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Introduction: Emotion recognition is crucial in facilitating human-computer

emotional interaction. To enhance the credibility and realism of emotion

recognition, researchers have turned to physiological signals, particularly EEG

signals, as they directly reflect cerebral cortex activity. However, due to inter-

subject variability and non-smoothness of EEG signals, the generalization

performance of models across subjects remains a challenge.

Methods: In this study, we proposed a novel approach that combines time-

frequency analysis and brain functional networks to construct dynamic brain

functional networks using sliding time windows. This integration of time,

frequency, and spatial domains helps to e�ectively capture features, reducing

inter-individual di�erences, and improving model generalization performance.

To construct brain functional networks, we employed mutual information to

quantify the correlation between EEG channels and set appropriate thresholds.

We then extracted three network attribute features—global e�ciency, local

e�ciency, and local clustering coe�cients—to achieve emotion classification

based on dynamic brain network features.

Results: The proposed method is evaluated on the DEAP dataset through

subject-dependent (trial-independent), subject-independent, and subject- and

trial-independent experiments along both valence and arousal dimensions. The

results demonstrate that our dynamic brain functional network outperforms the

static brain functional network in all three experimental cases. High classification

accuracies of 90.89% and 91.17% in the valence and arousal dimensions,

respectively, were achieved on the subject-independent experiments based on

the dynamic brain function, leading to significant advancements in EEG-based

emotion recognition. In addition, experiments with each brain region yielded

that the left and right temporal lobes focused on processing individual private

emotional information, whereas the remaining brain regions paid attention to

processing basic emotional information.

KEYWORDS

EEG, emotion recognition, dynamic brain function network, subject independence,

subject and trial independence

1 Introduction

Emotion is a crucial mental state that significantly influences cognition, decision-

making, and behavior, playing a pivotal role in people’s daily lives. As a result, human

emotion recognition has emerged as a focal point of research in various fields, such

as cognitive science, computer science, and artificial intelligence (Guangming et al.,

2021). Understanding the mechanisms of brain function related to emotions holds great
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significance for enhancing automatic emotion analysis, and

human-computer interaction, as well as assisting in the

detection and treatment of emotion-related brain diseases

and psychological disorders.

Emotional intelligence has been in the process of being

mapped out since the concept of “emotional computing” was

introduced in 1997. Emotions, a unique and complex intrinsic

property of human beings, are slowly emerging in the form of

human-computer interaction through technological simulations

and commercial reconfigurations of productivity. In affective

computing, emotion recognition is the most fundamental and

important element of research. Emotion recognition identifies

various human emotional states mainly through the learning of

non-physiological signals such as human facial expression, voice

intonation, body posture, etc., and physiological signals such

as EEG signals, ECG signals, EMG signals, etc. (Yuchi, 2017).

Physiological signals are spontaneously generated under the direct

control of the nervous system and the endocrine system and

are less likely to be disguised and more realistic than non-

physiological signals such as facial expressions and voice intonation

(Ke et al., 2021). In recent years, studies in neuroscience and

cognitive science have affirmed that the generation of emotion

is closely linked to the activity of the cerebral cortex. Moreover,

due to the ease of collecting EEG signals, their high temporal

resolution, and the ability to directly record the activity of cortical

potentials, EEG signals can reflect a person’s emotional state more

truly and reliably compared to other physiological signals. As a

result, emotion recognition based on EEG signals has attracted

widespread attention.

Emotion recognition using EEG signals typically involves four

main steps: EEG signal acquisition, data preprocessing, feature

extraction, and classification recognition (Zhongmin et al., 2022).

Feature extraction is the key step in emotion recognition, and

whether features highly relevant to emotion are extracted directly

determines the performance of the recognition model. Commonly

used EEG signal features include time domain, frequency domain,

time-frequency, and nonlinear features (Yan, 2021). Wagh and

Vasanth (2022) selected one electrode pair within each of the

five brain regions to calculate various time domain features

such as Hjorth parameter, kurtosis, skewness, etc., and extracted

features such as power spectral density, energy, standard deviation,

and variance by combining them with DWT, and classified

the EEG signals using K Nearest Neighbor and Decision Tree.

Chen et al. (2020) computed the L-Z complexity and wavelet

detail coefficients of EEG signals and then performed Empirical

Mode Decomposition and the average approximate entropy of

the first four Intrinsic Mode Functions were used as features

input into a LIBSVM classifier for dichotomous classification for

emotion. Sarma and Barma (2021) utilized continuous wavelet

transform and power spectral density to compute features using

random matrix theory to distinguish EEG segments with high

emotional content, automatically eliminating extraneous channels.

However, the generation of emotional activity is the result of the

interaction of multiple regions of the brain with each other. In

addition, traditional features often neglect the spatial interaction

information between brain regions, leading to a loss of important

spatial information.

Graph neural network is a deep learning-based method

for processing graph domain information, which can effectively

explore the internal connections between nodes in graph-

structured data. In recent years, there have been more and

more researchers applying graph neural networks to the study

of EEG emotion recognition, and trying to recognize and

classify various types of emotions by combining time domain

features (Huiyu, 2021). Noteworthy studies in this field include

Bi et al. (2022)’s deep graph convolutional neural network

(MdGCNN) with multi-domain fusion of feature inputs, which

fuses differential entropy and Pearson correlation coefficient as

network inputs, thereby eliminating the limitations of unimodal

feature studies and extracting complementary high-level features.

Zhang et al. (2021) improved the dynamic graph convolutional

neural network (DGCNN) by introducing sparse constraints on

the graph and solving the sparse constraint minimization problem,

which ensures the convergence of the network model. Also, the

experimental classification results are superior to the original

model. The improved graph convolution model with dynamic

channel selection designed by Lin et al. (2023) combines the

advantages of one-dimensional convolution and graph convolution

could capture both intra- and inter-channel EEG features. Liu et al.

(2023b) proposed the global-to-local feature-based aggregation

network, GLFANet, which consists of multiple graph convolutional

blocks to form a global learner and multiple convolutional blocks

to form a local learner, which can learn both global and local

features of EEG signals. Qiu et al. (2023) presented a multi-head

residual graph convolutional neural network (MRGCN), which

combines the short- and long-range connected brain networks

for EEG emotion recognition. The spatio-temporal feature fusion

convolutional graphical attention network model (STFCGAT)

proposed by Li Z. et al. (2023) based on multichannel EEG

signals utilizes a convolutional graphical attention network to

fuse DE and FC features and extract high-level graph structural

information for emotion recognition. Xu T. et al. (2023) designed

the domain-adversarial graphical attentionmodel (DAGAN) which

combines graphical attention neural networks and self-attention

mechanisms. Compared to other graphical convolutional networks,

this approach effectively improves performance by utilizing self-

attention petrification to extract salient EEG features. Li M. et al.

(2023)’s fusion graph convolutional network (FGCN) extracts

and fuses features of EEG topological connectivity, functional

connectivity, and causal connectivity, and the experimental results

show that the fusion of different relational graphs can effectively

improve emotion recognition performance. Although similar

studies mentioned above have begun to acknowledge the crucial

role of inter-channel relationships in EEG, this structure has not

been fully utilized to effectively learn significant EEG features.

Moreover, most of the traditional features that are still extracted,

such as DE, PSD, DASM, DCAU, etc., are then input into graphical

neural networks for classification, but they do not describe

the interactions and relationships between brain regions and

channels better than the features of network attributes extracted by

constructing the functional brain network.

Functional brain networks, which focus on whether brain

regions and channels are functionally interconnected or separate

from each other, are one of the main ways to characterize
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the synergistic work patterns among different brain regions and

channels (Yuchi, 2017), reveal the functional relationships among

different brain regions and channels, and are an effective way to

reveal the interaction of cognitive information (Li C. et al., 2023).

Zhang et al. (2023) calculated the phase lock values of different

frequency bands of EEG signals, built a distance matrix, and put

the distance matrix and its complexity into a machine learning

classifier for classification. Li et al. (2022) computed the Pearson

correlation coefficient, phase lock value and phase lag coefficient of

the EEG signals, which were inputted into the proposed network

model combining multiscale residual network (MSRN) and meta-

transfer learning strategy (MTL) to alleviate the problem of large

individual differences among subjects. Wang et al. (2022) proposed

a feature fusion approach that utilizes the PageRank algorithm to

select the significant node weights in the brain functional network

constructed by Pearson’s correlation coefficient. These weights are

then combined with the multi-scale permutation entropy of EEG

signals as the feature inputs for the subsequent classifier, and

the experimental results outperformed other EEG synchronous

feature networks. Li C. et al. (2023)multiple emotion-related spatial

network topology patterns (MESNPs), which apply brain functional

network features such as PLV to discriminative graph topologies in

recognition networks, effectively improves emotion classification

performance. For emotion recognition studies that employ brain

networks, the construction of functional brain networks with static

connectivity is mainly carried out. In other words, it is assumed

that the connectivity of the brain network remains relatively stable

within the time range of the computed EEG signals. However, it has

been revealed that brain activity undergoes continuous changes at

the level of seconds or even milliseconds as time elapses. Therefore,

solely considering the static brain network will lead to the loss of

some of the effective time-related features.

Existing investigations have achieved pleasing accuracy in

subject-dependent emotion recognition. Furthermore, some

researchers have also performed leave-one-subject-out (LOSO)

validation experiments on the DEAP dataset. However, because of

the non-stationary nature of EEG signals and the significant inter-

subject variability, cross-subject emotion recognition often yields

suboptimal outcomes. Bi et al. (2022)’s MdGCNN-TL, an extended

network model of MdGCN, achieved an average classification

accuracy of 65.89% for the LOSO validation experiments of

triple classification on the DEAP dataset. Likewise, the sparse

DGCNN approach presented by Zhang et al. (2021) achieved an

average correct classification rate of 64.66% and 65.98% of the

valence and arousal dimensions, respectively. Li et al. (2022)’s

emotion recognition method based on MSRN and MTL achieved

an average classification accuracy of 71.29% and 71.92% on the

valence and arousal dimensions, respectively. Li et al. (2019)

proposed a domain adaptive method called JDA, which jointly

adapts marginal and conditional distributions, achieving an

average correct classification rate of 62.66%. Hou et al. (2022)

presented feature a pyramid network (FPN) based on biharmonic

spline interpolation, attaining an average classification accuracy

of 80.38% and 82.33% in the valence and arousal dimensions.

Jana et al. (2022) proposed a novel method for combining EEG

spatiotemporal information, STF, which achieved an average

correct classification rate of 57.165%. Liu et al. (2023a) presented

an emotion recognition model based on attentional mechanism

and pre-trained convolutional capsule network, which achieves

accuracies of 62.71% and 63.51% for the valence and arousal

dimensions, respectively. Xu G. et al. (2023) proposed the GRU-

Conv model, which consists of GRU and CNN, and achieves

average accuracies of 67.36% and 70.07% for the valence and

arousal dimensions, respectively. She et al. (2023) designed a multi-

source transfer learning framework, achieving a classification

accuracy of 64.40%. The cross-subject emotional EEG classification

model introduced by Quan et al. (2023) based on multi-source

domain selection and subdomain adaptation, achieved average

classification rates of 81.19% and 79.59% on the valence and

arousal dimensions, respectively. The subject-independent

LOSO validation results from the above studies on the DEAP

dataset indicate that there is room for improvement in achieving

satisfactory classification accuracy.

To address these challenges, this paper proposes a novel

approach that integrates time-frequency analysis and brain

functional network analysis to construct dynamic brain functional

networks across different frequency bands. This paper’s main

contributions are illustrated as follows: (1) Comparing the ability

of static and dynamic functional brain networks to capture brain

activity, i.e., brain network connectivity, it is concluded that high-

precision dynamic functional brain networks are better able to

capture more comprehensive and extensive connectivity between

different regions of the brain over time. (2) The combination of

time-frequency analysis and dynamic brain functional networks

effectively integrates features in the time, frequency and spatial

domains, reduces inter-subject variability, improves cross-subject

emotion recognition performance, and provides strong support

for the generalization ability of affective computing technology

in practical applications. (3) The impact of various brain

regions on emotion recognition was investigated. Following

subject-dependent and subject-independent experiments, it was

determined that the temporal lobe predominantly mediates the

personalized processing of emotional pleasure levels, whereas

other brain regions primarily engage in processing fundamental,

common information during the processing of emotional stimuli.

(4) In contrast to deep learning models, the method introduced

in this paper offers a more intuitive insight into emotion

recognition and brain function research, adopting a more

explainable perspective. Figure 1 depicts the flowchart of emotion

recognition based on dynamic brain functional networks, including

dynamic segmentation of EEG signals, brain functional network

construction and network attribute feature extraction and selection,

and emotion classification.

2 Materials and methods

2.1 Dataset

The data used in this paper were obtained from the DEAP

dataset (Koelstra et al., 2011). The dataset recorded 40-lead data,

which encompassed 32-lead EEG signals and an additional 8-

lead physiological signals, from 32 healthy subjects (16 males

and 16 females, with an age range of 19–37 years old, a mean
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FIGURE 1

Flow chart of dynamic brain function network based emotion recognition.

age of 26.9 years old, and all right-handed). The 32-lead EEG

channels are depicted in Figure 2. Each subject performed 40

experiments, i.e., watched 40 60-second music video clips of

different types to evoke and record the physiological signals

related to emotions, and assessed their emotional state in the

range of 1–9 at the end of each experiment, based on the

valence, arousal and other dimensions of the music video clips.

The database provides two types of EEG data: one is the raw

unprocessed data with a sampling rate of 512 Hz, and the

other is the pre-processed EEG data (128 Hz downsampling,

4–45 Hz band-pass filtering, and removal of oculo-electrical

disturbances, etc.), which is the latter chosen in the experiments of

this paper.

The initial size of the data matrix for each subject was 40

trials × 40 channels × 8,064 time points (corresponding to 63

seconds × 128 Hz). This matrix contained additional 8-conductor

non-EEG signals as well as the baseline data from the first 3

seconds. To preprocess the EEG signals, the average of this

baseline data was subtracted from the last 60 seconds of the signal

to eliminate the influence of baseline signals. The 8-conductor

non-EEG signals were directly removed, resulting in the final

EEG signals being ready for further processing. The size of the

preprocessed data matrix for each subject was 40 trials × 32

channels × 7,680 time points (corresponding to 60 seconds ×

128 Hz). Regarding the label data, a threshold value of 5 was

set to classify the valence and arousal ranges into high and low

categories, respectively (score of 5 was classified as high). This

categorization likely simplifies the classification task and allows

for a binary emotion classification approach. For the valence, data

labels with High Valence (HV) and Low Valence (LV) were set

to 1 and 0, respectively. Similarly, for the arousal, data labels

with High Arousal (HA) and Low Arousal (LA) were set to

1 and 0, respectively. The combination of valence and arousal

FIGURE 2

32-lead EEG channel distribution of DEAP dataset.

can be used to construct the four-classification labels for EEG

emotion recognition, i.e., HVHA, HVLA, LVHA, and LVLA. The

dimension sizes of the final EEG data and labels are shown

in Table 1.

2.2 Functional brain network analysis

2.2.1 Complex wavelet analysis
For the above pre-processed DEAP dataset, the EEG signals

in different frequency bands of each subject were analyzed by

complex Morlet wavelet analysis, and the frequency bands were
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TABLE 1 Composition of the processed DEAP dataset.

Size Details

Data 32× 40× 32× 7,680 Subject× video/trial× channel×

data (60 sec.)

Labels 32× 40× 3 Subject× video/trial× label

[valence, arousal, valence & arousal

(four-class)]

FIGURE 3

Schematic diagram of constructing a functional brain network

based on the amplitude di�erence between frequency bands

(constructing a functional brain network based on the phase

di�erence between the frequency bands is the same as that).

4–8 Hz, 8–12 Hz, 12–32 Hz, and 32–42 Hz, corresponding to

theta, alpha, beta, and gamma rhythms. Then, we extracted the

amplitude and phase information of each rhythm and took the

difference between the amplitude and phase of each rhythm to

prepare for the subsequent construction of the functional brain

network. In this way, the amplitude and phase based on the four

frequency bands can be obtained from six copies of the difference

data, respectively. Figure 3 constructs a flowchart for constructing

a functional brain network based on the amplitude difference

between the frequency bands.

2.2.2 Dynamic time division
Functional brain networks are divided into two categories:

static and dynamic connections. A static brain functional network

is one in which the brain activity i.e., the functional topology of the

network is kept relatively stable by default for long time periods

of acquired EEG signals. It has been shown that brain activity

varies continuously over time at the second or even millisecond

level. Dynamic brain function networks solve the problem of time-

varying information loss in static function networks, which usually

use sliding time windows to divide a given EEG signal into small

time segments, i.e., dynamic brain function networks are composed

of multiple static brain function networks.

To determine if dynamic time division is beneficial for the

brain function network in capturing temporal information, the

performance of the static brain function network (without a sliding

time window or with a 60-second sliding time window) was

compared with that of the dynamic brain function network using

different sliding time window lengths for emotion classification.

Since brain activity, or the brain function network, changes over

time at the level of seconds or even milliseconds, a fine division

of the time dimension of the EEG signal can capture more

information. Therefore, the sliding time window length was set to

gradually change from coarse-grained to fine-grained time division.

Corresponding to this, the sliding time window length of the

dynamic brain function network in the experiments of this paper

was set to 10s, 6s, 3s, and 1s step by step. When the static brain

functional network is employed, the 60-second signal is regarded

as 1 segment for further processing.

2.2.3 Brain functional networks construction
based on MI

The size of the network functional connectivity is generally

estimated by the correlation, coherence, mutual information, phase

lock value and phase lag coefficient between channels, i.e., nodes,

in different regions of the EEG, followed by an artificial selection

of thresholds to determine the existence of edges between the

channels to complete the construction of the functional network.

Considering the nonlinearity of EEG signals, in this paper, mutual

information is chosen as a measure of functional connectivity

between electrodes.

Mutual Information (MI) is a commonly used information

measure in information theory to evaluate the degree of

dependence between two random variables, representing the

amount of information contained in one random variable about

another random variable, and in the field of EEG emotion

recognition, MI can also be used to estimate the magnitude of

synchronization between EEG signals in two electrodes. The MI

between two random variables can be defined as:

MIxy = Hx +Hy −Hxy (1)

where Hx = −
∑M

i=1pilnpi represents the information entropy of

variable x, Hy is the same, pi represents the probability density,

Hxy = −
∑M

i,j pi,jlnpij represents the joint probability information

entropy between x and y, and pij represents the joint probability

density between the variables. The greater the value ofMI between

two variables, the greater the synchronization between the EEG

signals of the two electrodes is represented.

Based on the aforementioned preliminary processing of EEG

signals, by setting the window to 60, we can obtain a data size of 32

channels × 12 for each subject per trial. That is, without dividing

the signals, a 32 × 32 channels × 12 functional connectivity

matrix is generated by sequentially calculating the synchronization

between different channels based on MI. Due to significant inter-

individual differences, it is not feasible to binarize the functional

connectivity matrices of all subjects using a uniform threshold.

Therefore, the elements within each functional connectivity matrix

are sorted in ascending order to obtain a 1× 1024 data matrix, and

the data at position 0.3 (i.e., data located at position 307) is taken as

the threshold. If the data is less than the threshold, it is set to 0, and

the connecting edge is ignored; if it is greater than the threshold,

it is set to 1, and the connecting edge is retained. Subsequently,

the brain functional networks were constructed based on the

binarization matrix. The number of networks constructed by the

static brain functional network analysis and the dynamic brain

functional network analysis under different sliding time windows

was proportional to the number of time segments, e.g., the number
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of networks constructed by static brain functional network analysis

was 12, and the number of networks constructed by dynamic

brain functional network analysis under the 6-second sliding time

window was 120 (12 × 10, the number 10 means that the 60-

second signal was divided into 10 segments by the 6-second sliding

time window).

2.2.4 Network topology attribute features
extraction

After completing the abstraction of the network, the graph

theory is used to extract the network related attributes. Functional

integration and functional segregation of brain networks are two

basic principles of the operation of complex brain networks

that can quantify the global and local information processing

capabilities of the brain. Functional integration refers to the

brain’s ability to integrate information from different regions,

i.e., the ability to process global information, emphasizing the

interactive relationship between multiple brain regions. Global

information processing capacity is typically measured by two

network properties, global efficiency and average shortest path

length. Functional segregation refers to the ability of the brain

to process specific information within regions, i.e., the ability to

process local information. The ability to process local information

is usually measured by network properties such as local efficiency,

clustering coefficient, and node degree. Functional integration and

functional segregation in brain activity are interdependent and

complementary. When performing an activity task, it is necessary

for each brain region to simultaneously invoke multiple brain

regions formutual coordination and integration, whilemaintaining

their respective functional specificities (Tononi et al., 1994).

Based on the metrics of brain functional integration and

functional separation, we compute three network attribute features,

namely the global efficiency, local efficiency, and local clustering

coefficient. This is because the shortest path length requires the

network to be fully connected to be meaningful. However, the

choice of a threshold for functional network connectivity may lead

to a network that is not fully connected. Therefore, we decide to

discard this feature.

Characteristic Path Length Lp is the average of the shortest

paths from any node i in the network to other nodes within the

network G. It is a key parameter for studying the complexity of

brain networks, and can reflect the information transfer ability of

brain regions. The smaller the characteristic path length,the faster

the information transfer speed between networks. The definition of

characteristic path length is shown below:

Lp =
1

N(N − 1)

∑

i6=j∈G

Li,j (2)

where Li,j denotes the shortest path between node i and node j, and

N is the number of network nodes.

The characteristic path length is practical only for connected

nodes. If there is no path connection between two nodes, the

shortest path length obtained will be infinite. In order to overcome

this limitation, the efficiency between the nodes is defined to be the

inverse of the shortest path 1/Li,j and the Global Efficiency Eg is

defined as shown below:

Eg =
1

N(N − 1)

∑

i6=j∈G

1

Li,j
(3)

Local Efficiency Eloc is used to measure the degree of local

network aggregation formed by network node i and its neighboring

nodes. The local efficiency of node i is defined as shown below:

Eloc(i) =
1

NGi (NGi − 1)

∑

j,k∈Gi

1

Li,k
(4)

where Gi is the subgraph formed by node i and its neighboring

nodes, NGi denotes the number of nodes in subgraph Gi, j and k

are nodes in Gi that are different from each other, and Li,k is the

shortest path length between i and k.

The clustering coefficient is an important parameter for

measuring the degree of aggregation of a network, reflecting the

degree of connectivity between neurons in the local functional

regions of a brain network. The local clustering coefficient Ci of

node i is defined as the ratio of the number of edges directly

connected to other nodes in the network to the maximum possible

number of edges connected to other nodes in the network,

as follows:

Ci =
Ei

Di(Di − 1)/2
(5)

where Di denotes the number of neighboring nodes of node i,

and Di(Di − 1)/2 denotes the maximum number of possible edges

between Di nodes.

The above network attributes are obtained in turn for the

generated brain function networks, for each constructed brain

functional network, global efficiency (1 × 1), local efficiency (1

× 32), and local clustering coefficient (1 × 32) were calculated

separately, and the number of features of each brain functional

network was obtained to be 1 × 65, which can be analogized to

obtain the number of features calculated by constructing a brain

functional network for each subject under each trial as (12 × 60/t

× 65), t is the length of the sliding time window. The above feature

extraction is partially implemented on matlab R2018b.

2.3 Emotion classification

In this paper, two types of classification tasks are conducted.

The first is the binary classification of valence and arousal

separately, and the second is the four-class classification of the four

quadrants of the valence-arousal plane.

In terms of data balance, the composition of binary labels for

valence and arousal, as well as four-class labels, was assessed across

32 subjects. On average, HV occurred 22.63 times (56.58% of 40)

per subject across 40 trials. The mean occurrence of HA was 23.56

times (58% of 40). The average occurrences of HVHA, HVLA,

LVHA, and LVLA were 8.13, 9.25, 8.31, and 14.31, respectively.

These results indicate that the data distribution is relatively

balanced, as the mean occurrence of each class is equitable.

Owing to the large number of calculated features, there exist

redundant features which need to be pruned. In this paper, we
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opt to use Max-Relevance and Min-Redundancy (mRMR) for

feature selection. This paper focuses on exploring the acquisition

of temporal information by dynamic brain function networks, and

emotion classification methods are not the main focus of the study.

Therefore, SVM, which has better classification performance and

is widely used, is chosen for classification. Based on the balance of

different labeled data, this paper chooses accuracy as an evaluation

metric. In order to improve the generalization performance of

the classifier, the training process uses repeated hierarchical 5-fold

cross-validation combined with the grid search method to find

the optimal parameters of kernel function and C. After training

the classifier on the training set to obtain the optimal parameters

of the model, the trained model predicts the probability of the

test set belonging to each category, and this process is repeated

100 times. Finally, the category to which it ultimately belongs is

determined based on the average of the 100 prediction probabilities.

In order to evaluate whether the shortening of the sliding time

window led to a significant improvement in classification accuracy,

a Wilcoxon signed-rank test was conducted on the paired data for

each experimental condition. The test was performed in the two-

tailed case, and the significance level was set at 0.05. All of the above

processes are implemented on python 3.7.0, where the version of

scikit-learn used is 1.0.2.

2.4 Experimental setup

In this paper, subject-dependent, subject-independent, and

subject- and trial-independent experiments were conducted to

gradually explore the prediction of the model in the cross-trial,

cross-subject, cross-subject, and -trial cases.

(1) The subject-dependent experiment involves dividing the

data of each subject (40 trials) into training and test sets (train:test =

3:1) respectively. Then, the training is looped 32 times to obtain the

classification accuracy of the 32 subjects under the training model

based on their own data from different trials. This corresponds

to real-life scenarios where an individual’s emotional response to

a specific stimulus is known and used to predict their emotional

response to other stimuli.

(2) The subject-independent experiments, i.e., leave-one-

subject-out (LOSO) validation experiments, are sequentially

selecting 1 subject as the test set and the remaining 31 subjects as

the training set, cycling through the training 32 times to obtain

the classification accuracy of the 32 subjects under the training

model based on the data of other subjects. Corresponding to the

real-life known emotional responses of some people to a given

stimulus to predict the emotional responses of others to that

given stimulus.

(3) The subject, trial independent experiment is to sequentially

select one subject, randomly choose 20 of his 40 trial data as the

test set, and the remaining 31 subjects choose the remaining 20

trial data as the training set (the dataset is divided in the way as in

Figure 4), and cycle the training for 32 times to get the classification

accuracy of the 32 subjects based on the training model of the

other subjects with different trial data. Corresponding to the real-

life known emotional responses of some people to given stimuli to

predict the emotional responses of others to other stimuli.

FIGURE 4

Schematic diagram of the division of the data set for subject, trial

independent experiments.

3 Experimental results

3.1 Comparison of functional brain
network maps under di�erent sliding time
windows

In order to compare the connectivity between different

channels of the static brain functional network and the dynamic

brain functional network under different sliding time windows, all

the edges in the constructed static brain functional network and the

dynamic brain functional network were connected to form a larger

and denser brain functional network respectively. Then according

to the possible maximum connectivity of the network (e.g., the

maximal connectivity of the static brain functional network was

12, and the maximal connectivity of the dynamic brain functional

network under the sliding time window of 6 seconds was 120),

we selected the edges with the number of connected edges greater

than 70%, 75%, and 80% of the maximal connected edges, and

drew the corresponding brain functional network graphs. The

subject 1 trial 1 was selected for the demonstration to visualize

the changes in the network connection information captured by

the constructed brain functional network as the length of the

sliding time window shortened. Figures 5–9 list static and dynamic

brain functional network diagrams for subject 1 trial 1, where t

in t-p denotes the dynamic brain functional network constructed

under a sliding time window of t seconds, and p denotes the

retention of edges greater than p times the maximum number

of connected edges, and sta-p is the constructed static brain

functional network.

Taking the comparison of the static brain functional networks

and dynamic brain functional network diagrams that retain p times

the number of edges based on their respective maximum number

of connected edges into consideration, it can be found that when

brain network connections composed of edges theoretically larger

than 70% of the maximal connectivity edges are retained, as in

Figures 5a, 6a, 7a, 8a, 9a, it is intuitively found that the density

of brain network connections is progressively greater from the

static brain network graphs to the dynamic brain network graphs
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with progressively shorter lengths of the sliding time window,

indicating that the dynamic brain network is better able to capture

a more comprehensive and broader range of connections among

different channels. However, when brain functional network graphs

consisting of edges larger than 75% and 80% of the respective

theoretical connecting edges are retained, as shown in Figures 5b, c,

6b, c, 7b, c, 8b, c, 9b, c respectively. In this condition, the density of

the brain functional network connection gradually decreases from

the static brain functional network to the dynamic brain functional

network with a gradually shortening sliding time window length.

Considering the dynamic brain functional network constructs a

larger number of brain functional networks compared to the

static brain functional network, if the ability of the dynamic brain

network to capture network connection information is the same

as that of the static brain network, the network sparsity of each

dynamic brain network graph should be greater than that of the

static brain network graph, but the results show the opposite.

Comparing the static functional brain networks with different

numbers of edges, the network sparsity density undergoes the

least amount of change. This indicates that the constructed static

functional brain networks capture more repetitive information

regarding edge connections (the global stability of the brain

network connections) compared to the dynamic functional brain

networks. This shows that the dynamic brain network has the

ability to capture more functional connections over time than the

static brain network. As the sliding time window is shortened, the

dynamic brain network graphs with smaller time windows show

less network density, which indicates that the higher the precision

of the division, the more the dynamic brain network can capture

functional connections based on a higher temporal resolution.

FIGURE 5

Brain functional network maps with retention of edges greater than 70%, 75%, and 80% of the maximum connectivity edge in the static condition.

(a) sta-0.7. (b) sta-0.75. (c) sta-0.8.

FIGURE 6

Brain functional network maps with retention of edges greater than 70%, 75%, and 80% of the maximum connectivity edge under a 10-second

sliding time window. (a) 10-0.7. (b) 10-0.75. (c) 10-0.8.
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FIGURE 7

Brain functional network graphs for retaining edges larger than 70%, 75%, and 80% of maximal connectivity edges under a 6-second sliding time

window. (a) 6-0.7. (b) 6-0.75. (c) 6-0.8.

FIGURE 8

Brain functional network graphs for retaining edges larger than 70%, 75%, and 80% of maximal connectivity edges under a 3-second sliding time

window. (a) 3-0.7. (b) 3-0.75. (c) 3-0.8.

FIGURE 9

Brain functional network graphs for retaining edges larger than 70%, 75%, and 80% of maximal connectivity edges under a 1-second sliding time

window. (a) 1-0.7. (b) 1-0.75. (c) 1–0.8.
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TABLE 2 Accuracy of emotion analysis under subject dependence (mean

± std).

Accuracy Subject_dependent

Arousal(%) Valence(%) Valence &
Arousal(%)

Static 90.31± 10.15 88.75± 15.76 58.28± 21.67

Dynamic-10 94.69± 10.3 96.88± 8.08 70.69± 24.2

Dynamic-6 98.75± 3.31 99.69 ± 1.74 79.31± 17.8

Dynamic-3 100 ± 0 98.44± 8.7 82.76± 21.16

Dynamic-1 93.75± 16.54 95.31± 14.57 88.28 ± 19.31

Bolded values are the best results obtained in different experiments.

This is consistent with the results shown by the functional brain

network constructed by retainingmore than 70% of the edges of the

maximum connectivity edge, because the dynamic functional brain

network can capture more temporally detailed functional brain

network connections, and the production and change of emotion

is accompanied by the change of the functional brain network

connection structure. As a consequence, a denser functional brain

network than the static functional brain network is captured

when retaining more than 70% of the edges of the maximum

connectivity edge.

3.2 Comparison of emotion recognition in
static and dynamic functional brain
networks

3.2.1 Subject-dependent experimental results
Table 2 shows a comparison of the results of subject-dependent

experiments averaged over 32 subjects based on static and dynamic

functional brain networks (in the table Static represents the static

functional brain network and Dynamic-t represents the dynamic

functional brain network with a sliding time window of t).

For the binary classification of valence and arousal dimensions,

from the table, it can be seen that the average classification

performance of the dynamically divided time-constructed brain

function network is above 94.69%, which is greater than the

highest classification performance of 90.31% under the static brain

function network. The best classification performance under the

arousal dimension is 100% when the length of the sliding time

window is 3 seconds, and the best classification performance

under the valence dimension is 99.69% when the sliding time

window is 6 seconds. When each brain function network is

used for the four-class classifications of emotion in terms of

valence and arousal, a finer division of emotion is required. At

this time, the dynamic brain function network constructed with

a 1-second sliding time window achieves the best classification

performance of 88.28%. This indicates that the dynamic brain

function network can effectively capture the feature information of

individual subjects.

The Wilcoxon signed-rank test was conducted on 32 subjects

across three categorical scenarios. In the arousal dimension,

no significant improvement in accuracy was observed for

TABLE 3 Accuracy of emotion analysis under subject independence

(mean ± std).

Accuracy Subject_independent

Arousal(%) Valence(%) Valence &
Arousal(%)

Static 63.91± 9.9 62.9± 9.58 38.98± 8.5

Dynamic-10 68.13± 9.44 70.73± 6.76 44.53± 10.43

Dynamic-6 72.97± 7.74 74.92± 8.92 49.84± 8.31

Dynamic-3 78.2± 6.74 77.82± 8.32 56.17± 8.79

Dynamic-1 91.17 ± 4.88 90.89 ± 3.21 74.69 ± 7.44

Bolded values are the best results obtained in different experiments.

“Dynamic-1” compared to “Dynamic-6,” “Dynamic-10,” or

“Dynamic-3” compared to “Dynamic-6.” However, in all other

instances, there was a significant increase in accuracy when the

sliding time window length was set to a shorter duration relative

to a longer duration. For the valence dimension, the accuracy of

sliding time windows with various lengths was significantly higher

than that of the “Static” condition. In the context of four-class

classification, no significant improvement in accuracy was noted

for “Dynamic-1” compared to “Dynamic-3” or “Dynamic-3”

compared to “Dynamic-6.” Nevertheless, in the remaining cases,

a significant increase in accuracy was again observed when the

sliding time window length was set shorter as opposed to being

set longer.

3.2.2 Subject-independent experimental results
For the classification of subject independence, i.e., leave-

one-subject-out (LOSO) validation, as shown in Table 3, the

results of the LOSO validation for 32 subjects were averaged

to obtain the following results. Because of the reason of the

large gap between subjects, it can be seen that the results are

not as good as the subject-dependent results. However, because

the individualization of subject-dependent experiments will be

more prominent, the fluctuations between individuals will be

larger, whereas with subject-independent experiments we capture

the general commonalities between individuals, reducing the

differences between individuals, so the overall fluctuations will be

smaller in comparison.

Comparing the categorization under the static brain function

network with the different dynamic brain function networks, it

can be seen that the categorization performance of the static

brain function network is worse than that of the dynamic brain

function network. The classification performance of the dynamic

brain function network rises gradually with the shortening of the

length of the sliding time window, and when the sliding time

window is shortened to 1 second, it can be clearly found that

there is a significant improvement in the classification accuracy.

And the approach achieves a high classification accuracy of 91.17%

and 90.89% in the arousal and valence dimensions, 74.69% for

the four-class classification, respectively, which fully explains the

high temporal resolution of EEG signals, and also indicates that

a 1-second sliding time window can relatively adequately capture

common feature information across subjects compared to longer
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FIGURE 10

Classification accuracy of (A) arousal and (B) valence dimensions for each subject under subject independent experiment.

sliding time windows, and has an enhanced effect on cross-subject

categorization. Figures 10A, B show the classification accuracies

of the dynamic and static functional brain networks constructed

based on arousal and valence dimensions for subject-independent

experiments for each subject.

The Wilcoxon signed-rank test was applied to the results from

32 subjects across three classification scenarios. In the arousal

dimension, a significant increase in accuracy was observed as the

sliding time window length was shortened, indicating that shorter

sliding time windows led to better performance compared to longer

ones. In the valence dimension, no significant increase in accuracy

was found for “Dynamic-3” compared to “Dynamic-6.” However,

in all other cases, there was a significant increase in accuracy when

the sliding time window was set to a shorter duration compared to

a longer one. For the four-class classification, a similar trend was

observed: as the sliding time window was shortened, there was a

significant increase in accuracy, demonstrating that shorter sliding

time windows were more effective than longer ones.

3.2.3 Subject- and trial-independent
experimental results

After the inter-subject LOSO validation is finished, the

comparison of the performance of the static brain function network

and the different dynamic brain function networks for the cross-

subject and -trial LOSO validation experiments continued to be

validated, and the results in Table 4 were obtained by averaging

the 32 LOSO validations. From the table, it can be found

that the classification accuracies of the cross-subject and -trial

experiments for binary classification under the static brain function

network and different dynamic brain function networks are slightly

lower than the results of the cross-subject experiments, and the

fluctuation of classification accuracies among the 32 subjects is

even larger. The four-classification case witnesses a slightly greater

decrease in classification accuracy due to the introduction of more

uncertainty across trials, making it more difficult to finely delineate

the sentiment.

Figures 11A, B show the classification accuracies of the

dynamic and static functional brain networks constructed based

TABLE 4 Accuracy of emotion analysis under subject and trial

independence (mean ± std).

Accuracy Subject and Trial_independent

Arousal(%) Valence(%) Valence &
Arousal(%)

Static 65.78± 11.46 59.06± 12.21 37.5± 11.66

Dynamic-10 65.63± 11.58 68.91± 10.81 39.22± 12.57

Dynamic-6 68.44± 10.42 71.56± 10.93 42.34± 11.66

Dynamic-3 77.34± 8.75 75.47± 12.46 51.88± 12.42

Dynamic-1 91.09 ± 6.58 88.13 ± 6.47 67.66 ± 9.27

Bolded values are the best results obtained in different experiments.

on arousal and valence dimensions for subject- and trial-

independent experiment validation for each subject. However,

the trends of classification accuracy for static brain functional

networks and dynamic brain functional networks under different

sliding time windows are similar to those in the above cross-

subject experiments. Both show a gradual increase in classification

accuracy as the sliding time window shortens. Moreover, there is

a significant increase in accuracy when the sliding time window

is 1 second. Along the arousal and valence dimensions, an

average classification accuracy of 91.09% and 88.13% is achieved,

respectively, and 67.66% in the four-class classification. It can be

concluded that dynamic brain functional networks have better

performance than static brain functional networks in predicting

emotional responses between subjects across trials, and that

dynamic brain functional networks under a 1-second sliding time

window are more capable of capturing information about the

common features among different emotions of different subjects.

The Wilcoxon signed-rank test was conducted on the results

from 32 subjects across three classification scenarios. In the arousal

dimension, there was no significant improvement in accuracy for

“Dynamic-6” over “Dynamic-10” and “Static,” nor for “Dynamic-

10” over “Static.” However, in the remaining cases, a significant

increase in accuracy was observed when the sliding time window

was set to a shorter duration compared to a longer one. In the
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FIGURE 11

Classification accuracy of (A) arousal and (B) valence dimensions for each subject under subject and trial independent experiment.

TABLE 5 Comparison of experimental results with other recent work results.

Subject_dependence Subject_independence

(Features)
model/classifier

Valence (%) Arousal (%) Valence (%) Arousal (%)

Liu et al. (2023a) AP-CapsNet 93.89 95.04 62.71 63.51

Xu G. et al. (2023) GRU-Conv 67.36 70.07

Fan et al. (2024) LResCapsule 97.45± 1.49 97.58± 1.31 61.52 66.84

Hou et al. (2024) MECAM 96.95± 2.67 96.59± 2.30 94.76 ± 3.77 93.44 ± 4.06

Tang et al. (2024) MD2GRL 96.51± 2.89 95.77± 2.35 92.58± 3.80 92.04± 3.96

Han et al. (2024) (DE) MS-ERM 90.45 91.31 85.40 86.66

Fan et al. (2024) LResCapsule 97.45± 1.49 97.58± 1.31 61.52 66.84

Ours (MI_Cp,Eloc,Eg)

SVM

99.69 ± 1.74 100 ± 0 90.89± 3.21 91.17± 4.88

Bolded values are the best results obtained in different experiments.

valence dimension, no significant improvement in accuracy was

found for “Dynamic-3” over “Dynamic-6” and “Dynamic-10,” or

for “Dynamic-6” over “Dynamic-10.” In the remaining cases, there

was a significant increase in accuracy when the sliding time window

was set to a shorter duration compared to a longer one. For the four-

class classification, significance analysis yielded results consistent

with those observed in the arousal dimension, showing a significant

increase in accuracy when the sliding time window was set to a

shorter duration compared to a longer one, except for the specific

comparisons mentioned above.

3.2.4 Comparison with related works
In addition, we compared the results of subject-dependent and

subject-independent experiments with the results of other recent

works (the other works also used the DEAP data set, and the

same subject-independent experiments were conducted with LOSO

validation), mainly for subject-independent experiments, as shown

in Table 5. As can be seen from Table 5, the subject-dependent

experiment achieved the highest accuracy of 99.68% and 100%

under both valence and arousal dimensions for our experimental

method, which were achieved at sliding time window lengths of

6 seconds and 3 seconds, respectively. We also obtained higher

average classification accuracies than most deep learning methods

on the valence and arousal dimensions in subject-independent

experiments, at 90.89% and 91.17%, respectively. The results of

the subject-independent experiments were obtained under a 1-

second sliding time window, which fully demonstrates that a sliding

time window for fine segmentation of EEG signals is conducive to

improving the performance of model generalization across subjects

and across subjects and trials.

4 Discussion

4.1 Emotion recognition results in di�erent
functional brain regions

The DEAP dataset studied in this paper was acquired with

a 32-electrode EEG device. These 32 electrodes are divided into

the following five regions: frontal, temporal, occipital, parietal and

central, and the electrodes in different regions were represented by

five different colors in Figure 12.

Frontiers inHumanNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnhum.2025.1445763
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


You et al. 10.3389/fnhum.2025.1445763

FIGURE 12

Functional division of the brain.

To investigate the contribution of each brain region to emotion

classification, the electrodes were divided into different regions

according to the position, and the region-related dynamic brain

function network was constructed for analysis. Since the number

of EEG channels in the parietal region was relatively small, the

EEG channels in the parietal and occipital regions were combined.

Additionally, due to the regional separation of the left and right

temporal lobes, the left and right temporal lobes were selected

to construct the dynamic brain function network separately for

analysis. The specific division is depicted in Figure 12 where the

32 EEG channels were divided into five regions, F, LT, RT, C, and

PO, corresponding to the frontal, left temporal, right temporal,

central, occipital, and parietal lobes. The dynamic brain function

network of each region with a sliding time window length of

1 was constructed by the previous process. The features of the

network attributes (local efficiency, global efficiency, and clustering

coefficient) were extracted and put into the SVM for classification.

4.1.1 Subject-dependent experimental results
The comparison of the emotion recognition accuracies of the

dynamic brain function networks in each brain region under a

subject-dependent experimental setup is shown in Table 6. For the

arousal dimension, the PO region achieved the highest average

accuracy of 86.25% among the brain region classifications. The

occipital lobe processes visual information that elicits emotion,

and the parietal lobe can help individuals assess the intensity of

emotion by integrating various sensory information from inside

and outside the body. Therefore, the parietal and occipital regions

are able to integrate visual and bodily sensory information and

play a dominant role in judging emotional arousal, leading to

more accurate judgments. For the valence dimension, the RT

region achieved the highest mean classification accuracy of 83.44%,

and the LT region achieved a result of 83.13%. Compared to the

average classification accuracy of each brain region in the arousal

dimension, which did not differ much, the results of the remaining

three regions (F, C, and PO) in the valence dimension differedmore

from those of the RT and LT regions. Individuals’ judgments of

emotional valence are often based on the in-depth processing and

understanding of information, which involves the processing of

past memories. For the reason that the medial part of the temporal

lobe is closely related to memories, the left and right temporal

lobes achieved better results than the other brain regions, which

reveals that the left and right temporal lobes dominate the personal

processing of emotional pleasure levels.

4.1.2 Subject-independent experimental results
Under the subject-independent experimental setup, the

emotion recognition accuracy of the dynamic brain function

network in each brain region is compared, as shown in Table 7.

For the arousal dimension, the classification results of each

brain region were lower than those under the subject-dependent

experimental setup, among which the PO region still achieved

the highest average classification accuracy of 74.45%. Figure 13

depicts the emotion recognition accuracy across brain regions for

arousal and valence dimensions. As can be seen in Figure 13A,

the classification results of the remaining brain regions were

also similar to the trend of changes in the average classification

accuracies of the different brain regions obtained under the

subject-dependent experimental setup. For the valence dimension,

the classification results of each brain region were lower than

those obtained in the subject-dependent experimental setup.

By observing the trend of the average classification accuracy

of different brain regions in Figure 13B, it can be seen that the

trend of the classification results of each brain region under

the subject-independent setup is essentially the opposite of that

TABLE 6 Subject-dependent emotion recognition results across brain

regions (mean ± std).

Accuracy Subject_dependent

Arousal(%) Valence(%)

F 80.63± 23.84 69.38± 24.23

LT 80.31± 28.99 83.13± 24.42

RT 83.75± 24.84 83.44 ± 23.8

C 82.5± 22.91 70.63± 29.47

PO 86.25 ± 20.12 69.69± 24.56

Bolded values are the best results obtained in different experiments.

TABLE 7 Subject-independent emotion recognition results across brain

regions (mean ± std).

Accuracy Subject_independent

Arousal(%) Valence(%)

F 72.58± 6.72 73.59± 7.65

LT 73.75± 7.76 69.53± 7.97

RT 74.22± 7.84 69.61± 6.71

C 73.13± 5.12 74.22 ± 7.17

PO 74.45 ± 7.41 71.88± 6.93

Bolded values are the best results obtained in different experiments.
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FIGURE 13

Emotion recognition accuracy across brain regions for (A) arousal and (B) valence dimensions.

obtained under the subject-dependent setup. Region C achieved

the best average classification accuracy of 74.22%; region F also

achieved a classification result of 73.59%; and the left and right

temporal lobes, which had better results in the subject-dependent

setup, achieved the relatively worst results. There is a fundamental

difference between the subject-independent and subject-dependent

settings in the way they deal with individual variability. In the

subject-dependent setting, the model is trained separately for each

subject, i.e., part of a given subject’s data is used for training and

the rest of the data is used for testing, thus capturing the emotion-

related brain activity patterns for each subject specifically. In the

subject-independent setting, the model is based on the training of

certain subjects and is used to predict certain untrained subjects,

so the model needs to capture the emotion-related brain activity

patterns that are common to different subjects. The experimental

results demonstrate that the central and frontal regions mainly

process basic shared information about emotions, while other

regions are influenced by the subjective feelings of the subjects

and focus more on emotionally personalized information, which

is why the central and frontal regions performed better in the

subject-independent experiments.

4.1.3 Subject- and trial-independent
experimental results

The comparison of emotion recognition accuracy of the

dynamic brain function network in each brain region under the

subject- and trial-independent experimental setup is shown in

Table 8. For each brain region, as can be seen in Figures 13A, B, the

average classification accuracy results for each brain region in the

arousal and valence dimensions were lower than the experimental

results in the subject-independent setting, and the trends were

similar between regions. The average classification results obtained

in each brain region in the arousal dimension did not differ much,

with the best result of 71.72% obtained in the LT region. In the

valence dimension, the best classification accuracy result of 72.03%

was obtained in the central region, in line with the results obtained

in the subject-independent setting.

4.2 Experimental results of setting di�erent
thresholds

Threshold settings during the construction of the whole-brain

functional network were explored. In addition to setting the data

at position 0.3 of the ascending numerical order as the threshold,

the data at positions 0.5 and 0.7 are also set as the threshold,

and the classification results of each dynamic and static brain

functional network are shown in Tables 9, 10 for arousal and

valence dimension. When the data at position 0.5 or 0.7 is set

as the threshold, the changing trends of classification accuracies

of different static and dynamic brain functional networks under

each sliding time window are approximately consistent with the

changing trend when the data at position 0.3 is as the threshold.

That is, better performance is achieved when the window division

accuracy is smaller. In the arousal dimension, t = 1,3,6 and static

cases, and in the valence dimension, t = 1,6,10 cases, the best

results are achieved with 0.3 positional data as the threshold, and

in other cases, better results are achieved with 0.5 or 0.7 positional

data as the threshold. In this regard, by observing the elemental

composition of the correlation matrix before thresholding, it can

be found that when using MI to calculate the correlation after data

processing, the change in the correlation value between channels

was within a small range. Therefore, the sparsity of connectivity

TABLE 8 Subject- and trial-independent emotion recognition results

across brain regions (mean ± std).

Accuracy Subject and Trial_independent

Arousal(%) Valence(%)

F 71.09± 12.79 70.16± 10.34

LT 71.72 ± 11.96 66.88± 8.55

RT 70.47± 11.55 65.78± 8.67

C 71.56± 11.89 72.03 ± 11.78

PO 70.47± 10.41 68.44± 10.78

Bolded values are the best results obtained in different experiments.
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TABLE 9 Classification results under di�erent thresholds/arousal (mean ± std).

Accuracy Subject_independent/arousal

t=1(%) t=3(%) t=6(%) t=10(%) Static(%)

0.3 91.17 ± 4.88 78.2 ± 6.74 72.97 ± 7.74 68.13± 9.44 63.91 ± 9.9

0.5 88.91± 5.96 76.95± 6.75 72.27± 6.26 68.91± 7.39 63.05± 10.49

0.7 86.88± 7.04 75.94± 7.15 70.86± 7.77 71.02 ± 7.6 62.97± 8.83

Bolded values are the best results obtained in different experiments.

TABLE 10 Classification results under di�erent thresholds/valence (mean ± std).

Accuracy Subject_independent /valence

t=1(%) t=3(%) t=6(%) t=10(%) Static(%)

0.3 90.78 ± 3.21 77.58± 8.3 74.77 ± 8.82 70.63 ± 6.67 62.89± 9.58

0.5 86.88± 7.04 77.34± 6.7 72.19± 7.26 68.52± 7.95 63.91 ± 9.44

0.7 90± 6.73 77.81 ± 8.4 72.66± 7.21 69.06± 6.84 62.27± 7.38

Bolded values are the best results obtained in different experiments.

in the functional brain networks after setting different thresholds

might be similar, and the obtained results were also similar.

4.3 Experimental results for di�erences
between frequency bands

In subject-independent experiments, we generated functional

brain network graph features using interband differences under a 1-

second sliding time window to assess the contribution of functional

brain networks with different interband differences to emotion

classification (alpha_theta denotes the inter-amplitude and inter-

phase difference under the alpha and theta bands). The average

classification accuracies of different inter-band difference features

are shown in Table 11. For classification based on amplitude and

phase differences between the bands, in the arousal dimension,

gamma_beta achieves the best classification performance, followed

by gamma_theta, and beta_alpha has the worst result. In the valence

dimension, beta_theta achieves the best performance, followed by

beta_alpha, and alpha_theta has the worst result. However, the

classification results for the difference between the bands were

worse than those for all the bands combined. This is similar to the

results of numerous research experiments (Xu G. et al., 2023; Lin

et al., 2023; Hou et al., 2022; Li C. et al., 2023) conducted by dividing

the frequency bands, where the classification accuracy of all bands

is higher than that of a single band, indicating that there is an effect

of information compensation between the bands.

4.4 Applied to the SEED dataset

To verify the effectiveness of our approach, we also apply

our experimental methodology to another commonly used dataset

which is the SEED dataset (Zheng and Lu, 2015). The SEED dataset

recorded EEG signals from 15 subjects (7 males and 8 females

with an average age of 23.27 years old) watching 15 segmented

videos (including positive, neutral, and negative types, 3–5 min per

video segment), with three repetitive acquisitions at intervals for

each subject. The EEG sampling frequency was 1,000 Hz and there

were 62 EEG acquisition channels. The dataset has preprocessed

signals provided downsampled to 200 Hz and artifacts removed

from the signals using a 0–75 Hz bandpass filter. The preprocessed

signal is selected for validation experiments in this paper. In

order to benchmark the SEED dataset against the DEAP dataset,

a standardization was chosen to retain the 60 seconds of data from

90 seconds to 150 seconds of each segment and to combine the EEG

signals from the 3 acquisitions for each subject, so that the data size

for each subject was 45 trials * 62 channels * 12,000 (200 Hz*60s).

The SEED dataset was sequentially processed similarly to

the DEAP dataset described above, with wavelet analysis to

delineate frequency bands, construction of dynamic brain function

networks and extraction of network attribute features, feature

selection and classification. The three kinds of experiments

mentioned above were done on the processed data separately:

subject-dependent, subject-independent, and subject- and trial-

independent experiments. Here we only selected sliding time

windows of 6, 3, and 1 seconds to construct dynamic brain function

networks. Table 12 lists the results under various experiments. The

best results of 95.56% were obtained under the subject-dependent

TABLE 11 Classification results for inter-band di�erences (mean ± std).

Accuracy Subject_independent / t=1

Arousal(%) Valence(%)

alpha_theta 79.45± 6.02 77.81± 6.4

beta_alpha 77.89± 7.1 79.22± 6.92

beta_theta 79.14± 6.48 79.45± 5.92

gamma_alpha 79.3± 5.97 78.98± 6.28

gamma_beta 81.25± 6.47 78.98± 6.34

gamma_theta 79.84± 4.8 78.36± 6.84

all 91.17 ± 4.88 90.89 ± 3.21

Bolded values are the best results obtained in different experiments.
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TABLE 12 Three classification on the SEED dataset (mean ± std).

Accuracy subject_dependent(%) subject_independent(%) subject and
trial_independent(%)

Dynamic-6 95± 16.61 73.19± 6.1 71.82± 8.66

Dynamic-3 95.56 ± 16.63 81.63± 4.55 76.06± 8.04

Dynamic-1 80± 28.84 97.04 ± 2.65 93.94 ± 4.29

Bolded values are the best results obtained in different experiments.

experiment with a 3-second sliding window, and another 80%

and 95% were obtained under the 1-second and 6-second sliding

windows, respectively. Under the subject independent experiment,

the best results were obtained 97.04% under the 1-second sliding

window, in addition to 81.63% and 73.19% under the 3- and 6-

second sliding windows, respectively. The best results 93.94% were

achieved under subject- and trial- independent experiment under

1 second sliding time window and additionally 76.06% and 71.82%

were achieved under 3 and 6 second sliding time windows. From

the above results, it can be seen that the trend of the results from

different sliding time windows is similar to that of the DEAP

dataset, and the method proposed in this paper also performs well

on the SEED dataset.

4.5 Limitations

While this study presents competitive results in EEG-based

emotion recognition using dynamic brain functional networks, it

also has several limitations that could affect the generalizability

of the findings: (1) During the experiment, we encountered

a limitation where the code running time increased as the

sliding time window length was shortened. This trade-off

between temporal resolution and computational efficiency poses

a significant challenge for future research. It is crucial to develop

effective methods to reduce the time complexity of EEG signal

analysis while preserving the high temporal and spatial resolution

necessary for accurate emotion recognition. (2) In the study of

different brain regions, only the perspective of individual brain

regions is investigated. However, in reality, each brain region does

not exist in isolation, and there are complex network connections

and interactions among them. To conduct a more comprehensive

and nuanced biological interpretation of the brain regions requires

collaboration with researchers in the field of neuroscience. (3)

Additionally, the differences in acquisition equipment, emotion-

evoking stimuli, and emotion labeling methods among different

datasets may pose challenges to the analysis and processing of

EEG signals. In the future, we plan to validate our method on

different datasets, aiming to obtain more realistic and general

experimental results.

5 Conclusion

In this paper, we focus on feature extraction for EEG emotion

recognition and propose a novel approach by fusing feature

information from EEG time-frequency space using the dynamic

brain functional network method. We extensively compare the

performance of static and dynamic brain functional networks

under various sliding time windows for emotion recognition.

Our findings indicate that the dynamic brain functional network

outperforms the static brain functional network in capturing

more relevant information, thus enhancing emotion categorization.

This advancement holds significant potential for the fields of

artificial intelligence and emotion recognition. In the future, we

can monitor emotional changes dynamically and discover more

detailed emotional responses, which can be applied to, for example,

psychological disease detection, driver emotion monitoring, and

emotional companion robots. These applications can sense the

emotional changes of patients with psychological diseases in a

timely manner while providing them with correct feedback and

treatment, remind drivers to adjust their emotions promptly to

reduce the occurrence of road accidents, and enable emotional

companion robots to sense the emotional changes of humans in

a timely manner while providing appropriate emotional support,

among other things.
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