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fNIRS, EEG, ECG, and GSR reveal 
an effect of complex, dynamically 
changing environments on 
cognitive load, affective state, and 
performance, but not 
physiological stress
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United Kingdom, 2 TrollLABS, Department of Mechanical and Industrial Engineering, Norwegian 
University of Science and Technology, Trondheim, Norway, 3 SCANCOR, Graduate School of 
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This study used functional near-infrared spectroscopy (fNIRS), electroencephalography 
(EEG), electrocardiography (ECG), electrodermal activity (EDA), performance, 
and subjective self-reports to investigate cognitive load and stress in a complex, 
dynamically changing environment. A total of 30 participants (N  = 30) were 
assigned to three Tetris gameplays: Easy and Hard had constant difficulties, and 
Ramp started at a low difficulty level before successively ramping up to a very 
high difficulty level. Participants performed significantly better in Easy, followed 
by Ramp and Hard. In general, increased workload resulted in increased cognitive 
load and stress, but only up to a certain threshold, after which fNIRS activation 
reduced, possibly due to mental fatigue or disengagement. Furthermore, we found 
a temporal effect of workload in the constant workload conditions, evidenced 
by increased fNIRS activation (HbO increase and HbR decrease), and mental 
fatigue measured by EEG (Delta power increase). Despite significant differences 
in cognitive load, we found little between-condition differences in physiological 
stress response as measured by ECG and EDA. At the same time, Easy yielded 
significantly higher participant ratings of valence, enjoyment, workload acceptability, 
and subjective performance, compared to Hard, indicating differing affective states. 
The combination of undistinguishable physiological stress and varying affective 
states suggests that participants experienced more of a state of eustress in Easy 
and distress in Hard conditions.
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1 Introduction

Understanding workload is critically essential in complex, high-risk dynamic 
environments, such as nuclear power plant control rooms, operating aircrafts, air traffic control 
towers, ship bridges, and shore control centers for remote ship operation (Causse et al., 2017; 
Hart and Wickens, 1990; Parent et al., 2019; Wulvik et al., 2019). An imbalanced workload 
adversely affects performance, and any errors may be accompanied by serious financial and 
fatal consequences (Causse et al., 2017; Hart and Wickens, 1990; Parent et al., 2019). High 
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cognitive workload can induce cognitive tunneling, difficulties 
adapting to the situation, fatigue, and cognitive overload, which not 
only reduces performance but also increases human errors (Aghajani 
et al., 2017; Hart and Wickens, 1990; Parent et al., 2019). Low cognitive 
workload is also associated with increased risk of human errors, due 
to boredom, drowsiness, vigilance decrement, or lapses of attention 
(Hart and Wickens, 1990; Parent et al., 2019). Moreover, the acute 
psychological stress associated with these tasks impairs attention, 
memory, and decision-making, raising the likelihood of human error 
(Arnsten, 2009; Parent et al., 2019; Schoofs et al., 2009). In shipping 
for example, human errors are one of the most contributory factors to 
accidents (Fan et al., 2020; Hetherington et al., 2006; Weng et al., 
2019). It is widely accepted that the majority of marine casualties are 
associated with human errors, with estimates ranging from 65% to 
96%, depending on the type of accident and research method (Fan 
et al., 2020; Hetherington et al., 2006; Weng et al., 2019).

Today, many aspects of operation have moved into the control 
room, and human operators rely evermore on automated and 
autonomous systems (Hamann and Carstengerdes, 2022; Parent et al., 
2019; Veitch et al., 2022; Wulvik et al., 2019). The maritime industry 
is transitioning toward remote and autonomous vessels that are 
navigated and monitored from an onshore control center, where 
operators will be responsible for more than one vessel (Veitch et al., 
2022; Zhang et al., 2020). The transition is accompanied by highly 
automated and autonomous systems, intended to support decision-
making and control, which, in turn, are designed to improve safety 
and efficiency (Hamann and Carstengerdes, 2022; Parent et al., 2019; 
Veitch et al., 2022). However, this is not always the case (Pazouki et al., 
2018; Zhang et  al., 2020). The paradoxical challenge of human–
automation interaction is that with increasing automation, operators 
must keep track of growing numbers of systems and information 
magnitude, which could lead to data overload (Woods et al., 2002; 
Wulvik et al., 2019)—a situation that represents and potentially leads 
to cognitive overload. At the same time, operators are mainly 
monitoring systems and not actively controlling them (Bainbridge, 
1983; Wulvik et al., 2019), representing cognitive underload, which 
could lead to boredom, fatigue, and vigilance decrements (Ahn and 
Jun, 2017; Parent et al., 2019; Wulvik et al., 2019). Apparently, the 
modern operating room is one where operators must juggle cognitive 
overload and underload and where failing to detect abnormalities 
could have life-threatening consequences. Adaptive systems 
accounting for day-to-day changes in human operators’ mental and 
physical state have long been proposed (Hamann and Carstengerdes, 
2022; Parent et al., 2019). Adaptive systems continuously monitoring 
human operators cognitive load and stress could respond with suitable 
changes in e.g., which information is presented, the nature and 
modality of the human-machine interaction, or take urgent reactive 
measures in critical situations (Hamann and Carstengerdes, 2022; 
Parent et al., 2019).

While research agrees that human mental and physical state 
should be  an integral part of interface and interaction designs in 
human–automation interaction (Parent et al., 2019; Veitch et al., 2022; 
Wulvik et al., 2019), the question of how this should be done remains 
unclear (Veitch et  al., 2022). Moreover, we  lack a comprehensive 
framework for investigating how humans function in and adapt to 
constantly changing environments (Kim et al., 2018). This situation 
highlights the importance of undertaking research aimed at 
understanding humans’ cognitive load and stress in complex, dynamic 

environments where potential critical situations could arise, 
warranting further research.

This study investigates cognitive load and stress in complex, 
dynamically changing environments, by dual-tasking human 
participants with a Tetris gameplay and an auditory reaction task 
(ART), while measuring functional near-infrared spectroscopy 
(fNIRS), electroencephalography (EEG), electrocardiogram (ECG), 
electrodermal activity (EDA), performance, and subjective 
self-reports.

We adopt a human-centered definition of the construct workload, 
considering workload or cognitive load as emerging from the 
interactions between task demands, context, the operator’s skills and 
cognitive resources, behavior, perceptions, and affective state (Causse 
et al., 2017; Hart and Staveland, 1988; Sheridan and Stassen, 1979; 
Wulvik et al., 2019; Xie and Salvendy, 2000). Here, cognitive load can 
be  considered as a function of effort, which accounts for the 
capabilities (skills), motivation, and current-day state of the operator, 
required to maintain a given level of task performance (Cooper and 
Harper, 1969; Wulvik et al., 2019). Affect can be defined as variables 
that may influence behavior (Balters and Steinert, 2017). Affective 
state (or emotional state) can further be considered as a combination 
of multiple dimensions. We adopt the circumplex model of affect, 
which considers two dimensions: arousal (ranging from arousal to 
sleepiness) and valence (ranging from pleasure to displeasure) (Russel 
et al., 1989; Russell, 1980). We define mental state as the individual’s 
interpretation and manifestation of the concept of affective state. In 
this context, we define stress as something acute, as a state in which 
the sympathetic nervous system (SNS) is overactivated (Kim et al., 
2018). Stress may further be  defined as the body’s response to a 
stressing/stressful stimulus (allostasis) to maintain a state of stability 
(homeostasis) (Kim et al., 2018; Kupriyanov and Zhdanov, 2014; Selye, 
1976). As such, stress may occur when posed physiological and mental 
demands are not adequately fulfilled by the parasympathetic nervous 
system (PNS) (Kim et al., 2018). However, all stress reactions are not 
equal (Szabo et  al., 2012). Individual differences in subjective 
perceptions and emotional reactions give rise to distinguishing 
between “negative” stress, also known as “distress,” and “positive” 
stress, also known as “eustress” (Selye, 1976; Szabo et  al., 2012). 
Distress is a stress response initiated by negative, unpleasant stressors, 
and “eustress” is a stress response triggered by positive emotions 
(Selye, 1976; Szabo et al., 2012). Distress could cause acute or chronic 
physical, psychological, and behavioral impairment (Kim et al., 2018) 
and it is often what is meant when the term “stress” is used in everyday 
life. Eustress could be considered a positive cognitive response to a 
stressor, possibly producing a positive effect (Kupriyanov and 
Zhdanov, 2014; Selye, 1976).

Workload is commonly manipulated by variations of the n-back 
among other standardized tasks (Aghajani et al., 2017; Meidenbauer 
et  al., 2021; Owen et  al., 2005). However, because such tasks are 
simple, most often containing only one element, they may not be used 
as an accurate representation of complex, dynamic work environments. 
We argue that such tasks differ too much, and that results from such 
studies cannot be generalized to complex, dynamic environments. 
Context-specific tasks, such as operational or navigational tasks 
employed with specialized simulation software, in e.g. aviation 
(Causse et  al., 2017; Hamann and Carstengerdes, 2022) or ship 
navigation (Pazouki et al., 2018; Wulvik et al., 2019), are also common. 
Simulation software’s inherent limitation is that it requires participants 
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to possess domain knowledge, be  familiar with the software, or 
undergo extensive training, which could make recruitment difficult or 
necessitate time-consuming participant training. A good alternative 
is to use a task already familiar to participants or that is easily learned. 
Our goal was to create a complex, dynamic environment that could 
be representative of e.g., ship operation and aviation scenarios, that 
did not require specialized participant knowledge or skills, or 
high-end simulators.

Tetris selectively taxes visuospatial working memory (WM), and 
Tetris performance has a moderate positive correlation with 
standardized tests of visuospatial WM (Lau-Zhu et  al., 2017). 
Improvements in spatial ability, mental rotation, and selective visual 
attention have been observed following cognitive training using Tetris 
(Lau-Zhu et  al., 2017). High Tetris proficiency requires efficient 
deployment of working memory, mental rotation, strategic planning, 
prediction, manual dexterity, and more (Lindstedt and Gray, 2015). 
Tetris is a complex task in comparison to many standardized tasks for 
testing cognition (e.g., n-back), where players must respond to 
immediate time pressure, execute chains of manual commands while 
simultaneously planning for upcoming tetrominos (Lindstedt and 
Gray, 2015). As a tool for studying cognition and behavior, Tetris 
provides a dynamic task environment, with time-pressed decision-
making, while preserving parametric control of workload and 
providing performance measures of high sensitivity (such as total 
score and level of play) (Lindstedt and Gray, 2015; Mallick et al., 2016). 
N-back demands working memory capacity because it requires 
continuous monitoring and updating of information (Owen et al., 
2005), similar to Tetris. Similarly, as n-back may be stepwise increased 
to manipulate workload, Tetris levels also exhibit stepwise increase. 
We used Tetris to study cognitive load as its characteristics better 
represent the complex, dynamic environments we are interested in. 
Similar to other research (Mallick et  al., 2016), we  incorporate a 
secondary auditory task.

Cognitive load and stress may be measured through neuroimaging 
modalities, such as fNIRS and EEG, physiology sensors, such as ECG 
and galvanic skin response (GSR), along with behavioral measures, 
e.g., performance and reaction time, and subjective measures. 
Neuroimaging and physiology sensors are considered essential for 
enabling real-time monitoring of operators’ cognitive load 
(Antonenko et  al., 2010; Borghini et  al., 2014; Hamann and 
Carstengerdes, 2022).

fNIRS measures cortical brain activity optically, deriving 
concentration measures of oxygenated (HbO) and deoxygenated 
(HbR) hemoglobin in specific brain regions (Ferrari and Quaresima, 
2012). fNIRS, which has been validated against neuroscience gold-
standard functional magnetic resonance imaging (fMRI) (Cui et al., 
2011; Ferrari and Quaresima, 2012; Huppert et al., 2006). Activation 
in the prefrontal cortex is often used as a measure of cognitive load. 
fNIRS is sensitive to changes in cognitive state and task load (Fishburn 
et  al., 2014), in both classical working memory tasks and more 
contextual, operational tasks. Cortical activation is greater during 
lower workloads compared to higher workloads, as measured by HbO 
increase and HbR decrease, particularly in the right prefrontal cortex 
for a visuospatial working memory task (Baker et al., 2018), in bilateral 
dorsolateral prefrontal cortex (dlPFC), with the strongest activation 
in the left dlPFC for a letter n-back task (Fishburn et al., 2014), in 
frontal and parietal regions for a word n-back (Meidenbauer et al., 
2021), and in the right dlPFC in a contextual aviation task (Hamann 

and Carstengerdes, 2022). When workload reaches a certain upper 
threshold, activation decreases compared to lower workloads (Baker 
et al., 2018; Hamann and Carstengerdes, 2022; Meidenbauer et al., 
2021) suggesting participants cognitively disengage due to a lack of 
performance, or failing to recruit necessary cognitive resources 
(Meidenbauer et  al., 2021). Moreover, brain activation is not 
necessarily linked to performance, but indicates differing individual 
neural efficiencies and an effect of expertise (Causse et al., 2017).

EEG measures electrical brain activity. EEG spectral power bands 
may be used as a continuous measure of cognitive load (Antonenko 
et al., 2010; Chikhi et al., 2022) as the relation between EEG spectral 
bands (in particular, Delta, Theta, Alpha, and Beta) and workload has 
been extensively studied (Antonenko et al., 2010; Borghini et al., 2014; 
Chikhi et  al., 2022; Hamann and Carstengerdes, 2022). With 
increasing task difficulty and thus cognitive load Theta power 
increases, particularly in frontal brain regions, while Alpha power 
decreases in frontal, central, and parietal brain regions (Antonenko 
et al., 2010; Borghini et al., 2014; Chikhi et al., 2022; Hamann and 
Carstengerdes, 2022). Results for Beta power are mixed with literature 
reporting both Beta power decreases in parietal regions (Hamann and 
Carstengerdes, 2022) and Beta power increases with increasing 
cognitive load (Chikhi et al., 2022). The relationship between cognitive 
load and mental fatigue is crucial in certain workload scenarios. With 
increasing fatigue, Delta power increases (Borghini et al., 2014), Theta 
power increases in frontal and parietal brain regions (Borghini et al., 
2014; Hamann and Carstengerdes, 2022), while Alpha power increases 
in frontal, occipital (Borghini et  al., 2014), and parietal regions 
(Hamann and Carstengerdes, 2022). Again, literature reports mixed 
results for Beta power, reporting overall Beta power decreases 
(Borghini et  al., 2014) and parietal Beta power increases with 
increasing mental fatigue (Hamann and Carstengerdes, 2022).

The autonomic nervous system (ANS) consists of the sympathetic 
nervous system (SNS) and the parasympathetic nervous system 
(PNS). The SNS and PNS work antagonistically to regulate 
physiological autonomic function (Appelhans and Luecken, 2006; 
Pham et al., 2021). The SNS is a quickly responding system, well-
known as the fight-or-flight mechanism, generally activating in 
response to stimuli causing mental states of high arousal, and thus, 
SNS dominates during elevated activity and stressful states (Ishaque 
et al., 2021; Kim et al., 2018; Pham et al., 2021). Complementary, the 
PNS is a “relaxed response” system, predominating in quiet and 
relaxing states, known as the rest-and-digest mechanism, which 
relaxes the heart and lowers stress (Pham et al., 2021). The SNS and 
PNS work antagonistically together regulating physiological 
autonomic function (Appelhans and Luecken, 2006; Ishaque et al., 
2021; Pham et al., 2021). Changes in sympathetic and parasympathetic 
activity manifest in various physiological phenomena, e.g., cardiac 
function, electrodermal activity, respiration, brain activity, etc. (Balters 
and Steinert, 2017).

ANS and PNS change cardiac activity, changing heart rate (HR) 
and heart rate variability (HRV). HR and HRV thus provide a measure 
of sympathetic and parasympathetic ANS function (Kim et al., 2018; 
Tarvainen et al., 2014). A range of variables can be derived to measure 
HRV (Pham et al., 2021). In this study, we focus our analysis on time- 
and frequency-domain derived variables only. Time-domain measures 
assess the variability in HR. In general, SNS tends to increase heart 
rate (HR) and decrease HRV, while PNS decreases HR and increases 
HRV (Ishaque et  al., 2021; Kim et  al., 2018; Pham et  al., 2021; 
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Tarvainen et  al., 2014). Frequency-domain measures better assess 
specific components of HR (Pham et  al., 2021). The HRV power 
spectrum can be  meaningfully divided into four bands: ultra-low 
frequency (ULF ≤ 0.003 Hz), very low frequency (VLF; 0.0033–
0.04 Hz), low frequency (LF; 0.04–0.15 Hz), and high frequency (HF; 
0.15–0.4 Hz) (Malik et al., 1996). In controlled conditions, HF changes 
are modulated by PNS (Pham et al., 2021; Tarvainen et al., 2014), 
while LF changes are modulated by both PNS and ANS (Kim et al., 
2018; Pham et  al., 2021; Tarvainen et  al., 2014). The normalized 
frequency components of LF and HF represent sympathetic and 
parasympathetic activity, respectively (Malik et al., 1996). The LF to 
HF power ratio measures the relative contributions of SNS to PNS 
activity (Shaffer and Ginsberg, 2017), increase in the LF to HF ratio is 
associated with psychological stress (Kim et al., 2018). Low PNS may 
be characterized by a decrease in the HF band and HF peak and an 
increase in the LF band and LF peak (Kim et  al., 2018; Wulvik 
et al., 2019).

EDA is influenced by ANS activity only (Boucsein, 2012). Skin 
conductance (SC) is characterized by (a) slowly varying tonic activity, 
SC level (SCL), and (b) fast varying phasic activity, SC response (SCR). 
Tonic activity varies over minutes rather than seconds, and is related 
to continuous stimuli, e.g., performing a task (Benedek and 
Kaernbach, 2010; Boucsein, 2012). Phasic activity varies over seconds, 
is characterized by a steep incline to peak and a slow decline to 
baseline, and occurs in response to almost any stimulus that is novel, 
unexpected, or potentially important (Benedek and Kaernbach, 2010; 
Boucsein, 2012). Phasic activity may thus reflect both stimulus-
specific responses and non-specific responses (Benedek and 
Kaernbach, 2010).

The present study uses fNIRS, EEG, ECG, EDA, performance, 
and subjective self-reports to assess cognitive load and stress in 
participants assigned with a primary task, a Tetris gameplay at 
different difficulties, and a secondary task, an ART. This article 
aims to investigate the relationship between workload, 
performance, and the human mental and physical state as 
measured by neuroimaging and physiology sensors. We set out to 
understand neurophysiology in complex, dynamically changing 
environments, and understand if and how well each tool can 
discern different workloads.

2 Materials and methods

2.1 Experiment design

2.1.1 Stimuli: a modified Tetris gameplay
The experiment involved a modified version of the computer 

game Tetris® (Ros, 2024; Erichsen, 2020). Tetris is played on a 10 × 20 
cell grid (the game space) where differently shaped pieces, tetrominos, 
fall from the top in an apparently random order. The tetromino is a 
piece formed of four contiguous squares, of which there are seven 
possible configurations, i.e., there are seven possible geometrical 
shapes of a tetromino. The piece falls until it reaches the grid floor or 
another tetromino. The player chooses where the tetromino is placed 
through rotation and/or horizontal movement. When a row is filled, 
it is cleared, and all cells above move one row down. The objective is 
to clear as many rows as possible before the game ends, which is when 
there is no space remaining at the top of the stacked tetrominos to 

place a new piece (i.e., the piece crosses the grid top). In its original 
form, the difficulty level increases as the player clears rows, and the 
speed of the falling tetromino increases with increased difficulty level 
(Thiery and Scherrer, 2009), and the tetrominos’ sequence is perfectly 
random (Burgiel, 1997). Regardless of the players’ skill level, the game 
will thus invariably end.

Several modifications were made to ensure equal conditions for 
participants. The duration of all games was set to 4 min before 
automatically ending, which also closed the gameplay’s interface. If a 
game ended before 4 min, the game was programmed to restart 
automatically. The difficulty level displayed originally was hidden 
from participants to avoid expectancy bias and remove this potential 
indication of workload. Participants were thus uninformed of the 
difficulty level. Some versions of Tetris include visual aids, such as 
displaying gridlines or a “ghost” in the game space. The “ghost” of the 
tetromino displays a shadow of what the tetromino would look like if 
it were permanently placed directly below its current position. Our 
version did not include a “ghost” or gridlines, but it did include a 
preview window that displayed the next tetromino.

2.1.2 Conditions and tasks
We manipulated workload by means of creating three Tetris 

gameplays. One Easy condition and one Hard condition featured a 
low and high difficulty levels, respectively, both held constant 
throughout the 4 min duration. The third condition, Ramp, had 
increasing difficulty levels throughout its 4-min duration. One 
practice gameplay was also created. Table 1 provides the difficulty 
levels. Each participant underwent all three conditions. Participants 
were sequentially assigned to one of six groups following a 3 × 3 Latin 
Square Design.

The primary task was to perform well in the Tetris gameplay. 
Participants were additionally exposed to five alarms triggered at 
pseudorandom intervals (see Supplementary material) during each 
Tetris gameplay, and their secondary task was to turn the alarm off as 
quickly as possible.

2.1.3 Experimental procedure
Upon arrival, participants were informed by the experimenter that 

they would be playing Tetris and reacting to an alarm as quickly as 
possible. Their task was to get as high a score as possible in all the 
games they played, while simultaneously turning the alarm off as soon 
as possible. Their performance would be evaluated both on reaction 
time and Tetris score. The participant performing the best would 
be awarded a gift certificate. Participants were fitted with sensors after 
signing a consent form. Remaining task instructions, i.e., how to play 
Tetris and use the alarm, were given on screen, ensuring every 
participant received the same explanation. Before each game, 

TABLE 1 Tetris parameters for each experimental condition with a base 
speed set at 0.400 s (see Supplementary material for explanation).

Condition Start 
level

End 
level

Increments Duration 
(min)

Practice 1 5 5 4

Easy 1 1 0 4

Hard 12 12 0 4

Ramp 1 15 6 4
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participants were instructed to activate the alarm by flipping a switch 
once; the same switch would turn the alarm off. A demographic 
questionnaire was completed after the last condition. Figure 1 provides 
an overview of the experiment procedure.

2.2 Participants

Participants were recruited through posters placed around 
campus. A large text advertised the possibility to win a 1000 NOK gift 
certificate at a local mall, accompanied by a smaller text that stated 
participants were needed for an experiment in which they would play 
Tetris. At the same time, their brain activity would be measured.

Thirty-two healthy adults participated in this study. Participants 
were aged above 18 years and understood written and spoken English. 
Exclusion criteria eliminated individuals with neurological disorders 
or who were using medication affecting brain function (e.g., stimulants 
and antidepressants). As the experiment was conducted when 
COVID-19 infection control measures were in place, participants 
were required to present a negative test result on a recent coronavirus 
test and adhere to local infection control measures. The study was 
approved ethically according to local regulations. Participants 
provided written informed consent before participating. Caffeine 
intake was not controlled for. Two participants were excluded from all 
data analysis due to non-compliance with the experimental procedure, 
leaving N = 30 valid participants. The age of participants ranged from 
19 to 42 years (M = 26.1, SD = 4.2). Table  2 provides additional 
demographic information.

2.3 Hypotheses

fNIRS and EEG data were split into 60-s blocks, yielding four 
blocks per condition. ECG data were divided into 120-s blocks, 
yielding two blocks per condition. EDA data were not divided into 
blocks. Pairwise comparisons between the three conditions were 
carried out for EDA variables, performance variables, subjective 
variables, and reaction time because they cannot be split into blocks. 
For EDA, we expect that SCR relates to task and alarm, and SCL 
relates to task only—we are therefore interested in the differences in 
SCL between conditions. We hypothesize that higher levels of SCL are 
associated with Hard compared to Easy. We  expect a difference 

between Hard and Ramp, but do not have a directional hypothesis 
a priori.

The following hypotheses and contrasts were defined:

 • H1: There is an effect of workload on cognitive load and stress.
• Manipulation check: To confirm that conditions Easy and Hard 

accurately represented low and high workload, respectively, 
we contrasted Easy and Hard.

 •  fNIRS and EEG: As these conditions could be temporally 
affected, to avoid potential confounds with the temporal 
effect (H2), we contrasted the first minute of each game. 
Contrast: Hard1-Easy1.

 •  ECG: For the same reason, we contrast the first half of each 
game. Contrast: Hard1-Easy1.

• Cognitive load increases linearly with increasing workload, up 
to a certain threshold (depending both on workload and time), 
after which mental fatigue occurs. fNIRS and EEG: We run all 
pairwise contrasts within Ramp. Contrasts: Ramp4-Ramp2, 
Ramp2-Ramp1, Ramp3-Ramp2, Ramp4-Ramp3, Ramp3-
Ramp1, Ramp4-Ramp1.

• Stress response will be greater with increasing workload. ECG: 
The second half of Ramp will yield a higher stress response. 
Contrast: Ramp2-Ramp1.

 • H2: There is a temporal effect of workload on cognitive load 
and stress, regardless of the actual workload (i.e., 
difficulty level).
• fNIRS and EEG: The first and last minutes of Easy and Hard 

will have different cognitive loads. Contrasts: Easy4-Easy1, 
Hard4-Hard1.

• ECG: The first and second halves of Easy and Hard conditions 
have different stress responses. Contrasts: Easy2-Easy1 and 
Hard2-Hard1.

2.4 Data collection

iMotions version 8.1 (iMotions, Boston, MA, United  States) 
presented stimuli and synchronized neuroimaging, physiology data, 
and video recordings. An external web camera recorded participants 
from above; their screen was also recorded. The experiment was run 
on a Dell Latitude 7,490 laptop (Microsoft Windows 10 Education, 
Intel(R)Core(TM) i7-8650U CPU@1.90GHz 2.11GHz processor, 

FIGURE 1

Experiment procedure.
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32.0GB RAM, 64-bit operating system, ×64-based processor, and a 
500GB SSD hard drive). Honeycomb cardboard separated this 
laptop and the experimenter from the participants. Participants 
used an external monitor, mouse, and keyboard to interact 
(Figure 2).

2.4.1 fNIRS data
fNIRS data were sampled at 7.81 Hz with an 8 source/8 detector 

continuous-wave NIRSport (NIRx Medical Technologies, Berlin, 
Germany) at two wavelengths (760 and 850 nm) using Nirstar 15.2 
Acquisition Software. Optodes were placed on the prefrontal cortex 
using an EASYCAP AC-128-X1-C-58 (EASYCAP GmbH, 
Herrsching, Germany) with a 128-channel layout following the 
10–5 system (Oostenveld and Praamstra, 2001) (see Figures 3, 4). 
This montage covers the frontopolar area (PFC), orbitofrontal 
cortex (OFC), and the dorsolateral prefrontal cortex (dlPFC) 
(Okamoto et  al., 2004; Zimeo Morais et  al., 2018). AtlasViewer 
(Aasted et al., 2015) was used to generate a sensitivity profile (see 
Figure 4).

Signal quality control was performed, and channels were visually 
inspected for a visible cardiac oscillation before streaming raw data 
continuously to iMotions through LabStreamingLayer (n.d.). Optode 
wires were routed straight down on both sides of participants’ heads 
before being routed backward to reduce their potential noise in 
EEG signals.

2.4.2 EEG data
EEG data were sampled at 250 Hz with an OpenBCI Cyton 

biosensing board (OpenBCI Inc.) using eight spring-loaded dry comb 

electrodes (provided as part of an Ultracortex “Mark IV” EEG 
Headset), attached to the EASYCAP using an adapter (Erichsen et al., 
2020). The board was wirelessly connected to the laptop via a USB 
dongle. Electrodes were distributed over the scalp (see Figure 3).

A wooden applicator was used to part the participants’ hair at each 
electrode location before inserting the spring-loaded electrode. Signal 
quality control was performed in the OpenBCI GUI, visually 
inspecting for derailed electrodes and noise, in which case the 
electrode in question would be refitted. In some instances, salted water 
was used to help hair stay parted, and thus the electrode retained skin 
contact and improved electrical connectivity to the scalp. A Python 
script used the BrainFlow Python library to connect to the Cyton 
board and pylsl to stream data continuously to iMotions through 
LabStreamingLayer (n.d.).

TABLE 2 Demographical information (N = 30).

Variable Category Number of 
participants

Gender Female 11

Male 19

Handedness Right handed 27

Left handed 3

Students Yes 27

No 3

Have you played Tetris 

in the past?

Yes 23

No 7

Do you play Tetris 

currently?

Weekly 1

Monthly 1

Yearly 7

No 21

Have you played other 

video games in the 

past?

Yes 27

No 3

Do you play video 

games currently?

Daily 3

Weekly 4

Monthly 4

Yearly 10

No 9

FIGURE 2

Physical setup.

FIGURE 3

Montage: fNIRS optodes and EEG electrode locations illustrated in 
the international 10–5 system (Oostenveld and Praamstra, 2001). 
Sources are indicated in red (8 pieces), detectors in blue (7 pieces), 
and thick purple lines illustrate channels (20 pieces). Electrodes are 
indicated in gray (8 pieces).
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2.4.3 ECG data
ECG data were sampled at 512 Hz with a Shimmer ECG sensor 

(Shimmersense, 2017) using a five-lead configuration with gel pads 
fastened on participants’ chests. The unipolar lead was mounted at 
position V5 as this allows for the highest quality R-wave capture 
(Shimmer3 User Guide). Data was streamed directly to iMotions via 
a Bluetooth connection to the laptop, and the signal was visually 
inspected for noise in iMotions before recording data.

2.4.4 EDA data
EDA data were sampled at 128 Hz with a Shimmer Galvanic Skin 

Response sensor (Shimmersense, 2017) which had a two-lead 
configuration connected to the underside of the medial phalanx on 
the index and middle finger of the participants’ left hand. Data was 
streamed directly to iMotions via a Bluetooth connection to the 
laptop, and the signal was visually inspected for noise in iMotions 
before data recording commenced.

2.4.5 Reaction time
A secondary ART was implemented with a custom-built Arduino 

device (Erichsen, 2020). Participants were exposed to five alarms 
during each Tetris gameplay and assigned to turn the alarm off as 
quickly as possible, using a panel mount toggle switch mounted on the 
Arduino device. The device measured reaction time, that is, the time 
it took participants to turn the alarm off. The alarms were pseudo-
randomized, which means that while alarm timing was generated 
randomly, these timings were used for all conditions and participants. 
The alarm timings were: 8,000 ms (8 s), 105,000  ms (1 min 45 s), 
131,000 ms (2 min 11 s), 169,000 ms (s), 235,000 ms (3 min 55 s). The 
alarm would stop automatically after 3,000 ms (3 s).

2.4.6 Performance
The number of games and scores for each game were generated by 

the Tetris game and saved as separate text files.

2.4.7 Subjective data collection
Several subjective variables were measured after each game. 

Arousal and Valence from the Circumplex Model of Affect (Russell, 
1980) was rated using the Affect Grid (Russel et al., 1989), on a scale 
from 1 (low) to 9 (high). Workload was assessed using the Overall 
Workload (Vidulich and Tsang, 1987) and NASA Task Load Index 
(TLX) (Hart and Staveland, 1988) dimensions1: Physical Demand, 
Temporal Demand, Performance, Effort, and Frustration. Participants 
reported Level of Stress and Enjoyment on a scale from 1 (low) to 7 
(high), and Workload Acceptability on a scale from 1 (low) to 7 (high) 
(unacceptable, this was very hard-highly acceptable, this was easy).

2.5 Data analysis

All data were exported as one synchronized “.csv-file” per 
participant from iMotions. To obtain spatial information about 
optodes’ positions, a sample recording in NIRStar was made separately. 
FNIRS data was analyzed, and EEG data preprocessed in NIRS Brain 
AnalyzIR Toolbox (nirs-toolbox) (Santosa et al., 2018) in MATLAB 
R2021b (The MathWorks, Inc., Natick, MA, United  States). Both 
fNIRS and EEG timeseries were trimmed to 60 s/120 s before/after the 
first/last stimuli. EEG frequency bands, EDA variables, performance, 
arousal, and valence were analyzed with R version 4.2.0 (2022-04-22 
ucrt) (R Core Team, 2022) in RStudio 2022.02.2 (RStudio Team, 
2022). ECG variables, remaining subjective variables, and reaction 
time were analyzed with Statistical Package for the Social Sciences 
(SPSS) version 28.0 (IBM Corporation, 2021). A significance level of 
p < 0.05 was used unless otherwise noted. Table 3 presents an overview 
of all variables included in the analysis.

2.5.1 fNIRS analysis
The NIRStar sample recording was combined with raw fNIRS data 

to obtain a data structure with correct spatial information, before 
visual inspection to ensure no missing data. To assess signal quality, 
we  calculated the Coefficient of Variance (CV) of the raw data, 
discarding channels with CV > 0.1. 97% of the data had CV < 0.1 and 
was retained for further analysis. Raw light intensities were converted 
to optical density before converting to HbO and HbR through the 
modified Beer–Lambert Law with a partial pathlength factor of 0.1 
and extinction coefficient from Jacques (2013). Afterward, participant-
level statistics were calculated using a general linear model (GLM) 
with a canonical hemodynamic response function that employed an 
autoregressive, iteratively reweighted least-squares model (AR-IRLS). 
This approach uses an autoregressive (AR) prewhitening filter to 
alleviate serially correlated errors resulting from physiological noise 
and/or motion artifacts. This AR-whitened model is then solved using 
robust weighted regression, which iteratively down-weight outliers to 
address heavy-tailed noise from motion artifacts (Barker et al., 2013, 
2016). Using this model, the regression coefficients (β) and their error-
covariance are estimated, which are used to define statistical tests 
between task conditions or baseline. Leverage for a group model was 
calculated across participants, conditions, and channels, but no 
participant contributed significant leverage, and thus all participants 

1 The dimension Mental Demand was not collected due to an error.

FIGURE 4

Visualization of the fNIRS montage on a digital brain model and its 
sensitivity profile generated with AtlasViewer (Aasted et al., 2015).
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TABLE 3 Variables.

Measurement 
modality

Variable Description

fNIRS HbO Oxygenated hemoglobin

HbR Deoxygenated hemoglobin

EEG Delta power EEG spectral power band 1–4 Hz

Theta power EEG spectral power band 4–8 Hz

Alpha power EEG spectral power band 8–12.5 Hz

Beta power EEG spectral power band 12.5–30 Hz

ECG MeanRR [ms] Mean RR interval

SDNN [ms] Standard deviation of RR intervals

MeanHR [bpm] Mean heart rate

SDHR [bpm] Standard deviation of heart rate

RMSSD [ms] Root mean square of successive differences

pNN20 pNN20 (%) Percentage of successive intervals that differ more than 20 ms. Proposed to assess PNS 

(Mietus et al., 2002).

LFpeak [Hz] Peak frequency for LF band

HFpeak [Hz] Peak frequency for HF band

LFpow [ms2] Absolute LF power

HFpow [ms2] Absolute HF power

LFpow [log]: Log LF power

HFpow [log]: Log HF power

LFpow [%] Relative LF power

HFpow [%] Relative HF power

LFpow [n.u.] Normalized LF power

HFpow [n.u.] Normalized HF power

LF_HF_ratio [n.u.] Ratio between LF and HF powers

EDA nSCR [n.u.] Number of significant (above-threshold) SCRs within the response window (wrw)

Latency [s] Response latency of first significant SCR wrw

AmpSum [μS] Sum of SCR-amplitudes of significant SCRs wrw

SCR [μS] Average phasic driver wrw.

ISCR [μS*s] Area (i.e., time integral) of phasic driver wrw.

PhasicMax [μS] Maximum value of phasic activity wrw

Tonic [μS] Mean tonic activity wrw

Mean [μS] Mean SC value wrw

MaxDeflection Maximum positive deflection wrw

Reaction time Reaction time [ms] The time from the start of the alarm sound until the participant switched the alarm off. 5 times 

per condition.

Questionnaire (subjective 

variables)

Arousal Describe how you feel right now by using the Affect Grid. Arousal [1–9 point scale, 9 = high 

arousal, 1 = low arousal].

Valence Valence [1–9 point scale, 1 = unpleasant, 9 = pleasant].

Level of stress How would you rate your level of stress during the preceding Tetris game? Rate level of stress on a 

scale from 1 (low) to 7 (high).

Overall workload Overall workload was rated on a scale from 1 (low) to 7 (high).

TLX: Physical demand How much physical activity was required? (e.g., pushing, pulling, turning, controlling, activating, 

etc.) Rate physical demand on a scale from 1 (low) to 7 (high).

TLX: Temporal demand How much time pressure did you feel due to the rate or pace at which the tasks or task elements 

occurred? Rate temporal demand on a scale from 1 (low) to 7 (high).

TLX: Performance How successful do you think you were in accomplishing the goals of the tasks? Rate performance 

on a scale from 1 (poor) to 7 (good).

TLX: Effort How hard did you have to work (mentally and physically) to accomplish your level of 

performance? Rate effort on a scale from 1 (low) to 7 (high).

TLX: Frustration How insecure, discouraged, irritated, stressed, and annoyed vs. secure, gratified, content, relaxed, 

and complacent did you feel during the task? Rate frustration on a scale from 1 (low) to 7 (high).

Enjoyment Enjoyment was rated on a scale from 1 (low) to 7 (high).

Workload acceptability How acceptable was the workload? Rate workload acceptability on a scale from 1 (unacceptable—

this was very hard) to 7 (highly acceptable—this was easy).

(Continued)
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were retained. For group-level statistics, we ran a robust mixed-effects 
model that included condition as a main effect and participant as a 
random effect (Santosa et al., 2018). These results were used for group-
level contrasts (t-tests) between conditions. The Benjamini–Hochberg 
procedure was used to control false-discovery rate (FDR) (Benjamini 
and Hochberg, 1995). The corrected p-value is denoted as q, and 
q < 0.05 is used as a significance threshold. Results are reported as 
maps depicting group-level activation of HbO and HbR as per best 
practice (Yücel et al., 2021).

2.5.2 EEG analysis
Raw EEG data were visually inspected to assess data quality. Five 

participants were discarded due to flatlined data and missing 
conditions, leaving 25 participants for the subsequent analysis. 
Preprocessing included bandpass filtering (1–48 Hz) to attenuate line 
noise and remove low amplitude. As less preprocessing yields higher 
statistical sensitivity (Delorme, 2023) no further preprocessing was 
undertaken before frequency analysis. Frequency bands were defined 
as follows: Delta: 1–4 Hz; Theta: 4–8 Hz; Alpha 8–12.5 Hz; and Beta: 
12.5–30 Hz (NiederMeyer, 2011). Frequencies were computed using 
a continuous wavelet transform, transforming the timeseries to the 
frequency domain. Data was down-sampled to 4 Hz before running a 
block analysis model on the frequency domain results with the 
AR-IRLS algorithm and a canonical basis. This yielded one beta value 
representing the frequency power per frequency band and electrode 
for each condition. This beta power was carried forward in group-level 
analysis, undertaken in R. The results were fed into a mixed-effects 
model [lme4::lmer (Bates et al., 2015)] including the main effect of 
condition and participant as a random effect. Individual models were 
set up for each frequency and electrode. The individual mixed-effects 
models were used to estimate marginal means (emmeans::emmeans) 
and test contrasts (emmeans::contrast) (Lenth, 2022). The Benjamini–
Hochberg procedure (Benjamini and Hochberg, 1995) controlled 
FDR. Frequency bands are presented as estimated differences 
(standard error).

2.5.3 ECG analysis
ECG data were visually inspected to assess data loss. Participants 

with full or partial data loss were excluded, leaving N = 25 for 
subsequent analysis. ECG data were preprocessed in Kubios HRV 
Premium (Tarvainen et al., 2014), using the LL-RA ECG lead. Kubios 
uses a QRS detection algorithm based on the Pan–Tompkins 
algorithm (Pan and Tompkins, 1985) for R-peak detection. 
Preprocessing included bandpass filtering (to reduce baseline wander, 
power line noise, and other noise components), squaring data samples 
to highlight peaks, up-sampling through interpolation to improve 
time resolution of R-peak detection, and artifact correction (Tarvainen 
et  al., 2014, 2021). The data and detected R-peaks were visually 
inspected in Kubios. Artifacts were corrected or marked as noise. 

Thereafter, HRV variables in the time and frequency domains were 
obtained. For the frequency domain, we adjusted the VLF band’s lower 
limit to 0.0033 (it was 0). The LF and HF bands were 0.04–0.15 and 
0.15–0.40 Hz, respectively. We used an AR model with a default model 
order of 16, because AR models exhibit increased robustness and 
accuracy for shorter recordings (Malliani et al., 1991; Montano et al., 
2009). Consistent with general guidelines, the frequency-domain 
variables are reported in absolute and normalized forms to present a 
complete picture of the power distribution (Malik et al., 1996). The 
standard pNN value of 50 ms was changed to 20 ms because it 
consistently enhanced discrimination ability (Mietus et al., 2002).

Recording length restricts frequency-domain measurements, 
specifically the HRV frequency-band measurements (Shaffer and 
Ginsberg, 2017). Minimum recommended periods include: VLF 
(5 min), LF (2 min), and HF (1 min) (Shaffer and Ginsberg, 2017). As 
we wanted to obtain LF measures, we sliced each condition into two 
blocks of 2 min each.2 As such, we could not slice one condition into 
four 1-min blocks as we did for the fNIRS/EEG analysis.

We ran a repeated measures ANOVA version of the GLM with 
custom contrasts. GLM assumptions were assessed by visually 
examining histograms, boxplots, and Q–Q plots. Some variables had 
outliers and deviated from sphericity; hence, we routinely apply and 
interpret the Greenhouse–Geisser correction. For corroboration, 
we ran Friedman test and robust method with a bootstrap of 599 
samples and 20% trim (via WRS2::rmanovab in R, see 2.5.4 for 
details). As the Friedman test and robust approach do not allow 
custom contrasts we report the custom contrasts from the GLM. The 
contrast involving Ramp1 and Ramp2 is independent from the 
remaining contracts; thus, the level of significance was set at p < 0.05. 
The contrasts involving Hard and Easy are non-orthogonal. To control 
the familywise error rate for these contrasts, we set and interpret a 
Bonferroni corrected level of significance p = (0.005/3) = 0.0167. MD 
denotes the contrast estimate of the difference in mean. Partial ηp

2 
estimates the effect size for the contrasts. ECG variables are reported 
as mean difference and 95% confidence interval (CI).

2.5.4 EDA analysis
EDA data were visually inspected for missing data, artifacts, and 

lack of EDA response. Two participants without an EDA response 
were discarded from subsequent analysis. EDA data were processed 
in Ledalab (Benedek and Kaernbach, 2010). We preprocessed data 
manually in cases with missing data or many artifacts. Times with 
missing data were removed, significant artifacts were marked 

2 In a few cases, the total recording length was shorter than 4 min (e.g., 3:53). 

In this case, the two slices overlapped slightly to attain the 2-min duration 

minimum.

TABLE 3 (Continued)

Measurement 
modality

Variable Description

Performance Number of games played The total number of Tetris games played by participants in the condition.

Average score per game The average score per Tetris game played in the condition.

Total score The sum of all scores from all Tetris games played in one condition.
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manually and corrected with spline interpolation, and minor artifacts 
were smoothed. The remaining data were batch processed. The data 
were downsampled to 16 Hz. The data was analyzed with Continuous 
Decomposition Analysis (CDA) as it is more robust to motion 
artifacts, and estimates tonic activity better than standard through-to-
peak and deconvolution methods (Benedek and Kaernbach, 2010). 
We chose CDA because it was essential to attain an accurate estimate 
of tonic activity related to the task.

GLM assumptions were assessed via scatterplots, histograms, and 
Q–Q plots. In cases without violations of assumptions (nSCR), 
we used a repeated measures model [afex::aov_4 (Singmann et al., 
2022]. For normally distributed heteroscedastic variables (Latency, 
SCR, PhasicMax, Mean, and MaxDeflection), we  used a robust 
method that uses a 20% trimmed mean (WRS2::rmanova: a 
heteroscedastic one-way repeated measures ANOVA for trimmed 
means) (Mair and Wilcox, 2020). This implementation simulates a 
critical p-value before computing the p-value accordingly. The 
p-value (p) should thus be compared to a critical p-value (p-critical). 
For non-normally distributed heteroscedastic variables (Tonic, 
AmpSum, and ISCR), we used a robust method with a bootstrap of 
599 samples (WRS2::rmanovab: a bootstrap version of the 
heteroscedastic one-way repeated measures ANOVA) (Mair and 
Wilcox, 2020). This implementation simulates a critical value 
(t-critical), to which the test statistic (t) should be compared.

2.5.5 Performance
The number of games and scores for each condition were 

used to create three performance variables: number of games, 
total score (summarizing all scores for all games), and average 
score per game. A high total score indicates high performance 
and average score per game, and a low number of games played 
(because fewer games means the participant had fewer games 
ending due to not being able to clear enough rows (i.e., “died” 
less)). The assumptions of the GLM, assessed via scatterplots, 
histograms, and Q–Q plots, were violated. Number of games was 
not normally distributed and heteroscedastic, average, and total 
scores also had outliers. We  therefore used a robust method 
(WRS2::rmanova) and associated post hoc tests (WRS2::rmmcp) 
(Mair and Wilcox, 2020). Effect sizes (Cohen’s d) were estimated 
from Bonferroni-corrected contrasts obtained from a regular 
repeated measures model [afex::aov_4 (Singmann et al., 2022)] 
that used untrimmed means [emmeans::emmeans (Lenth, 2022) 
and effectsize::t_to_d (Ben-Shachar et al., 2020)]. For the robust 
methods, Ψ indicates the estimated mean difference between 
conditions. Performance variables are reported as mean 
(standard deviation).

2.5.6 Subjective variables
Arousal and valence were heteroscedastic and deviated from 

normality, thereby violating the assumptions of the GLM, as assessed 
via scatterplots, histograms, and Q–Q plots. Thus, we used a robust 
method with a bootstrap of 599 samples (WRS2::rmanovab) and 
associated post hoc tests (WRS2::pairdepb) (Mair and Wilcox, 2020). 
Effect sizes (Cohen’s d) were estimated from Bonferroni-corrected 
contrasts obtained from a regular repeated measures model 
[afex::aov_4 (Singmann et al., 2022)] that used untrimmed means 

[emmeans::emmeans (Lenth, 2022) and effectsize::t_to_d (Ben-Shachar 
et al., 2020)].

For the remaining subjective (self-report) variables, differences 
between conditions were assessed using Friedman’s test. Pairwise 
comparisons of conditions were carried out using Wilcoxon’s test with 
a Bonferroni correction for multiple comparisons. Pearson’s 
correlation coefficient, r, estimated effect size (Field, 2018; Rosenthal, 
1991) for each pairwise comparison. For corroboration, we  ran a 
1-way repeated measures ANOVA. Subjective variables are reported 
as mean (standard deviation).

2.5.7 Reaction time
Reaction times were approximately normally distributed as 

assessed by histograms and normal Q–Q plots, but had multiple 
outliers. We ran a factorial repeated-measures ANOVA model with 
game difficulty level and alarm number as independent variables. All 
effects in the factorial model deviated from sphericity. Thus, we adjust 
the degrees of freedom using the Greenhouse–Geisser estimate of 
departure from sphericity (ε). We ran a mixed-effects linear model for 
corroboration that included difficulty levels, alarm, and alarm–
difficulty interaction as fixed effects and a random intercept.

3 Results

3.1 fNIRS

3.1.1 Assessing H1

3.1.1.1 Manipulation check
The first minutes of Easy and Hard were contrasted to ensure 

that the conditions accurately represented low and high difficulty 
levels, i.e., that Hard was more cognitively demanding than Easy. 
Seven channels had significant HbO decrease (left dlPFC, FPC) and 
four channels had significant HbR decrease (FPC, left dlPFC) in 
Hard1 compared to Easy1 (Figure  5a). The HbR data suggest 
cognitive load was higher in Hard1, while the HbO data suggest 
higher cognitive load in Easy1. See Supplementary material for 
statistics tables.

3.1.1.2 Contrasts within ramp
To further understand the effects of increasing difficulty levels 

on cognitive load, we  contrasted all minutes within Ramp, 
pairwise. See Supplementary material for figures and statistics. For 
Ramp2-Ramp1, two channels had a significant HbR increase, 
suggesting higher cognitive activation in Ramp1 than Ramp2. For 
Ramp3-Ramp2, one channel had a significant HbO decrease, one 
significant HbR decrease, and one significant HbR increase. HbO 
data suggests higher activation in Ramp2 than Ramp3, while HbR 
is mixed. For Ramp4-Ramp3, one channel had a significant HbO 
decrease and one significant HbR increase, suggesting higher 
activation in Ramp3 than Ramp4. For Ramp4-Ramp2, six channels 
had significant HbO decrease, and four channels had significant 
HbR increase. The higher activation in Ramp2 compared to 
Ramp4 suggests higher cognitive activation in Ramp2 compared 
to Ramp4. For Ramp3-Ramp1, two channels had significant HbO 
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decrease, four channels had significant HbR decrease, and one 
channel had significant HbR increase. These HbO data suggest 
higher activation in Ramp1 than Ramp3, while HbR data are 
mixed. For Ramp4-Ramp1, seven channels had significant HbO 
decrease, three channels had significant HbR decrease, and five 

channels had significant HbR increase. This suggests higher 
cognitive activation in Ramp1 compared to Ramp4. Overall, these 
results suggest cognitive activation is highest at the start of the 
gameplay, and as the difficulty level increases, cognitive 
activation reduces.

FIGURE 5

(a) Contrast comparing the first minutes of Hard and Easy, (b) contrast comparing the last and the first minutes of Easy, (c) contrast comparing the last 
and the first minutes of Hard.
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3.1.2 Assessing H2

3.1.2.1 Contrasting first and fourth minutes in constant 
load conditions

To investigate whether there was a temporal effect of workload 
(H2), irrespective of difficulty levels, we contrasted the fourth to the 
first minutes for both Easy and Hard. For Easy4-Easy1 (Figure 5b) 
three channels had significant HbO increase (right dlPFC, midt-left 
OFC/dlPFC), one significant HbR decrease (midline), and two 
significant HbR increases (midt-left OFC/dlPFC). The higher 
activation in Easy4 suggests it is more cognitively demanding than 
Easy1, supporting H2. For Hard4-Hard1 (Figure 5c), eight channels 
had significant HbO increase (across the PFC), and three channels had 
significant HbR decrease (left PFC). The higher activation in Hard4 
suggests it is more cognitively demanding than Hard1, supporting H2. 
See Supplementary material for statistics tables.

3.2 EEG

3.2.1 Assessing H1

3.2.1.1 Manipulation check
The first minutes of Easy and Hard were contrasted to ensure 

that the conditions accurately represented low and high difficulty 
levels, that is, that Hard was more cognitively demanding than 
Easy. For Theta power, there were significant differences for 
channel O1 [Δ  = 3.67 (1.46), t = 2.518, p = 0.0124] and O2 
[Δ  = 6.01 (2.1), t = 2.859, p = 0.0046], that is, increased Theta 
power in Hard1 compared to Easy1. The occipital Theta power 
increase indicates that Hard1 was more cognitively demanding 
than Easy1. For Alpha power, one significant channel, O2 [Δ = 3.8 
(1.9), t = 1.998, p = 0.0468] indicated an increased Alpha power in 
Hard1 compared to Easy1. The occipital Alpha power increase 
further suggests mental fatigue occurred in Hard1 compared to 
Easy1. For Beta power, there were significant differences for 
channel P8 [Δ  = 1.35 (0.654), t = 2.067, p = 0.0397] and O2 
[Δ = 1.66 (0.604), t = 2.748, p = 0.0064], indicating increased Beta 
power in Hard1 compared to Easy1. The increase in Beta power in 
the right parietal and occipital regions could indicate higher 
cognitive load or mental fatigue, depending on to which literature 
basis it is compared. The remaining channels and frequency bands 
were non-significant (see Supplementary material).

3.2.1.2 Contrasts within ramp
All frequency bands and channels were non-significant (see 

Supplementary material).

3.2.2 Assessing H2

3.2.2.1 Contrasting first and fourth minutes in constant 
load conditions

For Delta power, there was a significant difference between Easy4 
and Easy1 for channel P8 [Δ = 15.15 (6.12), t = 2.476, p = 0.0278], 
indicating higher Delta power in Easy4 compared to Easy1. The right 
parietal Delta power increase suggests the presence of mental fatigue 
in Easy4 compared to Easy1. All other frequency bands and channels 
were non-significant (see Supplementary material).

3.3 ECG

3.3.1 Assessing H1
None of the time-domain variables yielded significant differences 

for any contrasts (see Supplementary material for details).
For HFpeak [Hz], the custom contrasts revealed a significant 

difference between Ramp2 and Ramp1 (MD = −0.048, 95% CI: 
[−0.088, −0.007], p = 0.024, η2 = 0.194). The Hard1-Easy1 contrast 
was non-significant (MD = −0.032, 95% CI: [−0.065, 2.22e-04], 
p = 0.051, η2 = 0.149).

For HFpow [log], the custom contrasts revealed significant 
differences between Ramp2 and Ramp1 (MD = −0.27, 95% CI: 
[−0.51, −0.02], p = 0.033, η2 = 0.176). The Hard1-Easy1 contrast was 
non-significant (MD = −0.09, 95% CI: [−0.28, 0.09], p =  0.311, 
η2 = 0.043).

None of the remaining frequency-domain variables yielded 
significant differences between conditions (see Supplementary material), 
indicating no difference in participants’ physiological stress response 
between conditions.

HFpeak [Hz] and HFpow [log] were significantly lower in Ramp2 
compared to Ramp1. As HF is modulated by PNS activity, a HF 
decrease represents lower PNS activity, accompanied by increased 
SNS activity and stress response. This result suggests that Ramp2 
elicited a higher stress response than Ramp, partly supporting H1. 
There is an effect of difficulty level on stress response, as measured by 
HFpow [log] and HFpeak. Still, this effect emerges only when the 
difficulty level incrementally increases over time (i.e., in Ramp). When 
the difficulty level is constant, the results suggest that high and low 
difficulty levels cannot be significantly discriminated with HRV.

3.3.2 Assessing H2
None of the time-domain variables or frequency-domain variables 

yielded significant differences for contrasts assessing H2 (see 
Supplementary material for details).

3.4 Performance

3.4.1 Number of games
The number of games played was lowest in Easy, M = 1.73 (0.98) 

(indicative of greater performance), followed by Ramp, M =  4.73 
(1.87) and Hard, M = 6.47 (1.81) (see Figure 6). Number of games 
differed significantly between conditions, Ft (1.69, 28.66) = 62.0769, 
p = 0. Pairwise comparisons indicated substantially lower number of 
games played during Easy compared to Hard (Ψ = −4.89, 95% CI: 
[−5.71, −4.07], p = 0e+00 < p-critical = 0.0169, d = −5.95), and in 
Easy compared to Ramp (Ψ = −3.00, 95% CI: [−3.82, −2.18], 
p = 0e+00 < p-critical = 0.0250, d = −3.13). Significantly more games 
were played in Hard compared to Ramp (Ψ = 1.67, 95% CI: [0.91, 
2.42], p = 2e-05 < p-critical = 0.05, d = 2.27).

3.4.2 Average score per game
The average score per game was the greatest in Easy, M = 8,031 

(7,599), followed by Ramp, M = 2,640 (5,340). Hard had the lowest 
average score per game, M = 1,629 (3,439). Average score per game 
differed significantly between conditions, Ft (1.02, 17.26) = 9.7908, 
p =  0.00587. Pairwise comparisons indicated substantially higher 
average score in Easy compared to Hard (Ψ = 4,954, 95% CI: [712, 
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9,197], p = 0.00649 < p-critical = 0.0250, d = 1.96), and compared to 
Ramp (Ψ = 3,793, 95% CI: [−117, 7,704], p = 0.01964  < p-critical =  
0.0500, d = 1.76). Hard had a significantly lower average score than 
Ramp (Ψ = 467, 95% CI: [69, 865], p = 0.00629 < p-critical = 0.0169, 
d = 0.54).

3.4.3 Total score
The total score was greatest in Easy, M = 9,849 (7,163), followed 

by Ramp, M =  6,088 (5,750). Hard had the lowest total score, 
M =  7,049 (5,473). Total score was significantly different between 
conditions, Ft(1.42, 24.1) = 7.81, p = 0.00527. Pairwise comparisons 
indicated that the total score was significantly greater in Easy 
compared to Hard (Ψ = 3,455, 95% CI: [435, 6,475], 
p = 0.00744 < p-critical = 0.0169, d = 1.55), and Ramp (Ψ = 2,648, 
95% CI: [101, 5,195], p = 0.01338 < p-critical = 0.0250, d = 1.27). Total 
score was not significantly lower in Hard compared to Ramp 
(Ψ = −828, 95% CI: [−2,173, 518], p = 0.12085 > p-critical = 0.05, 
d = 0.71).

3.5 Subjective variables

3.5.1 Arousal
Arousal (Figure 7) was highest in Ramp, M = 7.24 (0.95), followed 

by Hard, M = 7.07 (0.92), with the lowest arousal in Easy, M = 6.43 
(1.57). There were significant differences between conditions for 
arousal (t = 3.739 > t-critical = 3.592). Pairwise comparisons indicated 
a significantly higher arousal in Ramp compared to Easy (Ψ = 0.78, 
95% CI: [0.04, 1.51], t = 2.698 > t-critical = 2.556, d = 1.14). There 
were no significant differences between Easy and Hard (Ψ = −0.44, 
95% CI: [−1.33, 0.44], t = −1.279 < t-critical = 2.556, d = −0.76), or 

between Hard and Ramp (Ψ = −0.33, 95% CI: [−0.85, 0.19], 
t = −1.638 < t-critical = 2.556, d = 0.40).

3.5.2 Valence
Valence (Figure 7) was rated most pleasant in Easy, M =  6.40 

(1.50), followed by Ramp, M =  5.37 (2.04). Hard was rated most 
unpleasant, M =  4.83 (2.09). Valence was significantly different 
between conditions (t = 6.160 > t-critical = 3.169). Pairwise 
comparisons indicated that Easy was significantly more pleasant than 
Hard (Ψ = 1.79, 95% CI: [0.45, 3.12], t = 3.423 > t-critical = 2.554, 
d = 1.54). There was no significant difference between Easy and Ramp 
(Ψ = 1.11, 95% CI: [−0.21, 2.42], t = 2.139 < t-critical = 2.554, 
d = 1.06) or between Hard and Ramp (Ψ = −0.68, 95% CI: [−1.97, 
0.60], t = −1.358 < t-critical = 2.554, d = 0.67).

3.5.3 Level of stress
Level of stress (Figure 8) was highest in Hard, M = 4.43 (1.52), 

closely followed by Ramp, M = 4.40 (1.35). Easy had the lowest level 
of stress, M =  3.20 (1.30). The level of stress was significantly 
different between conditions, χ2(2) = 15.92, p <  0.001. Pairwise 
comparisons indicated a significantly higher level of stress in Ramp 
(p = 0.009, r = 0.54) and Hard (p = 0.004, r = 0.59) compared to 
Easy. There was no significant difference between Hard and Ramp 
(p = 1, r = 0.05).

3.5.4 Overall workload
Overall workload was highest in Ramp, M = 4.60 (1.10), followed 

by Hard, M =  4.53 (1.20). Easy had the lowest overall workload, 
M =  3.40 (1.13). Overall workload significantly differed between 
conditions, χ2(2) = 19.05, p < 0.001. Pairwise comparisons between 
conditions indicated that Easy had a significantly lower overall 

FIGURE 6

Performance in Tetris gameplay. ***Significant difference. NS., not significant. Error bars represent 95% CI assuming normality.
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FIGURE 7

Affective state. ***Indicates significant differences, NS., not significant. Error bars represent 95% CI assuming normality.

workload than Ramp (p = 0.006, r = −0.57), and Hard (p = 0.003, 
r = −0.60). Overall workload was not significantly different in Ramp 
compared to Hard (p = 1, r = 0.04).

3.5.5 TLX: physical demand
Physical demand was highest in Ramp, M = 3.73 (1.66), followed 

by Hard, M =  3.47 (1.74). Physical demand was lowest in Easy, 
M = 2.87 (1.31). Physical demand was significantly different between 
conditions, χ2(2) = 10.04, p = 0.007. Pairwise comparisons yielded a 
significant difference between Easy and Ramp (p = 0.035, r = −0.46). 
There was no significant difference between Easy and Hard (p = 0.158, 
r = −0.35), or Hard and Ramp (p = 1, r = −0.11).

3.5.6 TLX: temporal
Temporal demand was highest in Hard, M = 5.47 (0.97), closely 

followed by Ramp, M = 5.23 (1.28). Easy had the lowest temporal 
demand, M =  3.40 (1.45). Temporal demand was significantly 
different between conditions, χ2(2) = 30.45, p <  0.001. Pairwise 
comparisons showed a significantly lower temporal demand in Easy 
compared to Ramp (p < 0.001, r = −0.72) and compared to Hard 
(p < 0.001, r = −0.84). There was no significant difference between 
Ramp and Hard (p = 1, r = 0.12).

3.5.7 TLX: performance
Subjective performance was rated highest in Easy, M =  3.87 

(1.46), followed by Ramp, M = 2.77 (1.17), and Hard, M = 2.43 (1.14). 
Subjective performance was significantly different between 
conditions, χ2(2) = 17.18, p < 0.001. Pairwise comparisons indicated 
significantly higher subjective performance in Easy than Hard 
(p =  0.003, r = 0.60). The comparison between Easy and Ramp 
achieved p =  0.060, r = 0.42. There was no significant difference 
between Ramp and Hard (p = 0.999, r = −0.18).

3.5.8 TLX: effort
Effort was rated highest in Ramp, M = 5.03 (1.13), followed by Hard, 

M = 4.83 (1.26). Effort was lowest in Easy, M = 3.97 (1.13). Effort was 
significantly different between conditions, χ2(2) = 15.74, p <  0.001. 
Pairwise comparisons indicated a significantly higher effort in Ramp 
compared to Easy (p = 0.002, r = 0.61) and a significantly higher effort in 
Hard compared to Easy (p = 0.043, r = 0.45). There was no significant 
difference between Ramp and Hard (p = 1, r = 0.16).

3.5.9 TLX: frustration
Frustration was highest in Hard, M = 4.30 (1.75), followed by Ramp, 

M =  3.93 (1.55). Easy had the lowest frustration, M =  2.97 (1.38). 
Frustration was significantly different between conditions, χ2(2) = 16.78, 
p <  0.001. Pairwise comparisons indicate a significantly higher 
frustration in Hard compared to Easy (p = 0.001, r = 0.65). There was no 
significant difference between Hard and Ramp (p = 0.413, r = −0.27), 
nor between Ramp and Easy (p = 0.117, r = 0.38).

3.5.10 Enjoyment
Enjoyment was rated highest in Easy, M = 4.70 (SD = 1.37), followed 

by Ramp, M = 3.97 (1.33). Hard was rated as the least enjoyable 
condition, M =  3.70 (1.45). Enjoyment was significantly different 
between conditions, χ2(2) = 10.04, p =  0.007. Pairwise comparisons 
indicated that Easy was significantly more enjoyable than Hard 
(p = 0.024, r = 0.48), but there was no significant difference between Easy 
and Ramp (p = 0.14, r = 0.37) nor between Ramp and Hard (p = 1, 
r = −0.12).

3.5.11 Workload acceptability
Workload acceptability was highest in Easy, M =  5.27 (1.23), 

followed by Ramp, M = 4.20 (1.42). Workload was least acceptable in 
Hard, M =  3.90 (1.37). Workload acceptability was significantly 
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FIGURE 8

Subjective variables. **p < 0.05; ***p < 0.01; NS., not significant. Error bars represent 95% CI assuming normality.
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different between conditions, χ2(2) = 12.66, p =  0.002. Workload 
acceptability was significantly lower in Hard compared to Easy 
(p = 0.004, r = 0.60). There was no significant difference between Hard 
and Ramp (p = 0.905, r = −0.19). Although the comparison between 
Ramp and Easy achieved p = 0.085, r = 0.40, it is worth noting that 
their 95% Mean CI do not overlap, which is an indication of 
significance in the case of parametric tests.

3.6 EDA

There were no significant differences between conditions for nSCR 
(Ft(1.84, 47.71) = 0.33, p = 0.70), Tonic (t = 0.097 < t-critical = 2.799), 
AmpSum (t =  2.023  < t-critical = 3.231), and ISCR 
(t = 2.386 < t-critical = 2.954). For Latency, SCR, PhasicMax, Mean, 
MaxDeflection, there were no significant differences between 
conditions (no test statistic was output).

3.7 Reaction time

The factorial model yielded non-significant main effects of game 
difficulty (ε = 0.875, Ft(1.750, 45.505) = 0.207, p =  0.785), alarm 
(ε = 0.733, Ft(2.931, 76.199) = 2.374, p = 0.078), and non-significant 
difficulty–alarm interaction effect (ε = 0.644, Ft(5.148, 
133.852) = 0.221, p =  0.956). The mixed-effects linear model 
corroborated these non-significant results. In other words, reaction 
time was not significantly different between game difficulties and 
alarm numbers, nor was there a significant interaction effect between 
difficulty and alarm number.

4 Discussion

All performance variables yielded significant differences between 
conditions (apart from Total score for the Hard-Ramp contrast), with 
large effect sizes. Participants performed best in Easy, followed by 
Ramp and Hard. This suggests our experimental manipulation was 
successful in creating different workloads for participants, with Easy 
being the least difficult, followed by Ramp and Hard.

The subjective variables further support this, providing additional 
details on participants’ experience of the different workloads. Hard 
and Ramp received similar ratings for overall workload, levels of 
stress, physical demand, temporal demand, effort, and frustration, 
which were generally significantly higher than Easy. Easy received 
higher ratings of valence, subjective performance, enjoyment, and 
workload acceptability than Hard and Ramp, but there were only 
significant differences between Easy and Hard. Participants reported 
not only higher effort and workload but also valence, enjoyment, and 
workload acceptability in Ramp compared to Hard. Considering that 
Ramp ended on a higher difficulty level than Hard, this suggests that 
incremental adaptation to high workload levels affects participants’ 
perceptions of how enjoyable and acceptable it is to be subjected to 
said workload, and their effort. When subjected to a high workload 
incrementally, participants perceive they are able to exert higher effort. 
Ramp is associated with more enjoyment, workload acceptability, and 
pleasant emotions despite higher workload. Arousal received similar 
ratings overall, suggesting participants were highly alert for all 

conditions. This could indicate that the opportunity to win a gift 
certificate impacted their motivation and effort in the gameplay. The 
enjoyment and valence ratings might indicate eustress vs. distress, 
suggesting more a state of eustress than distress in Ramp compared to 
Hard, and vice versa.

The manipulation check yielded mixed fNIRS results, HbR 
suggesting higher cognitive load in Hard1, and HbO suggesting 
higher cognitive load in Easy1. This is surprising as we  expected 
increased cognitive load in Hard1 compared to Easy1 (H1). This could 
indicate that Easy1 was more cognitively demanding than Hard1, that 
Hard1 was so difficult that participants were unable to recruit as many 
neuronal resources as in Easy1, or that mental fatigue or cognitive 
disengagement occurred in Hard1 (compared to Easy1). The 
competitive element of possibly attaining a high-value gift certificate 
could also have influenced participants. For EEG, the occipital Theta 
power increase indicates that Hard1 was more cognitively demanding 
than Easy1, supporting H1 and corroborating existing literature 
(Antonenko et al., 2010; Borghini et al., 2014; Chikhi et al., 2022; 
Hamann and Carstengerdes, 2022). The occipital Alpha power 
increase further suggests mental fatigue occurred in Hard1 compared 
to Easy1. It is reasonable to assume mental fatigue would be greater in 
Hard1 compared to Easy1, and this could explain the fNIRS results, 
should mental fatigue have led to cognitive disengagement.

The fNIRS contrasts comparing the first and last minute of 
constant load conditions evidenced higher cognitive load at the end 
(for both Easy and Hard), supporting the hypothesis of a temporal 
effect of workload (H2). Despite equal workload, participants’ 
cognitive load increases, perhaps due to the need for sustained 
attention. For EEG, the right parietal Delta power increase indicates 
the presence of mental fatigue in Easy4 compared to Easy1, 
corroborating the fNIRS results and existing literature (Borghini et al., 
2014). The non-significant EEG variables for the Hard4-Hard1 
contrast could indicate that the workload was too high to be able to 
distill different levels of mental fatigue.

For Ramp contrasts, those contrasts comparing two adjacent 
minutes exhibit minor differences, as expected with the incremental 
difficulty level increases. Adjacent contrasts at the end (Ramp3/Ramp4) 
exhibit greater differences than adjacent contrasts at the start (Ramp1/
Ramp2), as expected given the lower difficulty level at the start and the 
expectation of mental fatigue occurring sometime in the end. Contrasts 
comparing non-adjacent minutes exhibit greater differences as expected. 
The results suggest higher cognitive activation at the start of gameplay, 
and as difficulty level increases, cognitive activation decreases, perhaps 
because it becomes more difficult to recruit sufficient neuronal resources. 
Based on these contrasts alone, it is difficult to ascertain whether 
participants cognitively disengaged or mentally fatigued at the gameplay’s 
end (i.e., in Ramp4 or Ramp3), but that is a possibility. Participant 
observations made by the experimenter would support that. For EEG, 
none of the electrodes were sensitive enough to discriminate between 
contrasts within the Ramp.

In this context, EEG appears to be  less sensitive to small 
changes in cognitive workload than fNIRS. Changing 
discrimination ability with difficulty level was evidenced by 
Hamann and Carstengerdes (2022), EEG could not discriminate 
between lower workload levels, while fNIRS could not discriminate 
between higher workload levels. The authors proposed an 
alternative explanation, that participants reached their cognitive 
resource limit, making it difficult to distinguish between higher 
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workload levels. Similarly, in this study, there were minor 
differences between the high difficulty level contrasts of Ramp. 
This could be interpreted as participants reaching or getting closer 
to a cognitive threshold. This notion of such a cognitive threshold 
is supported by others, that is, when task difficulty level exceeds a 
certain threshold, activation decreases compared to lower loads 
(Baker et al., 2018; Meidenbauer et al., 2021; Parent et al., 2019). 
An explanation could be that task demands exceed participants’ 
cognitive capacity, they mentally disengage from the task, 
potentially because of failing to recruit sufficient neuronal 
resources (Meidenbauer et al., 2021), or the induced stress and 
influencing selective attention (Baker et  al., 2018). Mental 
disengagement could certainly explain our results for the Hard1-
Easy1 contrast. Identification of individual upper cognitive 
thresholds ought to be focused on in further research.

ECG variables HFpeak [Hz] and HFpow [log] were significantly 
lower in Ramp2 compared to Ramp1, indicating that Ramp2 elicited 
a higher stress response than Ramp, partially supporting H1: there is 
an effect of difficulty level on stress response. However, this effect 
emerged only when comparing incremental difficulty level increases 
over time, i.e., in Ramp, and not for Hard-Easy comparisons, 
suggesting that for constant difficulty, high and low difficulties cannot 
be  significantly discriminated with ECG, at least within this 
experimental paradigm where participants had financial incentive. 
Furthermore, apart from those variables (HFpeak and HFpow), no 
ECG variables yielded significant differences between conditions, 
indicating no difference in participants’ physiological stress response 
between conditions, supporting the rejection of H2. There were no 
significant differences between any EDA variables.

The non-significant differences in stress could be explained by 
several factors. Subjectively evaluated arousal received similar 
ratings overall, and was not significantly different between Easy 
and Hard, which supports undistinguishable physiologically 
measured arousal (ECG). Participants were financially 
incentivized to perform well, which could be achieved through 
maintaining high arousal and exposure to alarm sounds. The 
alarm sound could have acted as a noise stressor, potentially 
contributing to high arousal, in turn contributing to the lack of 
differences in ECG and EDA variables. It could have been 
interesting to see whether results were similar had we not included 
the AUT and/or participants not been incentivized in the same 
way. Our non-significant ECG variables partially corroborate 
other research. Parent et al. (2019) were not able to classify stress 
with ECG variables alone significantly, but needed additional 
fNIRS variables to classify stress. However, ECG variables alone 
were able to classify mental workload (Parent et al., 2019). The 
authors suggest that fNIRS and ECG in combination best 
disentangle the concepts of mental workload and stress (Parent 
et  al., 2019). Others researchers found that only some ECG 
variables were sensitive enough to significantly discriminate 
between workload levels (Cinaz et al., 2013; Wulvik et al., 2019). 
Although the physiological stress response was not different 
between Easy and Hard, the subjective ratings indicated 
participants experienced a more unpleasant or negative affective 
state in Hard (valence, enjoyment) while Easy was more enjoyable 
and associated with more pleasant or positive affective state, and 
the valence difference had a large effect size. Taken together, these 
results further support the notion of eustress and destress, i.e., 

although the physiological stress response is not different between 
Easy and Hard, they are perceived differently by participants.

4.1 Limitations and implications for future 
research

Mental demand (TLX dimension) was not collected due to an 
error. There were limitations related to the use of Affect Grid. Several 
participants appeared to struggle when attempting to understand the 
affect grid’s interface and how to fill it out, filling the form out 
incorrectly, yielding missing data. It might be better to split the Affect 
Grid into two separate questions in the future experiments. The 
experiment was conducted during COVID-19 (May and June 2021), 
necessitating infection control measures, resulting in approximately 
50% dropout from participants reporting initial interest via email. 
We  expect a greater sample size had the experiment not been 
conducted during COVID-19. A larger sample size would have 
increased the results’ generalizability. Due to the nature of the different 
neuroimaging and physiology sensors, it was not possible to analyze all 
neurophysiological variables in precisely the same manner within this 
experimental procedure. This, together with the experimental design, 
could have impacted our results. These limitations could have 
influenced the non-significant ECG and EDA variables. Our fNIRS 
optodes and EEG electrodes could not be placed in the same location. 
Our multimodal data collection likely increased the data loss 
magnitude compared to if we collected only one modality. In addition 
to Tetris’s perhaps inherent competitive aspects, participants were 
additionally incentivized to perform better than other participants to 
win a gift certificate. This could have contributed to the high 
physiological and subjective arousal in all conditions. Therefore, it 
could have been valuable to estimate participants’ competitiveness as a 
control variable, e.g., self-reported competitiveness. Investigating the 
temporal effect of workload with fNIRS is difficult due to the ceiling 
effects of the hemodynamic response in blocks over 60 s. Future 
research could aim to discriminate between the temporal effect of 
workload and the ceiling effects of the hemodynamic response. This 
experiment did not separate workload and stress properly, which future 
experiments ought to. While workload varied as intended, we likely 
had high physiological stress for all conditions, possibly due to the ART 
and financial incentive. The ART did not yield any differences, likely 
due to its implementation or perhaps an incorrect number of alarms, 
and consequently, it acted as an additional stressor. We would not have 
included the ART or financial incentive were we to set up a similar 
experiment again. However, we believe an ART could be suitable for 
objectively measuring workload in experiments with a less intense 
primary task. The different sensor data cannot be analyzed on the same 
timescale, which is an inherent sensor problem. The study was 
therefore differently powered for different variables. Nevertheless, in 
future experiments we  recommend setting conditions to better 
facilitate a similar analysis process across sensors (provided that is an 
aim in itself, of course). Although EEG provided complementary data 
to fNIRS, we are not as confident of EEG’s data quality as that of fNIRS’. 
We expect a different EEG sensor, perhaps high-density, with a different 
application procedure or electrode tips, would provide higher quality 
data. Finally, it is essential to be  mindful about sensor selection, 
consider the sensor’s validity for the construct sought to measure, and 
which sensor provides more/less data.
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While Tetris gameplays and the complex, dynamically changing 
environments described initially have similar features, they are not the 
same. It could be  expensive to run multimodal studies in highly 
ecologically valid scenarios. When investigating if and when 
neurophysiological tools can discern workloads/stress, Tetris provides 
a practical, scalable, and less costly method to measure cognitive load 
in controlled environments. After suitable sensors have been 
identified, experiments with high ecological validity can 
be undertaken, reducing the overall research cost.

5 Conclusion

This study investigated the relationship between workload, 
performance, and the human mental and physical state by measuring 
cognitive load and stress in a complex, dynamically changing 
environment (Tetris gameplay) through fNIRS, EEG, ECG, EDA, 
performance, and subjective self-reports. Performance variables 
evidenced a successful experimental manipulation: Hard was most 
difficult, followed by Ramp and Easy. As a result, fNIRS, EEG, and ECG 
data partially supported increased cognitive load and stress with 
increasing workload. We  also found evidence of reduced fNIRS 
activation for higher workloads, possibly due to mental fatigue or 
disengagement, corroborating literature. We  furthermore found 
evidence for a temporal effect of workload on cognitive load (i.e., 
irrespective of difficulty), fNIRS yielding higher activation and EEG 
yielding mental fatigue with increasing time while difficulty was held 
constant. Despite large effects on cognitive load, the present 
experimental paradigm yielded little difference in physiological stress 
response between conditions. Simultaneously, subjective data indicated 
that participants experienced Hard as more unpleasant, and Easy as 
more pleasant and enjoyable, with a large effect size. Participants’ 
different perceptions of conditions (i.e., differing affective state), while 
experiencing undistinguishable physiological stress, could serve as 
evidence for a state of eustress and destress. Finally, not all 
neurophysiological variables were able to discern different workloads. 
As such, our multimodal data collection provided complementary data, 
providing a more complete picture, which aided in the interpretation 
of results.
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