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Introduction: Electromagnetic brain imaging is the reconstruction of brain

activity from non-invasive recordings of electroencephalography (EEG),

magnetoencephalography (MEG), and also from invasive ones such as

the intracranial recording of electrocorticography (ECoG), intracranial

electroencephalography (iEEG), and stereo electroencephalography EEG

(sEEG). These modalities are widely used techniques to study the function of the

human brain. E�cient reconstruction of electrophysiological activity of neurons

in the brain from EEG/MEG measurements is important for neuroscience

research and clinical applications. An enduring challenge in this field is the

accurate inference of brain signals of interest while accounting for all sources of

noise that contribute to the sensor measurements. The statistical characteristic

of the noise plays a crucial role in the success of the brain source recovery

process, which can be formulated as a sparse regression problem.

Method: In this study, we assume that the dominant environment and biological

sources of noise that have high spatial correlations in the sensors can be

expressed as a structured noise model based on the variational Bayesian factor

analysis. To the best of our knowledge, no existing algorithm has addressed

the brain source estimation problem with such structured noise. We propose to

apply a robust empirical Bayesian framework for iteratively estimating the brain

source activity and the statistics of the structured noise. In particular, we perform

inference of the variational Bayesian factor analysis (VBFA) noisemodel iteratively

in conjunction with source reconstruction.

Results: To demonstrate the e�ectiveness of the proposed algorithm, we

perform experiments on both simulated and real datasets. Our algorithm

achieves superior performance as compared to several existing benchmark

algorithms.

Discussion: A key aspect of our algorithm is that we do not require any additional

baseline measurements to estimate the noise covariance from the sensor data

under scenarios such as resting state analysis, and other use cases wherein a

noise or artifactual source occurs only in the active period but not in the baseline

period (e.g., neuro-modulatory stimulation artifacts and speech movements).

KEYWORDS

electromagnetic brain imaging, magnetoencephalography (MEG), brain source

reconstruction, Bayesian inference, structured noise learning, factor analysis
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1 Introduction

Electromagnetic brain imaging is an effective technique

being used intensively to understand the neural mechanisms

of the complex human brain and behavior important for both

neuroscience research and clinical applications (Phillips et al.,

1997; He et al., 2018). In particular, electroencephalography

(EEG) and magnetoencephalography (MEG) are two widely

used techniques that provide non-invasive recordings of

the electrical activity of the brain by sensing its remote

magnetic and electric fields, respectively (Baillet et al., 2001).

Electromagnetic brain imaging requires solving an ill-posed

inverse problem for reconstruction of brain activity (at cortical

brain sources) from non-invasive EEG/MEG recordings. In

particular, it is crucial to determine both the spatial location

and the temporal dynamics of neurophysiological activity. In

tomographic EEG/MEG source localization pipelines, current

dipole sources are considered to be located on each voxel inside

the brain. As a result, the number of locations of potential

brain sources (thousands of voxels) is typically much larger

than the number of sensors (just a few hundred). In addition,

several types of noise (such as environmental interference and

sensor noise) inevitably affect EEG/MEG signals (Michel and

He, 2019; Edelman et al., 2015). Therefore, reconstructing brain

source activities accurately from scalp EEG/MEG measurements

becomes a challenging task. It opens up the possibility of using

sophisticated mathematical or neurophysiological priors of both

brain signals and noise statistics to achieve improved recovery of

brain activities.

Integral to inversemodeling algorithm in electromagnetic brain

imaging (Riaz et al., 2023) are forwardmodels. The primary current

density is mathematically defined as a vector field in a continuum

(volume space or surface space, depending on the assumptions for

the source space). Then an electric scalar field or magnetic vector

field that is produced by the primary current density is described

by quasi-static equations of electromagnetism. A discretization

of the space of the brain and surrounding tissues is employed

to provide these equations with a numerical solution. Note that

the forward problem aims to achieve a solution for the electric

or magnetic fields given the location and timing of brain source

activity. The recovery of the primary current source location and

timing is basically the Cauchy inverse problem of electromagnetism

(Riaz et al., 2023).

Several methods have been introduced over the past decades

to solve the inverse problem of brain source imaging. Common

inverse solvers for EEG/MEG source imaging can be broadly

classified into three categories—model-based dipole fitting, dipole

scanning methods, and distributed whole brain source imaging

methods (Baillet et al., 2001; Cai et al., 2018; Hosseini et al.,

2018; Cai et al., 2023). The working principle of dipole fitting

methods is to approximate brain activity with a small number

of equivalent current dipoles (Scherg, 1990). These classical

methods achieve good solutions when the source activity is

relatively simple consisting only one to two dipoles (Delorme

et al., 2012; Matsuura and Okabe, 1995). However, the quality of

their solutions degrades for even slightly more complicated source

configurations (Mosher et al., 1992). In addition, it is practically

challenging for dipole fitting-based methods to determine the

true number of current dipoles to be estimated. Dipole scanning

methods are also referred to as methods of spatial filtering or

beamforming which estimate the time course at every candidate

location while suppressing the interference from activity at the

other candidate source locations (Van Veen et al., 1997; Zumer

et al., 2006; Cai et al., 2023). Examples of scanning techniques

are minimum-variance adaptive beamforming (Robinson and

Rose, 1992; Sekihara and Scholz, 1996) as well as several variants

of adaptive beamformers (Sekihara and Nagarajan, 2008). The

fidelity of such brain signal estimates is affected by many factors

such as signal-to-noise ratio (SNR), source correlations, and

the number of time samples. However, the reconstruction

performance of beamforming methods can be significantly

compromised if the brain sources are highly correlated,

although recent Bayesian extensions overcome this limitation

(Cai et al., 2023).

Distributed whole-brain source imaging methods do not

require prior knowledge of the number of sources (Wipf and

Nagarajan, 2009). These methods approximate the primary

electrical current density by discretizing the whole brain volume,

assuming a dipolar current source at each voxel. The task

is then to estimate the amplitudes (and orientations) of the

sources by minimizing a cost function (He et al., 2011). Some

form of prior constraints or regularizers are used to obtain a

unique and neurophysiological meaningful solution (Ioannides

et al., 1990). The minimum-norm estimation algorithm (MNE)

(Hämäläinen and Ilmoniemi, 1994) minimizes the L2 norm of the

solution favoring smaller overall power of the brain activity. Other

variants of MNE include the weighted MNE (wMNE) (Dale and

Sereno, 1993), low-resolution brain electromagnetic tomography

(LORETA) (Pascual-Marqui et al., 1994), and standardized

LORETA (sLORETA) (Pascual-Marqui et al., 2002). However,

L2 norm minimization methods produce diffuse estimates that

lack sufficient resolution to localize and distinguish multiple

sources. To overcome this limitation, algorithms based on L1
norm minimization (Ding and He, 2008; Liu et al., 2022)

and sparsity-inducing norms induced by empirical Bayesian

inference (referred to as sparse Bayesian learning, SBL) (Wipf

et al., 2010) are developed. Friston et al. (2008) introduced a

sparse solution for distributed sources, of the sort enforced by

equivalent current dipole (ECD) models. These sparsity-based

source reconstruction algorithms can be derived within a Bayesian

framework (Wipf et al., 2010; Liu et al., 2019; Oikonomou and

Kompatsiaris, 2020; Liu et al., 2020; Cai et al., 2021; Hashemi

et al., 2021b, 2022; Ghosh et al., 2023; Cai et al., 2023). We argue

that these Bayesian techniques are found to be most efficient

in estimating the model hyper-parameters directly from the

data using hierarchical algorithms. Importantly, the Champagne

algorithm (Wipf et al., 2010) is derived in an empirical Bayesian

fashion, incorporating deep theoretical ideas about sparse-source

recovery from noisy constrained measurements. Inspired by its

promising performance, attempts have further been made by

several researchers to improve upon Champagne algorithm (Wipf

et al., 2010). One potential direction of improvement is to

accurately model noise that exhibits structured precision parameter

(Liu et al., 2020).
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Accurate inference of brain signals of interest while accounting

for all sources of noise that contribute to sensor measurements is

the key challenge in electromagnetic brain imaging. Noise statistics

in the model play a crucial role in the success of sparse source

recovery. In particular, the statistical characteristics of the noise

in sensor data plays an important role in the working of Bayesian

algorithms for electromagnetic brain imaging. Existing studies have

considered noise covariance matrices with either diagonal (Wipf

et al., 2010; Cai et al., 2019) or full structure (Hashemi et al., 2022).

In this study, we consider another type of realistic noise whose

covariance can be characterized by a structured matrix. This type

of noise is present when there are just a few active sources of

environmental noise, each of which may be picked up by multiple

MEG/EEG sensors with high spatial correlations. A key aspect

of our noise estimation algorithm is that we do not require any

additional baseline measurements to estimate the noise covariance

from the sensor data under scenarios such as resting-state analysis,

and other use cases wherein a noise or artifactual source occurs

only in the active period but not in the baseline period (e.g.,

neuromodulatory stimulation artifacts and speech movements). To

the best of our knowledge, no existing algorithm has addressed the

brain source estimation problem with a structure-noise covariance.

The main contributions of this paper are as follows:

1. We introduce a novel robust empirical Bayesian framework

for electromagnetic brain imaging under the structured noise

covariance assumption. In particular, we perform inference

of the variational Bayesian factor analysis (VBFA) noise

model iteratively in conjunction with source reconstruction. It

provides us a tractable algorithm for iteratively estimating the

noise covariance and the brain source activity. The proposed

algorithm is found to be quite robust to initialization and

computationally efficient.

2. The proposed algorithm does not require any additional baseline

measurements to estimate noise covariance from sensor data.

We note that this is not the case for many of the existing

algorithms for electromagnetic brain imaging.

3. We perform exhaustive experiments to demonstrate the

effectiveness of the proposed electromagnetic brain imaging

algorithm on both simulated and real datasets. In particular,

we quantify the correctness of the localization of the sources

and the estimation of source time courses for simulated brain

noise with structured covariance matrix. We show that the

new algorithm achieves competitive performance with respect

to benchmark methods on both synthetic and real MEG

data and is able to resolve distinct and functionally relevant

brain areas.

This paper is summarized as follows. In Section 2.1, we

introduce generative model of the inverse problem. Table 1 list

a summary of the variables and definitions used in Section 2.

The proposed Bayesian formulation along with a brief account

of existing Bayesian frameworks are presented in Section 2.2 and

Section 2.3. Then, we present experiments applying our approach

on synthetic (Section 3) and real MEG data (Section 4), where

we also compare the proposed algorithm with baseline and state-

of-the-art methods for electromagnetic brain imaging. Finally, we

discuss implications and future directions in Section 5.

2 Method

2.1 Generative model

In the typical electromagnetic brain imaging problem setup,

brain activity is modeled by a number of electric current dipoles,

where the location, orientation, and magnitude of each dipole

collectively determine the signal observed at the EEG/MEG

electrodes. The position of the dipoles within the brain contains

valuable information on brain function, which is used in clinical

applications and cognitive neuroscience studies (Leahy et al., 1998;

Gross, 2019). The inverse problem of estimating the locations and

the moments of the current dipoles from the recorded EEG signal

is ill-posed in nature.

The forward model, describing the EEG/MEG measurements

as a function of the brain sources, is given by

yk = Lxk + zk, (1)

where yk = [yk(1), · · · , yk(m)]⊤, yk ∈ R
m×1 is the sensor

measurements at time point k, m is the number of sensor

measurements. Moreover, xk = [xk(1), · · · , xk(n)]
⊤, xk ∈ R

n×1

is the activity of the brain sources at time point k, n is the number

of voxels. In addition, the whole time series data {y1, y2, . . . , yK}

are collectively denoted y, and the whole time series data

{x1, x2, . . . , xK} are collectively denoted x. The lead-field matrix

is given by L = [l1, l2, · · · , ln] ∈ R
m×n whose columns reflect

the sensors response induced by the unit current sources. Note

that, in simulations here, we assume a pre-defined orientation (e.g.,

normal constraint) for the local lead-field at each voxel. Therefore,

it can be reduced to a m × 1 vector (Sekihara and Nagarajan,

2015). However for real data, we use a three-column lead-field for

each voxel and estimate the source time-series at the orientation

corresponding to maximum power at each vowel. Furthermore,

zk ∈ R
m×1 refers to additive noise in the measurements not

arising from brain sources. We consider that zk is drawn from

a multivariate Gaussian probability distribution parameterized by

the precision matrix 3−1. In particular, we assume that noise

refers to any background interference including biological and

environmental sources outside the span of the lead-field as well

as sensor noise. It is assumed that EEG/MEG measurements

are collected for spontaneous brain activity (i.e., resting-state),

such that separate recording time-windows capturing noise only

activity might not be available. Another scenario where noise-

only recordings may not be available are task-induced contrastive

experimental designs where noise or artifact signals are only present

in the active condition but not in the baseline. One such example is

active post-movement related paradigms such as speaking or other

movement tasks wherein any artifacts observed in the sensors due

to the movement will be present in the post-movement period;

that is, the baseline pre-movement periods cannot be used to

estimate the noise statistics. Therefore, here, we jointly infer both

source estimate and noise statistics from the same data segment as

described below.
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TABLE 1 Summary of the variables and definitions used in Section 2

Method.

Symbol Description

n Number of voxels in the brain.

m Number of MEG/EEG sensors.

K Number of time-points in the MEG/EEG signal.

x Brain source signal. (size n× K)

y Observed MEG/EEG sensor data. (sizem× K)

L Lead-field matrix of sizem× n.

3 Precision of normal distribution of noise. (size

m×m)

8 Precision of normal distribution of source signal.

(size n× n)

Ŵ Precision of normal posterior distribution of

source signal x given observed data y. (size n× n)

p(xk) Prior distribution of xk .

p(yk|xk) Conditional probability density of yk given xk .

p(xk|yk) Posterior probability density of xk observed yk .

xk Posterior mean of p(xk|yk).

p(y|8) Marginal likelihood.

F(8) Logarithm of marginal likelihood log p(y|8).

F̃(8) Cost function with the convex bounding.

z
(l)
k Residual noise at k-th time-point during l-th

iteration. (sizem× 1)

A Mixing matrix for the factor analysis. (sizem× q)

uk k-th component of factor analysis. (size q× 1)

ε Modeling noise of factor analysis. (sizem× 1)

� Diagonal precision matrix of the modeling noise at

factor analysis step.

9 Precision matrix of the posterior distribution of

column of mixing matrix A.

Rzz Covariance of residual noise z.

Ruu Covariance of factor analysis coefficient vector u.

2.2 Source estimation

Given prior distributions of sources and noise, the generative

model in Equation 1 becomes a probabilistic model. We assume

a zero-mean Gaussian prior with diagonal covariance 8 =

diag(φ) for the underlying source distribution. In other words,

xk ∼ N(0,8−1), k = 1, . . . ,K, where the diagonal φ =

[φ1, . . . ,φn]
⊤ contains n distinct unknown variances associated

with n brain sources.

We propose to solve the inverse problem within the Bayesian

learning framework. Modeling independent sources through a

Gaussian zero-mean prior with diagonal covariance matrix leads to

sparsity of the resulting source distributions, that is, at the optimum

many of the estimated source variances are zero. The goal is to

find the maximum a posteriori probability (MAP) solution for xk.

The posterior probability p(xk|yk) can be derived by using Bayes’

theorem (Sekihara and Nagarajan, 2015):

p(xk|yk) ∝ p(yk|xk)p(xk), (2)

where p(yk|xk) = N(Lxk,3
−1) and p(xk) = N(0,8−1). In this

case, it is straightforward to show that the posterior probability

density p(xk|yk) is also Gaussian. Suppose, the posterior probability

takes the following form:

p(xk|yk) = N(xk,Ŵ
−1),

where xk is the posterior mean, and Ŵ is the posterior precision

matrix. Furthermore, we adapt the derivation in Sekihara and

Nagarajan (2015)[See pages 233–235 in Section B.3] to obtain:

Ŵ = 8 + LT3L,

xk = 8−1L⊤(3−1 + L8−1L⊤)−1yk.
(3)

Note that we need both 8 and 3 to compute xk. Assuming 3 and

8 as follows are known, we repeat the following three iterative steps

until convergence. At the (l+ 1)-th iteration:

1. Estimate x
(l+1)
k

, assuming known 3(l) and 8(l).

2. Estimate 8(l+1), assuming known x
(l+1)
k

and 3(l).

3. Estimate 3(l+1), assuming known x
(l+1)
k

and 8(l+1).

We estimate 8 in the (l + 1)-th iteration by maximizing

the following cost function, which is defined as the logarithm of

marginal likelihood p(y|8) given 8:

F(8) = log |6y| +
1

k

K
∑

k=1

y⊤k 6−1
y yk, (4)

where the model data covariance

6y = 3−1 + L8−1L⊤. (5)

Then, similar to Champagne (Wipf et al., 2010; Cai et al., 2019), we

utilize a convex bounding on the cost logarithm (Equation 4),

F̃(8) =
1

K

K
∑

k=1

[

(yk − Lx̄k)
⊤3−1(yk − Lx̄k)

]

+
1

K

K
∑

k=1

x̄⊤k 8−1x̄k + tr(g⊤8)+ g0,

(6)

where g = diag(g1, g2, · · · , gn) and g0 are auxiliary variables. Setting

the derivative of F̃(8) with respect to φi and gi generates the update

rules below,

φ̂i =

√

√

√

√

√

1

K

∑K
k=1 x̄

2
k
(i)

ĝi
,

ĝi = l⊤i 6−1
y li.

(7)

The update rule of 8 is defined as 8̂ = diag(φ̂1, φ̂2, · · · , φ̂n).
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2.3 Structured noise estimation using
variational Bayesian factor analysis

To estimate 3, we perform inference on a variational Bayesian

factor analysis model of the following residual noise at the l-th

iteration (Nagarajan et al., 2007):

zk = yk − Lx̄k, (8)

where the residual noise at the k-th time-point is zk ∈ R
m×1. We

note that our estimation problem involving a multivariate Gaussian

noise process becomes intractable if both the source covariance is

non-diagonal and non-sparse and the noise covariance is full rank.

The assumption of structured noise helps with accurate estimation

with the use of the variational Bayesian factor analysis methods

which are robust to smaller data sizes and to the underlying factor

dimension specification. The joint estimation of both diagonal

sparse source covariance and structured noise covariance is what

we are aiming for. Currently, we perform factor analysis-based

decomposition of xk as follows:

zk = Auk + ε,

where A ∈ R
m×q is a mixing matrix, uk is a q-dimensional column

vector, and ε is modeling noise. Notice that we drop the iteration

symbol l for simplification of notations.

We further assume the prior probability distribution of the

factor uk to be the zero-mean Gaussian with its precision matrix

equal to the identity matrix as follows:

p(uk) = N(0, I).

We define the j-th row of mixing matrix A as a column vector aj
such that

A =













aT1
aT2
...

aTM













.

Currently we assume the prior distribution of aj to be:

p(aj) = N
(

0, (σjα)
−1

)

, (9)

where the j-th diagonal element of the modeling noise precision

matrix 6 is denoted σj, and α = diag(α1,α2, . . . ,αq) is a diagonal

matrix. It can be further shown that the posterior probability

distribution has the form of the Gaussian distribution:

p(aj|z) = N
(

āj, (σj9)−1
)

,

where z = [z1, · · · , zK] is the residual signal of K time points,

and āj and σj9 are the mean and precision matrix of the

posterior distribution.

For simplicity, the prior probability distribution of the factor uk
is assumed to be the zero-mean Gaussian with its precision matrix

equal to the identity matrix,

p(uk) = N(0, I).

The factor activity u = [u1, · · · , uK] is assumed to be

independent across time. Thus, the joint prior distribution has

the form

p(u) =

K
∏

k=1

p(uk) =

K
∏

k=1

N(0, I),

where I is an identity matrix of size P × P. The modeling noise ε is

assumed to be Gaussian with the mean of zero:

p(ε) = N(0,�−1),

where � is a diagonal precision matrix. Currently, one can show

that the posterior distribution p(uk|zk) is also Gaussian, which we

assume to be:

p(uk|zk) = N(uk,6
−1
u ),

where uk and 6u are mean and precision, respectively.

By using the variational Bayesian expectation maximization

(EM) algorithm, it can be derived that

6u = A⊤�A+m9−1 + I (10)

ūk = 6−1
u A⊤�zk (11)

A = Rzu(Ruu + α)−1 (12)

9 = Ruu + α, (13)

where Ruu = Eu
[
∑K

k=1 uku
⊤
k

]

, Rzu = Eu
[
∑K

k=1 zku
T
k

]

. Note that

the hyper-parameters α and � can be updated as follows:

α−1 = diag
[ 1

m
A⊤�A+ 9−1

]

�−1 =
1

K

[

Rzz − ARuz

]

,

(14)

where Rzz = Eu
[
∑K

k=1 zkz
⊤
k

]

and Ruz = RT
zu. Finally, we

iteratively update the above equations until the free energy function

converged and the covariance matrix of the structured noise

computed only using the signal of interest is given by

3 = E[zz] =
1

K
ARuuA

⊤ +
1

K
�−1tr(Ruu9

−1). (15)

We refer to the proposed brain source imaging method as

structured noise Champagne (SNC). The key aspect is the novel

way of estimating the covariance of the residual noise within

each iteration.

3 Simulation experiments

In this section, we focus on experiments with simulated data.

In particular, we follow a standard protocol from the literature for

simulating MEG source signals. We combine this with simulated

structured noise of which the precision matrix has low rank. More

details are provided in Section 3.3.
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3.1 Quantifying performance

The performance of brain source reconstructions is evaluated

using response receiver operating characteristics (FROC) (Cai et al.,

2021). It basically measures the probability of detecting a true

source in an image vs. the expected value of the number of false-

positive detection per image. We further compute the A′ metric

which is the area under the FROC curve (Owen et al., 2012;

Snodgrass and Corwin, 1988). Note that the A′ metric determines

the hit rate (hr) of correctly detecting the active sources. We define

the hit rate (hr) as the number of hits for dipolar sources divided by

the true number of dipolar sources in the brain. A dipolar source is

considered as hit when recovered signal power is beyond a certain

threshold value. First, the voxels localized by each algorithm that

are included in the calculation of hit rates are defined as voxels that

are (i) at least 1% of the maximum activation of the localization

result and (ii) within the largest 10% of all of the voxels in the brain.

Within these subsets of voxels, we test whether each voxel is within

the ten nearest voxels to a true source. If estimated activity of a

particular voxel lies within a true source, that source gets labeled

as a “hit.” We also define another metric false positive rate (fr) as

the number of potential false-positive dipolar sources divided by

the total number of false dipolar sources. Note that a larger AOC

value indicates a higher hit rate (hr) than a false-positive rate (fr).

The expression for the A′ metric (Owen et al., 2012) is given by:

A′ =
1

2
(hr + fr)+

1

2
. (16)

In our experiments, we also study the accuracy of the time course

reconstructions. This accuracymetric R is defined as the correlation

coefficient between the seed and estimated source time courses

for each hit. The overall performance of both the accuracy of the

localization and reconstruction of time courses is computed by

combining A′ and R. The aggregated performance (AP) is given by

Cai et al. (2019):

AP =
1

2
(A′ + hrR). (17)

We see that AP values range in [0, 1]. A higher value of AP

indicates a better overall performance of source localization and

time course reconstruction.

3.2 Benchmarking methods

We compare our method structured noise Champagne (SNC)

with the following existing source localization methods:

1. Minimum current estimate (MCE) (Matsuura andOkabe, 1995),

2. Standardized low-resolution brain electromagnetic tomography

(sLORETA) (Pascual-Marqui et al., 2002),

3. Linearly constrained minimum variance (LCMV) (Van Veen

et al., 1997),

4. Noise learning Champagne (NLC) (Cai et al., 2021).

We apply these existing methods within the targeted structured

noise model. For experiments with real data, we first estimate

the noise variance using the variational Bayesian factor analysis

(VBFA) algorithm (Nagarajan et al., 2007) and use the original

Champagne (Nagarajan et al., 2007) to estimate the location of

active brain sources. This result would set an upper bound on the

performance of Champagne with noise learning when baseline data

are not available for real data.

3.3 MEG simulations

We generate source signal data by simulating dipole sources

with a fixed orientation. Damped sinusoidal oscillations with

frequencies sampled randomly between 1 and 75 Hz are created

as voxel source time courses. The time-courses are then projected

to the sensors using the lead-field matrix generated by the

forward model. We consider 271 MEG sensors and a single-

shell spherical model (Hallez et al., 2007) implemented in SPM12

(http://www.fil.ion.ucl.ac.uk/spm) at the default spatial resolution

of 8,196 voxels corresponding approximately to a 5-mm inter-voxel

spacing. We simulated 480 samples for which sampling frequency

is 1200 Hz and signal duration is 0.8 s.

To evaluate the robustness of the proposed method, we

randomly choose noise activity with real brain noise consisting of

actual resting-state sensor recordings collected from ten human

subjects presumed to have only spontaneous brain activity and

sensor noise. Signal-to-noise ratio (SNR) and correlations between

voxel time courses are varied to examine algorithm performance.

The SNR and time course correlation are defined in Owen et al.

(2012). We show an example of time-course reconstruction using

our proposed method in Figures 1, 2. The top plot in Figure 1 is the

simulated ground-truthMEG signal with five active sources. This is

followed by the time-course at the MEG sensor (before adding the

noise). Moreover, finally, the time-course at the bottom in Figure 1

is the measured signal at the MEG sensor with additive noise of

5 dB. The reconstructed time-series using our method SNC is

shown in Figure 2. We also display the time-series reconstructions

obtained using NLC (Cai et al., 2021), sLORETA (Pascual-Marqui

et al., 2002), LCMV (Van Veen et al., 1997), and MCE (Matsuura

and Okabe, 1995). It is noteworthy that the new method SNC is

able to reconstruct the time-series best. For all simulations, the

inter-source correlation coefficient was fixed at 0.99 and the SNR

was fixed at 3 dB. To highlight the source localization by all five

methods, we show the power at each voxel of the reconstructed

time-series and compare it with the ground-truth in Figure 3.

Notice that our method SNL achieves the best results to rightly

localize the brain sources. In other words, it shows the localization

performance of the methods in the simulation experiment.

We also evaluate algorithm performance as a function of SNR,

as shown in Figure 4. The reconstruction performance is evaluated

for five randomly seeded dipolar sources with an inter-source

correlation coefficient of 0.99. The simulations were performed

at SNRs from –8 dB to 10 dB at a step of 1 dB. Both metrics

suggest that our method structured noise Champagne (SNC) is

able to localize the active brain sources more accurately than the

existing methods.

Our method structured noise Champagne (SNC) deviates from

the original Champagne algorithm by the way of noise precision

update step. In the original Champagne algorithm, 3 is learnt
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FIGURE 1

Simulated MEG signal, structured noise, and measurement from MEG sensors. In this experiment, we have five brain sources as we see on the top

plot. The second plot shows the noise generated as per our model of structured noise. The third plot presents the measured signal at the MEG sensor

resulting only from the active brain source time-series—Lx in Equation 1. Finally, the time-series at the bottom is the one captured at MEG sensors

resulting from both active sources and noise—y in Equation 1. For all these, we show 480 time-points.

FIGURE 2

Reconstruction results on the simulated MEG measurement shown in Figure 1. Recall, we have five brain sources in this experiment. It is desirable for

a good brain source imaging method to recover the brain source signal successfully while also suppressing the noise. Notice that in this experiment

for the considered structured noise model, noise learning Champagne (NLC), and our method structured noise Champagne (SNC) are able to

mitigate the noise more successfully. Between them, SNC is able to produce cleaner brain source time-series. In this experiment, standardized

low-resolution brain electromagnetic tomograph (sLORETA), linearly constrained minimum variance (LCMV), and minimum current estimate (MCE)

failed to achieve satisfactory reconstruction.

from available baseline or control measurements (Wipf et al.,

2010). In contrast, here in structured noise Champagne (SNC), we

update rules for estimation of a diagonal noise covariance, without

baseline measurements. In Figure 5, we demonstrate how well the

structured noise is reconstructed. In particular, we compute the

geodesic distance (Venkatesh et al., 2020) between true structured
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FIGURE 3

Localization results of simulation experiment (visualization of brain sources power). In this experiment, we simulated five brain sources: S1, S2, S3, S4,

and S5. For each brain source, we display the localization by all five methods. Notice that our method SNC is able to localize the sources most

accurately.

FIGURE 4

Aggregate performance in simulations for varying noise levels for the number of noise factors m = 40. In this experiment, we use five active brain

sources in our simulation. On the other hand, we first simulated a structured noise drawn from N(0,3−1). Furthermore, we use the knowledge of the

structured noise model at the heart of our method to reconstruct the voxel-level time-series. Notice that our method structured noise Champagne

(SNC) performs better than every existing method in terms of correctly localizing the active brain sources.
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FIGURE 5

Geodesic distance (Venkatesh et al., 2020) between true and

estimated precision matrices of structured noise for a di�erent

number of noise factors m.

noise and the reconstructed one using SNC. Then, we plot the

geodesic distance across a range of signal-to-noise ratio (SNR)

for different values of rank. We found that our method SNC is

able to predict the structured noise fairly consistently across SNR

values. However, we empirically also found that there is still scope

for improvement in the estimated noise precision. We will focus

on new technical innovations to address this limitation in our

future research.

4 Analysis on real MEG data

Real MEG data were acquired in the Biomagnetic Imaging

Laboratory at the University of California, San Francisco (UCSF)

with a CTF Omega 2000 whole-head MEG system from VSM

MedTech (Coquitlam, BC, Canada) at a 1,200 Hz sampling rate.

Formal consent was collected from each participant in our study

for using his/her data for research studies. All study protocols were

approved by the Committee for Human Research at UCSF. The

lead-field for each subject was calculated in NUTMEG (Hinkley

et al., 2020) using a single-sphere head model and an 8-mm voxel

grid corresponding to 5,300 voxels. Each lead-field column was

normalized to have a norm of unity. The MEG data were digitally

filtered from 1 to 45 Hz to remove artifacts and DC offset. In

addition, trials with clear artifacts or visible noise in the MEG

sensors that exceeded 10 pT fluctuations were excluded prior to

source localization analysis. We experimented on one real MEG

auditory evoked fields (AEF) dataset (Cai et al., 2021) to evaluate

the performance of our newly introduced brain source imaging

method SNC.

4.1 Auditory evoked fields data

In this section, we discuss the neural source localization

performance of our method structured noise Champagne (SNC)

on auditory evoked fields (AEF) in the MEG signal. AEF are

often characterized as a function of latency, scalp topography,

and the perceptual/cognitive process (Godey et al., 2001). Source

localization from auditory evoked fields (AEF) data using MEG

measurement is a potential alternative for studying human brain

function (Teale et al., 1996). In all experiments with AEF data, the

neural response time-series was elicited during passive listening to

binaural tones (600 ms duration, carrier frequency of 1 kHz, 40 dB

SL). The post-stimulus window in which AEF were analyzed was

set to be +50 ms to +150 ms.

Figure 6 shows auditory evoked field (AEF) localization results

vs. the number of trials from a single representative subject. We

compare our result with other methods—sLORETA, LCMV, MCE,

and NLC. The power at each voxel around the M100 peak is

plotted for each algorithm. SNC is able to localize the expected

bilateral brain activation with focal reconstructions under all trial

settings. Specifically, the activities localize to Heschl’s gyrus in the

temporal lobe, which is the characteristic location of the primary

auditory cortex. NLC is able to localize the bilateral auditory activity

but with shrinkage on one side of the brain activity. The other

algorithms do not show robustness compared to SNC. Notice that

localization of MCE is biased toward the edge of the head. On the

other hand, sLORETA and LCMV produce several areas of pseudo-

brain activity. We further note that the LCMV beamformer has

a disadvantage in this structured noise scenario due to its well-

described weakness for temporally correlated sources as they occur

in the auditory cortices for AEFs.

In Figure 7, we present the performance results of sLORETA,

LCMV, MCE, NLC, and SNC for AEF localization vs. number of

trials for one subject. The error bars in each plot show standard

error. Trials are randomly chosen from around 120 trials from each

subject, and the number of trials is set in a range from 5 to 60.

Each condition is repeated over 30 times for each subject. In this

case, we consider the ground truth as the brain activity estimated

from approximately 120 trials. In general, increasing the number

of trials increases the performance of all algorithms. Notice that

all algorithms perform similar when the number of trials is under

10. However, both NLC and SNC work better when the number of

trials is above 20. Importantly, when the number of trials increases

higher than 40, SNC outperforms all other methods in terms of

efficiently localizing the active brain sources.

5 Discussion

This study offers an efficient way to estimate contributions to

sensors from noise without the need for additional “baseline” or

“control” data, while preserving robust reconstruction of complex

brain source activity. The underlying data estimation part of our

algorithm is based on a principled idea of estimating noise statistics

from the model residuals at each iteration of the alternating

minimization step of the Champagne algorithm. The key step

of the noise learning operation is accomplished by the fact that

the residual noise at each iteration exhibits structured precision

statistics. The proposed algorithm is readily available to handle a

variety of configurations of brain sources under high noise and

interference conditions without the need for additional baseline

measurements—a requirement that commonly arises in datasets
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FIGURE 6

Auditory evoked field (AEF) localization results vs. number of trials from one representative subject using standardized low-resolution brain

electromagnetic tomograph (sLORETA), linearly constrained minimum variance (LCMV), minimum current estimate (MCE), noise learning

Champagne (NLC), and our method structured noise Champagne (SNC). Note that NLC is able to localize the bilateral auditory activity. In contrast,

MCE localization is biased toward the edge of the head. Both sLORETA and LCMV produce some areas of pseudo brain activity.

like resting state data analyses. In this context, we note some of

the noise/interference reduction strategies—signal space separation

(SSS) (Taulu et al., 2005), signal-space projection (SSP) (Uusitalo

and Ilmoniemi, 1997), and dual signal subspace projection (DSSP)

(Sekihara et al., 2016) for EEG/MEG signals. These methods

are primary preprocessing techniques for the EEG/MEG analysis

pipeline. In fact, these methods are precisely used to mitigate the

noise/interference from theMEG/EEG sensor and external sources.

However, none of these are designed to reconstruct the voxel-level

time-series. On contrary, ourmethod SNC estimates theMEG/EEG

time-series at each voxel of the sensor data.

Exhaustive experimental results demonstrate that the

proposed source imaging method offers significant theoretical

and empirical advantages over the existing benchmark algorithms

when the noise covariance cannot be accurately determined in

advance. In simulations, we particularly explored noise learning

algorithmic performance for complex source configurations

with highly correlated time-courses, and high levels of noise

and interference. These simulation results establish the fact that

our method outperforms the classical Champagne algorithm

(Nagarajan et al., 2007) with an incorrect noise covariance

as it achieves higher score of aggregated performance as

compared to this and other existing benchmarking methods

(Matsuura and Okabe, 1995; Pascual-Marqui et al., 2002;

Van Veen et al., 1997; Cai et al., 2021). It is relevant to

mention that data-driven approaches, that is, artificial neural

networks (ANN)-based inverse solutions, are receiving increasing

interest in the literature (Razorenova et al., 2020; Sun et al.,

2020; Hecker et al., 2021; Liang et al., 2023). It would be

an interesting future extension to explore the scope of our

proposed noise learning scheme within these recent artificial

intelligence techniques.
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FIGURE 7

Aggregate performance results vs. number of trials for auditory

evoked field (AEF) data using standardized low-resolution brain

electromagnetic tomograph (sLORETA), linearly constrained

minimum variance (LCMV), minimum current estimate (MCE), noise

learning Champagne (NLC), and our method structured noise

Champagne (SNC). It is interesting to note that SNC achieves the

best aggregated performance after 40 trials. As expected, the

performance also improves with the number of trials.

To the best of our understanding, the improved performance

of this algorithm arises from the efficient the method of estimating

the noise statistics via factor analysis of the residual component.

Moreover, the proposed structured noise Champagne (SNC)

algorithm is found to be robust even when the algorithms

are initialized to incorrect noise values. Most importantly, the

proposed method is able to robustly localize brain activity with

a few trials or even with a single trial in the AEF dataset. This

is indeed a significant advancement in electromagnetic brain

imaging. We argue that this phenomenon may dramatically cut

down the duration of data collection up to 10-fold. This scan-

time reduction is particularly important in studies involving

children with autism, patients with dementia, or any other subjects

who have difficulty tolerating long periods of data collection. In

summary, our proposed method offers significant advantages over

many existing benchmark algorithms for electromagnetic brain

source imaging.

Finally, we would like to discuss some tradeoffs in the current

algorithm. Here, we restrict to a diagonal source covariance matrix

estimate, which ensures the sparsity of brain sources (Hashemi

et al., 2021a), and our convex bounding cost function ensures

guaranteed convergence (Wipf et al., 2011; Wipf and Nagarajan,

2009). The structured low-dimensional manifold assumption of

the noise covariance helps with accurate estimation with the

use of the variational Bayesian factor analysis methods which

are robust to smaller data sizes and to the underlying factor

dimension specification (Nagarajan et al., 2006, 2007). However,

if we want to solve a joint signal and noise estimation problem

where both the source and noise covariances are non-diagonal

and non-sparse, this problem can become intractable (Hashemi

et al., 2020, 2021a). We hope to examine this problem in our

future study.
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Appendix

A1. Proof of Equation 3

Recall that the posterior probability distribution function

p(xk|yk) is Gaussian which we assumed to be N(xk,Ŵ
−1).

Furthermore, the exponential part of this Gaussian distribution is

given by:

− 1
2 (xk − xk)

TŴ(xk − xk)

= − 1
2x

T
k
Ŵxk + xT

k
Ŵxk + C, (18)

where C stands for the terms that do not contain xk.

We also know that p(yk|xk) = N(Lxk,3
−1) and p(xk) =

N(0,8−1). Hence, the posterior probability p(xk|yk) can be

derived by using Bayes’ rule in Equation 2. We see that the

exponential part of the posterior probability p(xk|yk) takes

the form:

− 1
2

[

xT
k
8xk + (yk − Lxk)

T3(yk − Lxk)
]

= − 1
2x

T
k
(8 + LT3L)xk + xT

k
LT3yk + C≃, (19)

where C≃ again stands for the terms that do not contain xk.

Comparing the quadratic terms of xk on the right sides of

Equations 18, 19:

Ŵ = 8 + LT3L. (20)

Similarly, comparing the linear terms of xk on the right sides of

Equations 18, 19:

xk = Ŵ−1LT3yk. (21)

Furthermore, using the matrix inversion formula of Equation

(C.92) in Sekihara and Nagarajan (2015), Equation 21 can be

rewritten as:

xk = 8−1L⊤(3−1 + L8−1L⊤)−1yk. (22)

Frontiers inHumanNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fnhum.2025.1386275
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org

	Structured noise champagne: an empirical Bayesian algorithm for electromagnetic brain imaging with structured noise
	1 Introduction
	2 Method
	2.1 Generative model
	2.2 Source estimation
	2.3 Structured noise estimation using variational Bayesian factor analysis

	3 Simulation experiments
	3.1 Quantifying performance
	3.2 Benchmarking methods
	3.3 MEG simulations

	4 Analysis on real MEG data
	4.1 Auditory evoked fields data

	5 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References
	Appendix
	A1. Proof of Equation 3



