain features were

evaluated on time-domain. According to Table 5, it was observed

that the ANOVA-based feature selection process concentrated

on 19 out of 24 time domain features and made almost no

selection from 5 feature types (T10, T11, T12, T13, and T22).

Additionally, the effects of channels were investigated on ANOVA-

based feature selection. Among 22 EEG channels, statistically

significant features were selected from almost all channels and

feature selection process were not focused on certain channels. In

order to investigate the effectiveness of the feature selection process

in the time domain feature set, the classification performances

were compared when all features and statistically significant time

domain features were used (presented in Table 3). ANOVA-selected

features from certain feature types and all channels improved

the classification performance in 5 classifiers for time-domain

based classifications.

In frequency domain, a total of 102 statistically significant

frequency-domain features were selected. Channel-based

statistically significant frequency-domain feature distribution

is represented in Table 6. According to Table 6, it was observed

that the ANOVA-based feature selection process focused on 6

out of 15 frequency-domain features and made no selection from

7 feature types (F1, F2, F4, F12, F13, F14 and F15). The energy

and variance values of theta, alpha, and beta frequency bands

were mostly selected as significant frequency-domain features

among all frequency-domain features. Note here that alpha

and beta frequency bands were associated with motor activities

(Nicolas-Alanso and Gomez-Gil, 2012). Additionally, the effects

of channels were investigated on ANOVA-based feature selection.

Among 22 EEG channels, statistically significant features were

mostly selected from certain channels (10th, 16th, 18th, 20th,

21st, and 22nd EEG channels). Among these certain channels, the

10th EEG channel was determined to be an effective channel for

MI task classification studies in the literature (Xu et al., 2019).

In order to investigate the effectiveness of the feature selection

process in the frequency-domain feature set, the classification

performances were compared when all features and statistically

significant frequency-domain features were used (presented in

Table 3). ANOVA-selected features from certain feature types

and frequency bands, which are related with motor activities and

certain channels (especially 10th EEG channel) improved the

classification performance in almost all classifiers (6 classifiers) for

frequency-domain based classifications.

In the WT-based time-frequency domain, a total of 104

statistically significant time-frequency domain features were

selected. Table 7 represents the channel-based statistically

significant time-frequency domain feature distribution. According

to the feature distribution map, it was observed that the

ANOVA-based feature selection process focused on 6 out of 15

time-frequency domain features and made almost no selection

from 8 feature types (W3, W6, W9, W10, W11, W12, W13,

and W14). The energy and variance values of delta, theta,

and alpha frequency bands were mostly selected as significant

time-frequency domain features among all time-frequency

domain features. Among 22 EEG channels, the statistically

significant features were mostly selected from certain channels

(12th, 14th, 19th, 20th, 21th, and 22th EEG channels), but

also statistically significant features were selected from all 22

EEG channels. In order to investigate the effectiveness of the

feature selection process in the time-frequency domain feature

set, the classification performances were compared when all

features and statistically significant time-frequency domain

features were used (presented in Table 3). ANOVA-selected

features from certain feature types (energy and variance), certain

effective frequency bands (especially the alpha band), which are

related to motor activities, and all EEG channels improved the

classification performance in almost all classifiers (6 classifiers) for

time-frequency domain-based classifications.

Frontiers inHumanNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1525139
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Degirmenci et al. 10.3389/fnhum.2024.1525139

TABLE 2 Sizes of all feature sets and statistically significance-based selected feature sets applied for multi-class and binary-class extremity movement

task classifications.

Feature sets Feature sets’ dimension in multi-class
classification

Feature sets’ dimension in binary-class
classification

All features ANOVA selected
features

All features T-test selected
features

(sample size x number of features)

TD (2,592× 528) (2,592× 345) (1,296× 528) (1,296× 44)

FD (2,592× 330) (2,592× 102) (1,296× 330) (1,296× 28)

WT (2,592× 330) (2,592× 104) (1,296× 330) (1,296× 13)

P (2,592× 176) (2,592× 61) (1,296× 176) (1,296× 6)

TD+FD+WT (2,592× 1,188) (2,592× 551) (1,296× 1,188) (1,296× 85)

TD+FD+WT+P (2,592× 1,364) (2,592× 612) (1,296× 1,364) (1,296× 91)

TABLE 3 Performance evaluation of all feature sets were tested for multi-class extremity movement task classification.

Feature sets

Classifiers Time-domain
feature set

Frequency-domain
feature set

Time-frequency domain
feature set

Non-linear
feature set

TD TD+
ANOVA

FD FD+
ANOVA

WT WT+ ANOVA P (all lags)

Decision Tree 31.00 31.10 31.40 31.44 28.32 28.74 31.90

Discriminant Analysis 41.90 44.00 34.41 37.89 N/A 25.42 40.20

Naive Bayes 29.40 29.40 28.59 29.09 28.20 28.16 28.30

Support Vector Machine 40.28 43.12 33.14 37.69 24.81 25.73 47.08

k-Nearest Neighbors 32.30 33.40 29.28 29.28 24.81 25.54 32.30

Ensemble Learning 44.38 43.91 35.76 38.46 28.63 34.34 46.06

Neural Networks 39.89 40.86 33.68 36.38 25.00 25.62 45.18

Kernel Approximation 32.48 31.87 32.18 30.94 24.81 25.81 30.63

The maximum component accuracies are shown in boldface for each feature set.

TABLE 4 Performance evaluation of combination feature sets was tested for multi-class extremity movement task classification.

Combination feature sets

Classifiers First combination feature set Second combination feature set

TD+FD+WT TD+FD+WT+ANOVA TD+FD+WT+P TD+FD+WT+P+ANOVA

Decision Tree 34.38 34.34 34.50 34.50

Discriminant Analysis N/A 25.96 N/A 27.31

Naive Bayes 29.09 29.51 27.90 29.43

Support Vector Machine 24.81 26.54 25.00 29.43

k-Nearest Neighbors 24.81 25.62 24.90 26.21

Ensemble Learning 35.73 44.33 35.60 47.36

Neural Networks 25.00 26.54 24.90 27.55

Kernel Approximation 24.81 25.46 24.90 25.89

The maximum component accuracies are shown in boldface for each feature set.
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TABLE 5 Channel-based ANOVA-selected statistically significant feature distribution among 22 EEG channels for multi-class extremity movement classification in the time-domain feature set.

EEG channels

F 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 T

T1 X X X X X X X X X X X X X X X X X X 18

T2 X X X X X X X X X X X X X X X 15

T3 X X X X X X X X X X X X X X X X X X X X X X 22

T4 X X X X X X X X X X X X X X X X X X X X X X 22

T5 X X X X X X X X X X X X X X X X X X X X X X 22

T6 X X X X X X X X X X X X X X X X X X X X X X 22

T7 X X X X X X X X X X X X X X X X X X X X 20

T8 X X X X X X X X X X X X X X X X X X X X 20

T9 X X X X X X X X X X X X X X X X X X X X X X 22

T10 0

T11 0

T12 0

T13 0

T14 X X X X 4

T15 X X X X X X X X X X X X X X X X X X X X 20

T16 X X X X X X X X X X X 11

T17 X X X X X X X X X X X 11

T18 X X X X X X X X X X X X X X X X X 17

T19 X X X X X X X X X X X X X X X X X X X X X X 22

T20 X X X X X X X X X X X X X X X X X X X X X X 22

T21 X X X X X X X X X X X X X X X X X X X X X X 22

T22 X 0

T23 X X X X X X X X X X 10

T24 X X X X X X X X X X X X X X X X X X X X X X 22

T 14 16 14 13 11 9 17 18 14 14 15 15 10 19 18 18 16 18 19 19 18 18 345
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TABLE 6 Channel-based ANOVA-selected statistically significant feature distribution among 22 EEG channels for multi-class extremity movement classification in frequency-domain feature set.

EEG channels

F 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 T

F1 0

F2 0

F3 0

F4 X X X X X X X X X X 10

F5 X X X X X 5

F6 X X X 3

F7 X X X X X X X X X X X X X X X X X X X X X X 22

F8 X X X X X X X X X X X X X X X X X X X X X X 22

F9 X X X X 4

F10 X X X X X X X X X X X X X X X X X X 18

F11 X X X X X X X X X X X X X X X X X 18

F12 0

F13 0

F14 0

F15 X 1

T 2 4 4 4 4 2 3 4 5 6 5 5 3 4 5 6 5 6 5 6 6 8 102
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TABLE 7 Channel-based ANOVA-selected statistically significant feature distribution among 22 EEG channels for multi-class extremity movement classification in the time-frequency domain feature set.

EEG channels

F 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 T

W1 X X X X X 5

W2 X X X X X 5

W3 X 1

W4 X X X X X X X X X X X X X X X X X X X X X X 22

W5 X X X X X X X X X X X X X X X X X X X X X X 22

W6 0

W7 X X X X X X X X X X X X X X X X X X X X X X 22

W8 X X X X X X X X X X X X X X X X X X X X X X 22

W9 X 1

W10 0

W11 0

W12 0

W13 0

W14 0

W15 X X X X 4

T 4 5 4 4 4 4 5 4 4 4 4 5 4 6 4 4 4 4 7 7 6 7 104
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Finally, the ANOVA-selected significant non-linear features

were analyzed for the TD+FD+WT+P combination feature set. The

ANOVA-based feature selection process determined 61 significant

non-linear features. In feature selection, ANOVA selected from all

non-linear feature types and it did not focus on some certain feature

types. On the other hand, the ANOVA test selected significant non-

linear features from almost all channels, but the feature selections

were mostly realized from some certain channels (5th, 8th, 9th,

12th, 16th, 19th, and 20th EEG channels). In literature, 8th and

12th EEG channels are assigned as significant and discriminative

EEG channels for MI-based BCI design (Xu et al., 2019). When

the effect of ANOVA-based feature selection was investigated in the

second combination feature set (TD+FD+WT+P), it was observed

that these selections from the non-linear feature set improved the

classification performance in almost all classifiers (6 classifiers)

(represented in Table 4). Therefore, the highest performance of

multi-task classification (47.36%) was achieved with the Ensemble

learning classification algorithm by adding statistically significant

non-linear features to the ANOVA-selected first combination

feature set (TD+FD+WT+ANOVA).

The binary-class extremity movement task classification

performances of all feature sets extracted through our suggested

feature domains with the independent t-test-based feature

selection and various classifiers are given in Tables 9, 10. The

boldface numbers in the tables represent the highest classification

performance for that feature set. According to Table 9, the

highest accuracy value (63.04%) was achieved using the non-linear

feature set and SVM algorithm binary classification. However, the

lowest classification success was obtained using the time-frequency

domain feature set. The performance evaluation of combination

feature sets for binary extremity movement task classification is

given in Table 10. The classification, which was performed using

the first combination feature set (TD+FD+WT) and t-test-based

feature selection method, achieved the highest accuracy value of

62.96% among two different combination feature sets. The results

revealed that the combination of different feature sets did not

improve classification performance for binary classification. A non-

linear feature set provided the highest classification performance.

EL classifier gave the highest accuracy for almost all subjects for the

binary-class extremity movement task classification process.

The distribution of the independent t-test selected statistically

significant features among 22 EEG channels was investigated for

binary-class extremity movement task classification. Channel-

based t-test selected significant time-domain, frequency-domain,

time-frequency domain, and non-linear domain feature

distributions are given in Tables 11–14, respectively. In the

time domain, a total of 44 statistically significant features were

selected using a t-test. The mean value and first interquartile

value (Q1) were mostly selected features among 24 different

time-domain feature types. The effect of the channels were

investigated, and it was observed that significant features

mostly selected some channels (6th, 11th, 12th, and 18th

EEG channels) and no selection was made from some EEG

channels. The analyses revealed that the t-test-based feature

selection process, which focused on certain EEG channels and

certain features such as mean value and Q1 in the time-domain

feature set, did not improve the classification performance in
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TABLE 9 Performance evaluation of all feature sets was tested for binary-class extremity movement task classification.

Feature Sets

Classifiers Time-domain
feature set

Frequency-domain
feature set

Time-frequency domain
feature set

Non-linear
feature set

TD TD+
T-test

FD FD+
T-test

WT WT+ T-test P (all lags)

Decision Tree 56.56 55.02 57.56 57.48 52.70 50.62 53.32

Discriminant Analysis 57.64 56.02 53.86 61.11 N/A 50.93 54.63

Logistic Regression 56.17 55.79 54.63 61.34 49.85 50.77 53.24

Naive Bayes 52.62 55.17 52.01 55.79 51.16 54.71 48.53

Support Vector Machine 59.57 56.64 55.63 59.03 N/A 50.93 63.04

k-Nearest Neighbors 53.24 54.32 52.01 54.78 49.85 50.69 53.16

Ensemble Learning 61.26 57.72 60.03 60.26 51.39 53.94 61.19

Neural Networks 58.72 53.01 56.48 57.18 N/A 50.54 60.57

Kernel Approximation 54.24 51.08 55.94 53.55 N/A 49.15 53.86

The maximum component accuracies are shown in boldface for each feature set.

TABLE 10 Performance evaluation of combination feature sets was tested for binary-class extremity movement task classification.

Combination feature sets

Classifiers First combination feature set Second combination feature set

TD+FD+WT TD+FD+WT+T-test TD+FD+WT+P TD+FD+WT+P+T-
test

Decision Tree 56.71 55.25 56.60 56.50

Discriminant Analysis N/A 51.23 N/A 52.10

Logistic Regression 49.92 51.00 49.90 51.10

Naive Bayes 53.47 57.02 48.50 57.10

Support Vector Machine N/A 51.16 N/A 51.40

k-Nearest Neighbors 49.85 50.31 49.80 50.80

Ensemble Learning 58.10 62.96 57.30 61.86

Neural Networks N/A 50.85 N/A 50.54

Kernel Approximation N/A 50.00 N/A 49.92

The maximum component accuracies are shown in boldface for each feature set.

almost majority of the classifiers (8 classifiers) (represented in

Table 9).

The distribution of the t-test selected significant frequency-

domain features were investigated in Table 12. The mostly selected

features were energy, variance and entropy of the alpha band, and

entropy of the theta band. According to literature studies, alpha and

beta bands are mostly associated with motor activities (Nicolas-

Alanso and Gomez-Gil, 2012). Among these bands, especially

the alpha band reflects the changes during memory and brain

function. Alpha-band rhythms are placed in the same frequency

range as Mu rhythms, which are robustly associated with motor

activities. The t-test-based feature selection method verified the

literature focusing on the alpha frequency band. Among all EEG

channels, more frequency features were determined as significant

features from certain channels (12th and 18th). 12th EEG channel

was determined as an effective EEG channel for MI-EEG signal

analysis in the literature (Xu et al., 2019). Note here that these

remarkable feature selections in the frequency-domain improved

the classification performance in almost all classifiers (7 classifiers),

as shown in Table 9.

Table 13 represents the distribution of the statistically

significant features in time-frequency domain. The t-test selected

13 different significant features, and the most selected features

were entropy features in this domain. Entropy of delta, alpha,

beta, and gamma bands were especially selected features with the

application of the t-test. In addition to the frequency bands (alpha

and beta activities) that are effective in the MI imaginary task in the

literature (Nicolas-Alanso and Gomez-Gil, 2012), other frequency

bands (delta and gamma activities) were also selected. Among 22

EEG channels, more significant features were selected from 2 EEG

channels (4th and 20th EEG channels), which are not indicated

as effective EEG channels for MI-EEG analysis in the literature.
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TABLE 11 Channel-based t-test selected statistically significant feature distribution among 22 EEG channels for binary-class extremity movement classification in a time-domain feature set.

EEG channels

F 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 T

T1 0

T2 X X X 3

T3 X X X X X X X X X X X X 12

T4 0

T5 0

T6 0

T7 0

T8 0

T9 0

T10 0

T11 0

T12 0

T13 X X X X 4

T14 X X X 3

T15 0

T16 0

T17 0

T18 0

T19 X X X X X 5

T20 X X X X X X X X X X X X X 13

T21 X 1

T22 0

T23 0

T24 X X X 3

T 0 0 0 2 4 5 0 0 0 0 3 5 5 0 1 2 3 5 2 2 2 3 44
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TABLE 12 Channel-based t-test selected statistically significant feature distribution among 22 EEG channels for binary-class extremity movement classification in a frequency-domain feature set.

EEG channels

F 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 T

F1 0

F2 0

F3 0

F4 0

F5 0

F6 X X X X X 5

F7 X X X X X X X X 8

F8 X X X X X 5

F9 X X X X X X X 7

F10 0

F11 X X 2

F12 0

F13 0

F14 0

F15 X 1

T 1 1 0 0 2 1 1 1 0 0 1 4 3 1 0 0 2 5 1 1 2 1 28
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TABLE 13 Channel-based t-test selected statistically significant feature distribution among 22 EEG channels for binary-class extremity movement classification in the time-frequency domain feature set.

EEG channels

F 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 T

W1 0

W2 0

W3 X X X 3

W4 0

W5 0

W6 X X 2

W7 X 1

W8 0

W9 0

W10 0

W11 0

W12 X X 2

W13 0

W14 0

W15 X X X X X 5

T 0 1 0 2 0 0 1 0 0 1 0 1 0 1 1 0 0 1 0 1 2 1 13
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Contrary to the literature, t-test based feature selection improved

the classification performance in half of the classifiers (4 classifiers)

by selecting statistically significant features in different frequency

bands and without focusing on effective channels in the literature

(represented in Table 9).

Finally, the channel-based t-test selected significant non-linear

feature distribution among 22 EEG channels and was investigated

in Table 14. Of the total 176, 6 were determined to be significant

features in this domain. The mostly selected feature type was

SD1/SD2, where lag = 9. Note here that the fact that the

t-test determined the extracted features for the lag = 9 case

as statistically significant explains why we included them in

the combination feature set. On the other hand, the 12th EEG

channel provided statistically significant features during t-test

application in the non-linear domain. This channel revealed its

effectiveness for MI-EEG signal analysis in the literature (Xu

et al., 2019). As a result, t-test based feature selection process

improved classification performance (4 classifiers) by selecting

certain non-linear features and 12th EEG channel (represented in

Table 10).

The main results and contributions of our extremity movement

task classification study can be highlighted as follows:

• We propose different feature extraction methods considering

different feature domains such as time-domain, frequency-

domain, time-frequency domain, and non-linear domain.

• Among all proposed feature sets, the second combination

feature set (TD+FD+WT+P) with ANOVA and non-linear

feature set give the highest classification accuracies for multi-

class and binary-class extremity movement task classifications,

respectively. On the other hand, the lowest classification

Results were generally obtained using a WT-based time-

frequency feature set in both multi-class and binary-class

cases.

• In all feature sets, the best classification results were mostly

provided with the EL classifier among all classifiers.

• The classification results on all feature sets show that

the statistical significance-based feature selection method

generally improved classification performances in majority of

the classifiers.

• According to the authors’ knowledge, this is the first MI-

EEG signal analysis study in which detailed feature and

channel analysis have been implemented to identify effective

and discriminative features and channels using statistically

significant feature distribution maps.

• The feature and channel analyses we have performed have

shown that features can be successfully selected from

frequency bands, features, and channels whose effectiveness

has been determined in the literature by our statistically

significant based feature selection method. In addition,

it has been observed that classifier performance can be

increased by selecting statistically significant-based features

from different channels and features other than those in

the literature. The analyses performed in the study both

support the literature and add new features and channels.

Note here that, instead of accepting the effectiveness of

some definite channels and features according to the

literature and eliminating some of them, we can improve T
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TABLE 15 Comparison of various multi-class and binary-class extremity movement task classification studies with the results of the study.

References Dataset C c F Classifier ACC

Garcia-Laencina et al. (2014) Five sets of EEG data (publicly

available)

2 5 22 Linear discriminant analysis 77.30

Lindig-Leon and Bougrain (2015) OpenVibe platform-based publicly

available dataset

26 4 N/A Linear discriminant analysis 51.67

Sakhavi et al. (2015) BCI Competition IV Dataset IIa 22 4 8 Convolutional neural network 70.60

Ma et al. (2018) Publicly available EEG

Movement/Imagery Database

(eegmmidb)

64 5 N/A Recurrent neural networks 68.20

Nguyen et al. (2018) BCI Competition IV Dataset IIa +

Dataset IIIa

22 4 16 Fuzzy logic system 65.00

Jusas and Samuvel (2019) BCI Competition IV Dataset IIa 8 4 46 Support vector machines

Lee et al. (2019) Their own dataset 64 4 N/A Linear discriminant analysis 58.20

Dong et al. (2020) BCI Competition IV Dataset IIa 22 4 N/A Relevance vector machine 74.39

Kato et al. (2020) Open access MI dataset 21 5 189 Support vector machines 40.60

Amiri et al. (2024) BCI Competition IV Dataset IIa 6 4 N/A Convolutional neural network 72.01

This study BCI Competition IV Dataset IIa 22 4 612 Ensemble Learning 47.36

Gaur et al. (2015) BCI Competition IV Dataset IIa 3 2 N/A Linear discriminant analysis 70.20

Tabar and Halici (2016) BCI Competition IV Dataset IIb 22 2 N/A Convolutional neural networks 77.60

Djamal et al. (2017) Their own dataset 1 2 N/A Learning vector qantization networks 70.00

Xu et al. (2019) BCI Competition IV Dataset IIb 3 2 N/A Convolutional neural network 74.20

Zhao et al. (2019) BCI Competition IV Dataset IIb 22 2 N/A Convolutional neural network 83.00

Lu et al. (2020) BCI Competition IV Dataset IIb 2 2 N/A Ensemble support vector learning 71.00

Molla et al. (2020) BCI Competition IV Dataset IIb 22 2 15 Support vector machine 81.52

This study BCI Competition IV Dataset IIa 22 2 176 Ensemble Learning 63.04

ACC is the highest accuracy achieved in the cited research and this study. In the table, F stands for “Number of features,” C stands for “Number of channels,” c stands for “Number of classes,”

and ACC stands for “Accuracy.”

the classifier performance by performing detailed feature

and channel analyses with feature selection based on

statistical significance.

Table 15 shows the comparison of various multi-class and

binary-class extremity movement task classification literature

studies with the results of this study. The main contributions and

drawbacks of these studies were analyzed considering the authors’

proposed methods such as feature extraction, feature selection,

and classification methods. According to Table 15, the majority of

these studies include high computational complexity due to feature

extraction (Sakhavi et al., 2015; Tabar and Halici, 2016; Dong et al.,

2020; Amiri et al., 2024), feature selection (Molla et al., 2020; Jusas

and Samuvel, 2019; Lu et al., 2020; Garcia-Laencina et al., 2014;

Ma et al., 2018), and classification (Sakhavi et al., 2015; Ma et al.,

2018; Nguyen et al., 2018; Dong et al., 2020; Amiri et al., 2024;

Tabar and Halici, 2016; Djamal et al., 2017; Xu et al., 2019; Zhao

et al., 2019) methods. Although the approaches suggested by the

authors created a computational load on the BCI system, very

high performance values could not be achieved in both types of

classification cases. In some studies (Garcia-Laencina et al., 2014;

Jusas and Samuvel, 2019; Amiri et al., 2024; Gaur et al., 2015;

Djamal et al., 2017; Xu et al., 2019; Lu et al., 2020), although

channel selection was applied and certain channels were selected

for MI-EEG analysis, the performances still did not reach high

values. Also, literature studies classifying binary and multiple MI

tasks were interested in coding MI tasks by disregarding the brain’s

idle case (i.e., the state that the brain is not performing any mental

tasks). This situation may result in an increase in the number

of FPs and decrease the classification performances dramatically

(Degirmenci et al., 2024). The study including the no mental task

(NoMT) condition is available in the literature (Degirmenci et al.,

2024). Since there was no EEG signal for NoMT condition in the

dataset (BCI Competition IV Dataset IIa) we worked with, we

could not include it and examine its effect, but the effectiveness

of this situation can be tested with different datasets. On the

other hand, to the best of the authors’ knowledge, none of MI

task classification studies, or even in the literature, have applied

detailed feature and channel effectiveness research for MI task

classification as our previous MI-EEG signals classification study

(Degirmenci et al., 2023). In our previous study, we extracted

MI-EEG features from different feature extraction domains and

combined them. Then, the statistical significance-based feature

selection method was applied to improve classifiers’ performance.

In that study, only the effectiveness of statistically significant

features on the classification performance is investigated, regardless
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of which feature types or channels the statistically significant

features are selected from. Our main goal in that study was

to find the best classification performance and investigate the

effect of feature selection based on statistical significance. For this

reason, the study did not include feature and channel analysis.

Therefore, this study (i) has computational advantages in terms

of the methods which were applied in feature extraction, feature

selection, and classification process, (ii) used all EEG channels

and four different feature domains instead of conducting a study

based solely on certain feature extraction methods and EEG

channels, (iii) was also investigated the effectiveness of a wide

range of classification algorithms not previously used in MI-

EEG signal analysis in the literature (such as DT, EL, LR, and

KA classifiers), and (iv) implemented the detailed feature and

channel analysis using channel-based statistically significant feature

distribution maps among 22 EEG channels for each extracted

feature set.

4 Conclusion

Despite the advances in both traditional machine learning

(ML) and deep learning (DL) methods, there are several challenges

in developing EEG-based BCI systems (Rashid et al., 2020). In

traditional ML methods, the model’s success largely depends on

the features extracted from the raw EEG signals (Khademi et al.,

2022). Extracting these features requires domain expertise and

is time consuming. Moreover, the high-dimensional and noisy

nature of EEG data limits scalability and generalizability. In

contrast, DL methods, which are increasingly gaining popularity

in EEG analysis in recent decades, have the potential to solve

some of these problems by automatically learning complex features

directly from the raw signal (Praveena et al., 2020) . DL models

can eliminate temporal and spatial dependencies in EEG data

more effectively than traditional ML methods. However, DL

models require large amounts of data to learn complex patterns

effectively. This represents a significant obstacle to the application

of DL models to EEG-based studies. Moreover, in EEG analysis,

traditional ML models are simpler and more interpretable, while

DL models appear as completely “closed black boxes.” This

lack of transparency is a major hurdle in the medical field,

where clinicians need clear and explainable reasons for diagnostic

decisions. Moreover, DL models require significant computational

resources for both training and real-time inference, which is

another major limitation for portable or real-time applications

such as BCIs. In summary, EEG-based BCI studies attempt

to overcome the ongoing challenges of feature extraction and

selection in traditional ML, while DL attempts to overcome

challenges related to data scarcity, model interpretability, and

computational requirements.

In this study, we developed an automated signal processing

study to design a MI-EEG based BCI system. First, various

time-domain, frequency-domain, time-frequency, and non-linear

domain features of EEG segments were obtained from their

corresponding domains. Then, the impact of the statistical

significance-based feature selection method was investigated on

these four feature sets and their two different combination

feature sets. The proposed feature selection method was analyzed

by comparing all features separately and selecting statistically

significant features in all feature sets separately. Finally, the

classification was performed using 9 different machine learning

methods and 5-fold cross-validation method. The applied methods

were tested on two different classification cases (binary class and

multi class extremity movement task classification). The methods

proposed in this study were tested on the publicly available

BCI Competition IV Dataset IIa dataset in order to validate its

robustness, and compare its success with literature studies. The

purpose of this study was not to find the best classifier but to

determine the effective channels or features in MI EEG signals

classification. In accordance with this purpose, the detailed feature

and channel analysis was implemented in this study because the

selection and application of channel selection, feature extraction,

and feature selection methods are very important in BCI system

design. Especially, the detailed feature and channel analysis was

performed for the first time to analyze MI-EEG signals as well

as various feature domains, and to the best of our knowledge,

some classification algorithms were used to classify MI-EEG

signals for the first time. The results showed that the highest

accuracy rates of 47.36% and 63.04% were obtained when using

the second combination feature set (TD+FD+WT+P) and the non-

linear feature set on multi-class and binary-class classifications,

respectively. The statistical significance-based feature selection

method generally improved the classification performances in

selecting significant and discriminative EEG features from different

feature sets. According to experimental analysis, the nonlinear

and second combination feature sets (TD+FD+WT+P) were found

to be the feature sets with the best results. Among all the

classification algorithms, the EL classifier was found to be the

most successful machine learning method for all feature sets tested

in this study. The feature and channel analyses performed in

the study revealed that the distribution of statistically significant

features across 22 EEG channels both support the literature by

selecting certain frequency bands, features and channels that have

been proven to be effective for MI-EEG signal classification and

add new features and channels to them. Therefore, the classifier’

performance can be improved by performing detailed feature

and channel analysis using feature selection based on statistical

significance. On the other hand, the methods used in this BCI

design study have lower complexity thanmajority ofMI-EEG signal

classification approaches.
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