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Both adults and children learn through feedback to associate environmental 
events and choices with reward, a process known as reinforcement learning 
(RL). However, tasks to assess RL-related neurocognitive processes in children 
have been limited. This study validated a child version of the Probabilistic Reward 
Learning task in preadolescents (8–12 years) while recording event-related-
potential (ERPs), focusing on: (1) reward-feedback sensitivity (frontal Reward-
related Positivity, RewP), (2) late attention-related responses to feedback (parietal 
P300), and (3) attentional shifting toward favored stimuli (N2pc). Behaviorally, as 
expected, preadolescents could learn stimulus–reward outcome associations, but 
with varying performance levels. Poor learners showed greater RewP amplitudes 
compared to good learners. Learning strategies (i.e., Win-Lose-Stay-Shift) were 
reflected by feedback-elicited P300 amplitudes. Lastly, attention shifted toward 
to-be-chosen stimuli, as evidenced by the N2pc, but not toward more highly 
rewarded stimuli as in adults. These findings provide novel insights into the neural 
processes underlying RL in preadolescents.
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Introduction

From an early age, children learn about the world around them through trial and error. 
That is, through repeated experience, children progressively learn what actions are likely to 
result in relatively positive or negative outcomes given a specific environment and/or set of 
choices. The ability to learn associations between choice behavior and outcomes and to then 
change patterns of subsequent choice behavior, accordingly, has been called probabilistic 
reinforcement learning (PRL). Computational models of PRL often separate such learning into 
several sub-components associated with both behaviorally and neurobiologically 
distinguishable processes. Specifically, PRL models involve a sequence of hypothesized 
neurocognitive processes, including evaluation of the relative value associated with available 
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choices, updating of stimulus–reward outcome associations based on 
feedback, and shaping of selective attention toward a more-likely-
winning stimulus to guide future choice (Anderson, 2017). However, 
while some of the neural correlates of PRL have been well studied in 
adults, relatively few studies have investigated this question in 
adolescents or children (reviewed by DePasque and Galván, 2017).

This limited PRL research in children is a critical gap in 
knowledge, as studying PRL in children could be  valuable for 
identifying specific neurocognitive processes that may account for 
individual differences in cognitive development, decision-making, 
and even risk-taking behavior (reviewed in Nussenbaum and Hartley, 
2019). More importantly, neural mechanisms of PRL have been 
suggested as a promising risk factor for depression (reviewed in 
Kangas et al., 2022), particularly during the transitional period from 
late childhood to early adolescence (Hankin et  al., 2015). Even 
asymptomatic adolescents of parents with depression have showed 
poor PRL behavior (Saulnier et al., 2023), which is thought to reflect 
impairments in the dopaminergic (DA) mesocorticolimbic regions 
(reviewed in Lerner et al., 2021). However, while many studies in 
developmental psychology and/or neuroscience focusing on 
adolescents or children emphasize reward-related behavior and 
developmental differences in neural responsivity to reward and 
punishment (Silverman et al., 2015), fewer studies have focused on 
key neural components of reward learning in the context of 
reinforcement learning (Nussenbaum and Hartley, 2019). The 
shortage of such research is partly due to the paucity of experimental 
tasks specifically designed for preadolescents. As a result, there has 
been limited research identifying the specific neurocognitive 
components of PRL that may be  impaired in children at risk 
for depression.

At the behavioral level, PRL is evident in childhood, adolescence, 
and adulthood (Raab and Hartley, 2018). However, findings from 
studies using computational models of PRL to examine how value-
based learning ability changes with age have provided mixed results. 
As reviewed by Nussenbaum and Hartley (2019), some developmental 
studies have reported that learning rates increase from childhood to 
adulthood (Davidow et al., 2016; Master et al., 2020) while others have 
reported that they do not change with age (Palminteri et al., 2016). 
Such mixed behavioral findings may reflect individual differences in 
one or all of the neurobiological processes underlying PRL (i.e., value 
representation associated with choices, updating of stimulus–reward 
outcome associations, shaping attention toward reward-predictive 
cues). Decades of neuroscience research have suggested that the 
development of PRL is supported by dopaminergic mesocorticolimbic 
brain pathways (reviewed in Daw and Tobler, 2014). DA neurons are 
involved in signaling reward prediction errors (i.e., discrepancies 
between expected and received rewards). When a reward is received 
after making a correct decision (e.g., winning), DA activity increases, 
which positively reinforces the same choice behavior that led to the 
reward (i.e., a win-stay strategy). Conversely, if the individual does not 
receive a reward, DA levels may decrease, which can negatively 
reinforce them to change their choice behavior (e.g., a lose-switch 
strategy). Thus, the Win-Stay-Lose-Switch (WSLS) strategy is a 
simplified, heuristic behavioral model of how the DA brain reward 
system adjusts actions in response to positive or negative reinforcement.

The WSLS models have been successfully applied to data from 
binary choice experiments with adults (e.g., Worthy et  al., 2013; 
Worthy and Maddox, 2012; Worthy et al., 2012). Recent work has 

demonstrated that adding WSLS and reinforcement learning models 
lead to a better account of decision-making behavior from a wide 
variety of decision-making tasks with adults (e.g., Worthy and 
Maddox, 2014) and animals (e.g., Ohta et al., 2021) Also, individual 
differences in the value updating process are known to be  well 
captured in learning rates (Nussenbaum and Hartley, 2019). Such rates 
reflect the degree to which reward feedback and reward prediction 
errors are incorporated into the updated value estimates during 
learning. However, existing studies in children have rarely considered 
individual learning rates or WSLS models in the investigation of key 
neural components of reinforcement learning. A number of studies 
using functional Magnetic Resonance Imaging (fMRI) have suggested 
that reward sensitivity is signaled by dopaminergic midbrain-fronto-
striatal brain circuits in both adults (Averbeck and O’Doherty, 2022; 
Nasser et al., 2017; Schultz, 2016) and adolescents (Christakou et al., 
2013; Cohen et al., 2010; Hauser et al., 2015). However, the temporal 
resolution of the blood oxygen level dependent signal has limited the 
ability of fMRI research to inform the potential cascade of unique 
neurobiological processes shaping learning on a trial-by-trial basis, 
which requires more precise temporal resolution.

The high temporal resolution of electroencephalogram (EEG) 
measures of brain activity makes such recordings particularly well-
suited for studying the neural subprocesses associated with PRL. More 
specifically, the ability to extract and measure event-related potentials 
(ERPs) time-locked to stimulus and reward-feedback events provides 
a particularly effective opportunity to delineate the temporal cascade 
of neurocognitive processes related to reward processing across a trial 
(Amodio et  al., 2014). To dissociate the specific neurocognitive 
processes supporting successful reinforcement learning, our prior 
work with college students (Van den Berg et al., 2019), as well as in 
other studies (e.g., Donaldson et al., 2016; Peterson et al., 2011; von 
Borries et al., 2013) has focused on three key neural components of 
reinforcement learning: (1) reward-feedback sensitivity, as measured 
by the frontal reward positivity (RewP), (2) later attentional 
modulation during feedback evaluation, the cental-parietal P300, and 
(3) rapid attentional shifting toward a favored stimulus using 
the N2pc.

The RewP ERP component is a frontal, positive-polarity brain 
wave that occurs 250–350 ms after gain feedback relative to loss 
feedback. With respect to RL theory (Holroyd and Coles, 2002; Sutton 
and Barto, 2018), the RewP is thought to index reward-related 
sensitivity in the mesocortical dopamine system, specifically reflecting 
reward prediction error signals that are sensitive to outcome valence 
and are larger for unexpected positive events relative to unexpected 
negative events (Holroyd and Coles, 2002). Although the RewP or its 
inverse, the Feedback-related Negativity, FN, calculated as loss-minus 
gain feedback in some earlier research (Krigolson, 2018) as a measure 
of response to reward has been widely investigated in adults (reviewed 
in Glazer et al., 2018; Kujawa, 2024), its role in PRL in children has 
not. Thus, we  know little about how individual learning rates in 
preadolescents may modulate changes in the RewP amplitudes.

The RewP component is often followed by another feedback-
evoked, later positive deflection, the P300 component. This component 
is a centro-parietally distributed wave that peaks between 400 and 
600 ms after stimulus presentation (San Martín et al., 2013; Wu and 
Zhou, 2009). The P300 reflects general attentional processes involved 
in updating expectations based on unexpected or salient outcomes 
during evaluative processing (for reviews, see Glazer et al., 2018, San 
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Martín, 2012) and has been used to investigate PRL with adults (e.g., 
Donaldson et al., 2016). Prior work has shown that the P300 reflects a 
longer-latency top-down-control process of outcome evaluation, 
suggesting that feedback information (e.g., probability and magnitude) 
in probability choice tasks guides future decisions for reward 
maximization in adults (San Martín et al., 2013; Wu and Zhou, 2009). 
Thus, if individuals receive unexpected loss feedback and decide to 
switch their choice on the next trial (thus employing a Lose-Switch 
strategy), the P300 amplitudes might be higher compared to when 
they received positive reward feedback. However, the functionality of 
the feedback-locked P300 (reward gain vs. loss feedback) during PRL 
in children has been little examined. More specifically, prior ERP 
studies reporting P300s in children have typically measured them 
during non-reward, cognitive processing, such as memory, attention, 
or executive function (reviewed in Peisch et al., 2021; Van Dinteren 
et  al., 2014), or in reward-related feedback responses without 
consideration of reward contingencies (e.g., Carlson et  al., 2009; 
Ferdinand et al., 2016; Yau et al., 2015). As a result, there is limited 
understanding of whether the P300 as measured in children during 
PRL will reflect attention allocation as a function of behavioral strategy.

As one learns which stimuli are more likely to generate reward 
outcomes, one tends to pay more attention to those stimuli. Such 
attention shifting toward reward-associated stimuli has been indexed 
by the N2-posterior-contralateral (N2pc) component, which typically 
emerges over posterior sites 180-to 300 msec following the stimulus 
in prior work with adults (Hickey et al., 2010; San Martín et al., 2016). 
Traditionally, the N2pc component has been extensively studied as an 
electrophysiological marker of selective visual attention in non-reward 
tasks (reviewed in Gupta et al., 2019; Zivony and Lamy, 2022). Recent 
studies, including our own (Van den Berg et al., 2019), suggest that 
N2pc amplitudes are modulated by reward expectations in adults (e.g., 
Chen and Wei, 2023; Taylor and Feldmann-Wüstefeld, 2024). Only a 
handful of ERP studies have examined the N2pc in children, either in 
the context of a reward task or more generally during visual search 
(Couperus and Quirk, 2015; Li et al., 2022; Shimi et al., 2014; Sun 
et  al., 2018; Turoman et  al., 2021) and/or working memory tasks 
(Rodríguez-Martínez et al., 2021; Shimi et al., 2015). Consistent with 
previous work in adults, prior studies with children indicate the N2pc 
is present during non-PRL attentional tasks, suggesting its potential 
as a marker of attentional selection during PRL in children as well 
(Couperus and Quirk, 2015; Li et al., 2022; Shimi et al., 2014; Sun 
et al., 2018; Turoman et al., 2021). However, such a possibility has not 
been directly tested. Accordingly, we know little about the functionality 
of the N2pc ERP component in children within a PRL framework – 
that is, whether it may reflect an index of early attentional shifting 
toward more reward-predicting stimuli in children, as has been shown 
previously in adults.

There were two main goals of the current study. First, we aimed to 
establish the feasibility and initial validation of a developmentally 
appropriate probabilistic reward learning task for preadolescent 
children, which we have termed the CPLearn task (Child Probability 
Learning task). Based on our results, we believe that this task would 
be a promising tool for studying both typical and atypical development 
of key neurocognitive processes underlying PRL. For example, 
alterations in attention (Keller et al., 2019) and impaired PRL (Chen 
et al., 2015) have been identified as key factors in hedonic functioning, 
which predict depression risk in children and adolescents (Keren 
et al., 2018; Morris et al., 2015; Saulnier et al., 2023). The design of the 

CPLearn task was based on our prior work investigating neural 
correlates of PRL processes in adults (van den Berg et  al., 2019). 
Secondly, following prior theory (Hernstein et al., 2000), we examined 
key subprocesses of PRL in the context of behavioral learning 
strategies, namely, Win-Stay-Lose-Shift (WSLS). These subprocesses 
included: (1) reward-feedback sensitivity (i.e., RewP), (2) long-latency 
attentional processing of choice-outcome feedback (the P300) related 
to the WSLS strategy within the PRL framework, and (3) early 
attentional shifting toward high-reward stimuli (i.e., N2pc). 
We predicted that preadolescents who did not learn the stimulus-
outcome associations very well (i.e., “poor” learners) would show 
smaller RewP amplitudes, consistent with the RL framework, 
compared to “good” learners, and/or would adopt less effective 
behavioral strategies. Finally, building on prior work showing that 
adults adopt effective strategies in later attention allocation in response 
to outcome feedback, as reflected in the P300 component (Donaldson 
et al., 2016; Von Borries et al., 2013), we hypothesized that the central-
parietal, feedback-locked P300 would reflect modulation of reward 
value updating as a function of behavior strategy in preadolescent PRL 
learning (i.e., Win-Stay-Lose-Switch).

Materials and methods

Participants

Thirty children between 8 and 12 years old were recruited from a 
Research Participation Database at Duke University maintained by the 
Human Subjects Coordinator for the Department of Psychology and 
Neuroscience. In addition, methods included posting flyers on social 
media sites and distributing flyers to local schools were used to recruit 
participants (see Table 1 for Participants Demographics).

Children who were color blind, reported a current and/or 
historical diagnosis of any psychiatric disorder, had a history of 
neurological disorder or insult (e.g., seizures, hydrocephalus, cerebral 
palsy, brain tumor, extended loss of consciousness, head trauma), were 
taking psychotropic medication for a mood or behavioral difficulty, or 
were left-handed were excluded from study participation. At the end 
of the EEG sessions, a $30 Amazon e-gift card was sent to the parents 
via email for the participation of their children in the study. Children 
also received candy and/or small toys after each completed session. 
Additional compensation was provided ($10 Amazon e-gift card per 
hour) to parents if testing sessions exceeded 2.5 h. This study was 
conducted in accordance with protocols approved by the Duke 
Institutional Review Board.

Stimuli

The task stimuli consisted of face and house images that were used 
in our prior study with college students (van den Berg et al., 2019). 
These task stimuli were adopted from the Database of Faces1 (see Van 
den Berg et al. (2019) for more details).

1 https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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Task paradigms and procedure

Practice Runs: To implement an age-appropriate Probabilistic 
Reward Learning task, we conducted multiple behavioral pilot tests 
over an eight-month period. During this time, we adjusted the task 
instructions to ensure they were easy for children to understand. Also, 
we made sure that children were able to respond within a specified 
time window. All subjects performed two blocks of 18 trials each (i.e., 
36 trials). The total completion time of practice sessions ranged from 
29 s to 1,400 s, with a median of 656 s (i.e., approximately 11 min in 
total). The percentage of correct trials (i.e., choosing trials associated 

with more likely to get rewarded) for practice runs was 67.66% 
(n = 30).

The child probabilistic reward learning task 
and localizer task

After two practice runs, participants completed the CPLearn take, 
followed by a face-vs-house neural-activation localizer task (for 
localizing the face-selective neural activity on the scalp and its timing), 
while EEG was recorded. The task was programmed and run on the 
OpenSesame platform for behavioral research (Mathôt et al., 2012), 
and event codes were sent to the EEG acquisition computer using the 
Python ‘egi’ package.

CPLearn: The CPLearn task consisted of 20 blocks of 18 trials each, 
slightly fewer than the 20 trials per block in the original adult version 
(van den Berg et al., 2019) to accommodate reduced attention spans 
and lower tolerance for prolonged experimental tasks in children. Also, 
the probability of reward was set to 0.77 (instead of ranging randomly 
from 0.5 to 0.75 as in the original adult version) to mitigate frustration 
in the children and potential confusion noted during early piloting 
sessions using the original adult reward-probability levels. At the 
beginning of each trial, participants were presented with two images on 
the screen, on the left and right of fixation, one of a face and one of a 
house, and were instructed to choose between the two (see Figure 1 for 
an example of a trial). After the participants made their choice on each 
trial, they received feedback as to whether they won points or lost 
points on that trial. Participants were instructed to try to learn during 
each block whether faces or houses were more likely to result in 
winning points, and that winning more points would allow them to 
have more points for choosing at the end of the session small toys that 
had differing levels of cost. At the end of each 18-trial block, feedback 
was given as to how many points the participant had accrued up until 
that point.

Localizer task: Following the CPLearn task, participants 
completed a localizer task, which was originally designed to generate 
potential regions of interest for assessing the face-responsive sensory 
cortices in our prior work with adults (van den Berg et al., 2019). 
We used a very similar localizer task to that one used in our prior 
work with young adults (van den Berg et al., 2019), which consisted 
of 20 blocks of 10 trials each. During the task, participants saw single 
versions (not paired) on each trial of the same house and face images 

TABLE 1 Participant demographics.

Mean ±SD

Age 9.94 years ±1.26

Income-to-needs ratio1 3 (±1)

n

Biological sex at birth

Females: males 15: 15

Race

  White n = 24

  Mixed racial background n = 5

  African American n = 1

  Asian n = 0

Ethnicity

  Hispanic or Latino n = 6

  Not Hispanic or Latino n = 24

Maternal education

  High school diploma n = 1

  Some college n = 2

  Graduated 4-year college n = 10

  Graduated from graduate or 

professional school

n = 17

1There was n = 2 who reported “don’t know”. The Income-to-needs ratio was calculated by 
dividing total family income by a poverty threshold determined by the United States Census 
Bureau, which considered the year assessed and household family size. The income-need 
ratio is, by definition, 1.0 at the poverty line, and numbers above that are multiples of needs.

FIGURE 1

Child-version of probabilistic reward learning (C-Plearn) task. An example of one trial with reward feedback (i.e., green box in the fourth panel showing 
an upwards arrow and dollar signs).The task of the participants was to choose which stimulus type (houses of faces) was more associated with 
receiving reward points through trial-and-error feedback processing. If participants choose the non-set winner (i.e., the one not associated with 
getting reward points), they received loss feedback (i.e., red box including downwards arrow and dollar sign). The same task stimulus (i.e., face or house 
images) used in our prior work (Van den Berg et al., 2019) was employed, but we used different feedback stimulus: a green or red box along with an 
upward or downward arrow and dollar sign, as well as smiley vs. frown faces for reward and loss feedback, respectively.
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presented during the CPLearn task, but 20% were somewhat blurred, 
which served as infrequent targets, while the rest were clear (i.e., 
non-targets) (see van den Berg et al. (2019) for more details). The task 
of the participants was to press a button for any blurry images and 
indicate whether they were a face or a house by pressing a button. 
However, data from the localizer task was not of interest for the 
current study and was thus not included in our major analyses here. 
Rather, we  just collapsed the data over the faces and houses, and 
focused on other questions for this study.

Computation of reward-learning behavior 
strategies

To calculate each subject’s reward-learning behavior within the 
PRL framework, we defined win-stay (WS) trials as those in which the 
previous trial (n − 1) was rewarded (won) and the choice made on the 
current trial n was the same choice as that on trial n – 1 (i.e., “stayed” 
with the same choice of face or house made on the previous trial). 
We then calculated WS probabilities as the proportion of trials with 
WS behavior given a previously rewarded trial (i.e., after receiving gain 
feedback). We  defined lose-shift (LS) trials as those in which the 
previous trial (n − 1) was not rewarded (i.e., receiving loss feedback) 
and the choice made on the current trial n differed from the choice on 
trial n − 1. We then calculated LS probabilities as a proportion of trials 
with LS behavior given that the previous trial was unrewarded (i.e., 
after receiving loss feedback) (see the formula below).

 
    

1
Number of Win Stay trialsProportion of Win Stay trials

N
−

− =
−

 
      

1
−

− =
−

Number of Lose Switch trialsProportion of Lose Switch trials
N

N-1, where N is the total number of trials, since the first trial does 
not have a previous trial to base a decision on.

EEG data collection and processing

Continuous EEG was recorded using a 128-channel HydroCel 
Geodesic Sensor Net (Electrical Geodesics, Eugene, OR) and Net 
Amps 400 series amplifiers at a sampling rate of a 1,000 Hertz (Hz). 
Data was referenced online to the vertex (Cz) during acquisition, and 
impedances were maintained below 50 kilohms throughout 
the paradigm.

Offline EEG data preprocessing was performed using EEGLAB 
version 2021 (Delorme and Makeig, 2004) in MATLAB R2019b 
(The MathWorks Inc., Natick, MA) using custom scripts.2 
According to the Maryland analysis of a developmental EEG 
pipeline recommended for pediatric populations (Debnath et al., 

2 codes are available at: https://github.com/gaffreylab

2020), we followed several key preprocessing steps as follows. First, 
twenty-four channels located on the outer ring of the sensor net 
were removed from the analyses. This preprocessing step was 
performed because participants were required to wear masks 
during the EEG sessions according to Duke COVID-related policy, 
which tended to impair sensor connectivity, and thus these 
channels had a particularly large number of artifacts during the 
recordings in the children. The data were then downsampled to 
250 Hz, low-pass filtered at 40 Hz, and segments of data without 
relevant events (i.e., breaks) removed. Using the ERPLAB v8.2 
plugin (Lopez-Calderon and Luck, 2014), a 0.1 to 30 Hz, 4th order 
Butterworth, bandpass filter was applied. The CleanLine plugin 
(Kappenman and Luck, 2012) was used to remove any remaining 
60 Hz line noise (Mitra and Bokil, 2007). All data were 
re-referenced to the average of the two mastoids. Bad channels 
were removed by running the Clean Rawdata plugin: a channel was 
considered bad if (1) it was flat for more than five seconds, (2) 
contained more than four standard deviations of line noise relative 
to its signal, or (3) correlated at less than 0.8 to nearby channels.

According to current recommendations in the field (Debener 
et al., 2010; Debnath et al., 2020), a “copy” of the data was made, 
and then the following steps were applied (Delorme and Makeig, 
2004): (1) the high-pass filter at a 1 Hz (4th order Butterworth), (2) 
Artifact Subspace Reconstruction (ASR; Mullen et al., 2015) with 
the burst criterion set to 20 (Chang et al., 2018) to remove large 
artifacts with Clean Rawdata, and (3) extended infomax 
Independent Component Analysis (ICA; Lee et al., 1999) with PCA 
dimension reduction (50 components). The resulting ICA matrix 
was then copied over to the original full-length data (i.e., the data 
just before the copy was made and a 1 Hz high-pass filter was 
applied). The ICLabel plugin (Pion-Tonachini et  al., 2019) 
automatically removed independent components with a probability 
greater than 0.7 of being associated with an eye movements or 
blink. Application of the ICA matrix to the full-length data and 
subsequent removal of eye-related components allowed for the 
preservation of data that would have otherwise been removed by 
ASR or other artifact removal methods. Bad channels that were 
previously removed from the analyses were interpolated back into 
the data set using spherical splines (Perrin et al., 1989).

For the CPLearn task, epochs were extracted from 400 ms 
before until 800 ms after the onset of the relevant stimulus events 
(the choice cue-pairs or the feedback screens in the main task). All 
epochs were baseline corrected using the baseline period 
from-200 ms to the onset of the event. Artifact rejection using the 
TBT plugin (Trial-By-Trial basis; Ben-Shachar, 2018) removed 
epochs with at least 10 channels meeting the following criteria: (1) 
peak-to-peak amplitudes exceeding 100 μV within 200 ms 
windows sliding across the epoch by 20 ms increments, (2) voltages 
below −150 uV or greater than +150 μV, or (3) joint probabilities 
above three standard deviations for local and global thresholds. If 
less than 10 channels in an epoch met criteria for rejection, the 
epoch was not removed, but the identified channels were 
interpolated based on the surrounding channels for that epoch 
only. However, if there were more than 10 channels in the epoch 
that met criteria for rejection, the epoch was not included. Lastly, 
the averaged ERPs for each bin (i.e., Gain, Loss) for each subject 
were computed. Mean of the number of accepted Gain and Loss 
trials per subject were 184.3 and 128.2, respectively.
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Data binning and averaging

From the CPLearn runs, the epoched EEG data were binned by 
feedback (gains and losses) and choice (face or house), yielding the 
following average trial counts per subject: face gain [90.53 (± 24.97)], 
face loss [62.13 (±13.73)], house gain [93.76 (±19.60)], and house loss 
[66.06 (±14.76)], after excluding noisy epochs. As would be expected, 
there were significantly more gain trials than loss trials due to learning 
[F (1,29) = 43.52, p < 0.001]. On the other hand, there were no 
significant differences in the number of gain or loss trials for choosing 
a face vs. a house [F (1,29) = 0.46, p = 0.50].

Analysis of ERPs evoked by the choice-cue 
pair

We calculated the N2pc response evoked by the choice-cue pair at 
the beginning of each trial to assess attentional orientation toward the 
two stimulus types as a function of what they will later choose that 
trial, as well as a function of what was the probability set winner for 
that block, using procedures similar to our previous work in adults 
(van den Berg et  al., 2019). More specifically, the N2pc neural 
responses were assayed by the N2pc contralateral-vs-ipsilateral 
analysis typically calculated to derive this component (Luck, 2011), 
that is by subtracting the activity in the contralateral channels (relative 
to the chosen side) minus the ipsilateral channels and then collapsing 
over the left and right sides.

Statistical analysis

For statistical analysis, we first calculated the time-locked ERPs as 
a function of the various event types and conditions. Based on 
previous literature, the reward-related Positivity (RewP) was measured 
from 275 to 375 ms following the feedback stimulus in a fronto-
central ROI (E10, E11, and E16). The P300 was measured from 400 to 
600 ms following the feedback stimulus in a central-parietal ROI 
(Left/Right: E37/E87, E31/E80, E53/E86, E60/E85, E67/E77, E61/E78, 
E54/E79; middle line: E129, E55, E62, E71) (Fischer and Ullsperger, 
2013; San Martín, 2012; San Martín et al., 2013). Subsequently, the 
extracted values were analyzed with t-tests or repeated measures 
analyses of variance (ANOVA) to test for statistical significance 
(p < 0.05) with 95% confidence intervals, using SPSS version 2021.

The cue-related attentional bias, N2pc was measured from 175 to 
225 ms after onset of the choice-cue image pair, from corresponding 
left and right occipital ROIs (E50/E101, E58/96; Hickey et al., 2010; 
Kappenman and Luck, 2012; San Martín et al., 2016). Subsequently, 

we  calculated the difference in voltage contralateral vs. ipsilateral 
relative to the side on which the set-winner was presented, as well as 
contralateral vs. ipsilateral to the side the stimulus that would 
be chosen on that trial.

To calculate each subject’s individual behavioral learning rate, 
we  used the same formula as in Van den Berg et  al. (2019) and 
calculated on a trial-by-trial number basis employing a mixed-
modeling approach using the lme4 statistical package (Bates et al., 
2015). A varying slope of condition per subject (the random effect) 
was included in the model if the Akaike Information Criterion (a 
measure of the quality of the model) improved. Statistical significance 
was set at p < 0.05, with the Satterthwaite’s degrees of freedom method 
as given by the R package lmerTest (Kuznetsova et al., 2017).

Results

Reward learning behavior

As mentioned above, to adjust the difficulty level of preadolescents 
(aged 8 to 12 years), the probability of reward in the CPLearn task was 
set to 0.77, which was slightly lower than the probability used in the 
original task with adults (Van den Berg et al., 2019). As presented in 
Table  2, participants showed approximately 64% correct choices 
(choosing the set winner – i.e., the stimulus associated with higher 
probability of being rewarded in a set) averaged across all the sets and 
trials. Mean reaction time (RT) for correct trials, calculated from the 
trials in which preadolescents chose the set-winner was 666.8 ms.

Trial-by-trial learning rates

Consistent with our prior work in adults (Van den Berg et al., 
2019), and as predicted, behavioral measures in the children 
demonstrated their reinforcement learning ability based on trial-
by-trial reward-related feedback. According to a post-hoc paired 
t-test, the percent of choosing set winner on the last (18th) trial of 
the block (M ± SD: 0.75 ± 0.16) was significantly higher compared 
to on the first trial (n = 30, M ± SD: 0.42 ± 0.10) [t (29) = −9.54, 
p < 0.001, Cohen’s d = 2.47]. As presented in Figure  2A, at the 
beginning of each 18-trial set, participants chose the most likely 
winner for that set at only chance level (0.45–0.50), as would 
be expected. But by the end of the set, this proportion of choosing 
set-winner increased up to ~0.75 on average, indicating that the 
children had used the feedback across the trials of that set to learn 
to choose the more likely probability-based winner. Nevertheless, 
the individual learning curves revealed very large individual 

TABLE 2 Reward learning behavior data: reaction times for correct trials.

Participants (n = 30) Good learners (n 
= 15)

Poor learners (n 
= 15)

Statistics Cohen’s d

% Correct trials 64.2% 72.8% 55.5% t (28) = 4.73, p <0.001 0.1

Mean RT for correct 

trials (i.e., choosing 

set-winners)

666.7 ms (SD± 95.9 ms) 657.9 ms (SD± 64.4 ms) 675.6 ms (SD ± 121.3 

ms)

t (28) = - 0.49, p =0.62 –

The child version of the Probabilistic Reward Learning Task consisted of twenty blocks, with 18 trials in each block. The probability of reward was set to 0.77 throughout the task. Correct trials 
were defined as those in which participants chose the stimulus associated with a higher probability of being rewarded.
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difference in this reward learning, as the final proportion of 
choosing set winners in a particular block ranged from 0.26 to 1.0 
across subjects and blocks. Due to this large range, we wanted to 
explore whether ‘good’ versus ‘poor’ learners might show different 
patterns of reward-related ERP components, by dividing the 
subjects using a median split based on their learning rate (see 
Figure 2A).

Specifically, as shown in Figure 2B, learning rates for good learners 
showed continuous increases from the first trial (learning rate: 0.43) 
through the 9th trial (learning rate: 0.80) [t (14) = −9.57, p < 0.001, 
Cohen’s d = 5.11], to the last trial (learning rate: 0.87) [t (14) = 2.27, 
p = 0.03, Cohen’s d = 1.21]. On the other hand, learning rates for poor 
learners (Figure 2C) showed somewhat of an increase from the first 
trial (learning rate: 0.42) to the 9th trial (learning rate: 0.63) [t 
(14) = −3.77, p = 0.002, Cohen’s d = 2.01], but no increase during the 
last half of the trials [t (14) = −0.02, p = 0.98].

Electrophysiological measures

The reward-related positivity amplitudes good vs. 
poor learners

Consistent with prior work in adults, we anticipated the processing 
of gain vs. loss feedback would be reflected by the reward positivity 
wave, that is, the RewP in the fronto ROI, calculated from the gain-
minus-loss difference waves. As presented in Figure 3, we found the 
presence of RewP around 275–375 ms after gain vs. loss feedback in 
our frontal ROI (E10, E11, E16) for young children. Given large 
individual differences in learning rates in our sample, we compared 
the RewP amplitudes between good vs. poor learners. In contrast to 
our expectation, the presence of the RewP amplitudes appear to 
be  mostly driven by poor learners with lower learning rates. The 
independent t-tests revealed that poor learners had larger RewP 
amplitudes in the frontal ROIs compared to good learners [t 
(27) = −2.14, p = 0.04, Cohen’s d = 0.79] (see Figure 4).

The P300 during reward gain vs. loss feedback as 
a function of behavior strategy

We examined the updating of reward values as a function of 
reward learning, as reflected by modulation of the P300 as a function 
of behavioral strategy. Figure 5 shows the P300 in response to gain vs. 
loss feedback as a function of trial-to-trial strategy (i.e., Switch vs. 
Stay) between good and poor learners. Using P300 amplitudes in the 
central ROIs between 400 and 600 ms for good and poor learners, 
we conducted a repeated-measures ANOVA with two within-subject 
factors (i.e., behavior strategy: switch versus stay, feedback: gain vs. 
loss) and one between-subject factor (i.e., good vs. poor learners). The 
ANOVAs were conducted to examine whether poor learners, relative 
to good learners, showed greater P300 amplitudes in response to gain 
vs. loss feedback as a function of switch behavior strategy (see Table 3 
for repeated measures ANOVA results). As shown in Figure 5, poor 
learners (i.e., those with low learning rates), relative to good learners, 
showed higher P300 amplitude differences in a central-parietal ROI 
on trials when they changed their responses on the next trial after gain 
feedback vs. after loss feedback. The repeated ANOVA analysis 
revealed no main effect on the P300 of learner type [poor vs. good: F 
(1, 27) = 1.45, p = 0.23, 2

pη : 0.05] (see Figure 6A). We did observe, 
however, main effects of behavior strategy with the greater P300 
amplitudes on lose-switch trials than win-stay trials [F (1, 27) = 9.11, 
p = 0.005, 2

pη : 0.25] and feedback with greater P300 amplitudes on loss 
compared to gain trials [F (1, 27) = 7.00, p = 0.01, 2

pη : 0.21], as 
presented in Figures 6B,C, respectively, but no interaction of feedback 
by behavior strategy [F (1, 27) = 0.34, p = 0.56, 2

pη : 0.01] or of behavior 
strategy by learner type [F (1, 27) = 0.38, p = 0.54, 2

pη : 0.01] or 
feedback by behavior strategy by learner type [F (1, 27) = 0.09, 
p = 0.76, 2

pη : 0.003] (see Figure 6). According to a post-hoc paired 
t-test, however, after receiving gain vs. loss feedback, children showed 
greater P300 amplitude differences in the central-parietal ROI when 
they switched their choice on the subsequent trial compared to when 
they chose the same response [t (28) = 2.68, p = 0.012, Cohen’s 
d = 0.32] (see Figure  6B). Also, P300 amplitudes in the same 

FIGURE 2

Individual differences in behavioral probabilistic reward learning. (A) All participants’ individual learning rates. During 18 blocks, the proportion of 
choosing set-winner (i.e., stimuli associated with a higher likelihood of being rewarded) for all participants ranged from 0.40 to 0.73. The individual 
learning curves revealed very large individual difference in reward learning, as the final proportion of choosing set winners in a particular block ranged 
from 0.26 to 1.0. Due to this large individual difference observed, we divided participants into good vs. poor learners according to a median split. 
(B) Learning rates for good learners showed a continuous increase from the first trial through the 9th trial to the last trial. (C) Learning rates for poor 
learners showed an increase from the first trial to the 9th trial, but no further increase during the remaining trials.
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central-parietal ROI were higher when children received loss feedback 
compared to gain feedback, collapsed across both good and poor 
learners [t (28) = 3.03, p = 0.005, Cohen’s d = 0.39] (see Figure 6C), 
consistent with adult findings (Van den Berg et al., 2019).

The N2pc component reflects attentional bias 
toward choice behavior

In our prior work in college students (Van den Berg et al., 2019), 
we found that the N2pc changed across the block for the set winner 
as that set winner was learned, as well as a function of the stimulus 
that would be chosen on that trial. In the current study, however, 
we  did not find an effect for the set winner, but only for the 
behavioral choice regardless of whether or not reward learning had 
been consolidated. More specifically, we first analyzed the effect of 
choice on the N2pc over the course of the 18-trial set by collapsing 
over whether the chosen image was that of a face or a house (to 

increase the signal-to-noise ratio). Then, we  analyzed the 
relationship between the N2pc elicited by the cue-pair stimulus 
relative to the behavioral choice made later in the trial, regardless of 
what the set-winner was. This analysis showed the presence of an 
N2pc for the to-be-chosen stimulus type in the latency of 
175–225 ms after the onset of each cue-pair stimulus (E50/E58) [t 
(29) = −2.85, p < 0.008] (see Figure 7). These results indicate that 
children shifted their attention to the stimulus type that they were 
going to choose that trial. However, we did not find a significant 
N2pc for the set winner in the choice-pair cue for all subjects [t 
(29) = −0.17, p = 0.86]. Lastly, independent t-tests on the N2pc 
amplitudes as a function of the set winner, measured in the ROIs 
from 175 to 275 ms between good and poor learners, revealed no 
statistical differences [t (28) = −1.76, p = 0.09], even though the 
behavior indicated that the good learners were learning the reward 
associations better.

FIGURE 3

The Frontal reward-related potential (gain vs. loss feedback) in preadolescents (n=30). (A) Grand average feedback-cue evoked responses for Gain and 
Loss reward feedback from the fronto-central ROI (E10, E11, and E16) (see red dots in the topography for the location of the ROI). (B) The reward-
related potential difference waveform during Gain minus Loss reward feedback. The reward-related potential was measured from 275 to 375 ms in a 
fronto-central ROI.

FIGURE 4

The reward-related positivity between good and poor learners. The comparison of the reward-related potential ERP marker measured from 275 to 
375ms in the fronto-central ROI between good and poor learners. Dark red colored electrode sites in the frontal ROI shows significantly greater 
reward-related positivity amplitudes for poor learners (i.e., those with low learning rates) compared to good learners (i.e., those with high learning 
rates).
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The interaction between learning rates and 
behavioral strategies

Beyond replicating the presence of three ERP components in 
preadolescents, as described above, we expanded on prior work with 
children by examining the temporal dynamics of behavioral strategies 
and learner types. To this end, a repeated measures analysis of variance 
(ANOVA) was conducted with behavioral strategies (i.e., WS, LS), 
blocks (i.e., 1–10 vs. 11–20 blocks) as within-subject factors, and 
learner types (i.e., good versus poor learners) as a between-subject 
factor. As presented in Table 4, there were main effects of strategy 
(p < 0.001) and a significant interaction of strategy and learner types 
(p < 0.001) but no main effects of block half and learner types or 
interaction effects of block by learner types or strategy by block by 
learner types. According to post-hoc t-tests to identify the sources of 
interaction effect of learner type and strategies, good learners were 
more likely to choose the same stimulus type (i.e., Win-Stay, WS 
behavior strategy) on the trial after one with a gain feedback [t (28) = 
3.92, p < 0.001, Cohen’s d = 1.43]. In contrast, poor learners were more 
likely to change their response choice (i.e., Lose-Shift, LS behavior 
strategy) on the next trial after loss feedbacks [t (28) = −2.89, 
p = 0.007, Cohen’s d = 1.05] (see Figure 8).

Given the trend-level main effects of blocks (p = 0.05) and the 
interaction between strategy and block (p = 0.05) or block and learner 

types (p = 0.08), additional post-hoc paired t-tests were conducted to 
identify potential temporal changes in behavioral strategies depending 
on learning type throughout the task. As presented in Figure 8, good 
learners’ proportion of LS in the first-half blocks (mean ± SD: 
0.42 ± 0.16) vs. in the second-half blocks (mean ± SD: 0.39 ± 0.13) did 
not differ [t (14) = 1.59, p = 0.13]. Similarly, good learners’ proportion 
of WS trials in the first-half (mean ± SD: 0.83 ± 0.15) vs. in the 
second-half blocks (mean ± SD: 0.86 ± 0.11) did not change through 
the task [t (14) = −1.25, p = 0.23]. On the other hand, poor learners’ 
proportion of LS in the first-half block was higher (mean ± SD: 
0.57 ± 0.11) compared to one in the second-half blocks (mean ± SD: 
0.52 ± 0.11) [t (14) = 3.00, p = 0.01, Cohen’s d = 0.45] while proportion 
of WS in the first-versus second-half blocks were not different [t (14) 
= 1.00, p = 0.33] (Figure 9).

Discussion

Consistent with our prior work in adults (Van den Berg et al., 
2019), our behavioral CPLearn findings in children indicate that, at 
least at a group level, preadolescents can learn which stimulus type in 
a pair (here a face vs. a house) is more likely to lead to a higher 
probability of reward over a series of trials. At the neural level, 

FIGURE 5

Topography of P300 during gain vs. loss feedback as a function of behavioral strategy. P300 amplitude differences in central and parietal ROIs on trials 
on which participants switched their responses on the next trial after gain feedback vs. after loss feedback. The red dot in the topography at the 
bottom shows the location of the central-parietal ROI. Top row: warm colored electrode sites indicate bigger P300 amplitudes on stay trials for good 
learners with high learning rates. The Bottom row: warm colored electrode sites indicate bigger P300 on stay trials for poor learners with low learning 
rates.

TABLE 3 Results of repeated measurements analysis of variance (ANOVA) on amplitudes of P300 component.

P300 amplitude F (1,28) p 2ηp

Behavior strategy (i.e., win-stay, lose-switch) 9.11 0.005* 0.25

Learner type (i.e., good versus poor learners) 1.45 0.23 0.05

Feedback type (i.e., gain, loss) 7.00 0.01* 0.21

Feedback × behavior strategy 0.34 0.56 0.01

Behavior strategy × learner type 0.38 0.54 0.01

Feedback × behavior strategy × learner type 0.09 0.76 0.03

Asterisks indicate significant effects. To examine how behavioral strategies influence feedback-driven P300 amplitudes based on learner type, a repeated measures ANOVA was conducted with 
behavioral strategies (i.e., Win-Stay, Lose-Switch), feedback types (i.e., gain, loss) as within-subject factors, and learner type (i.e., good versus poor learners) as a between-subject factor.
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we found modulation of key neural components of reinforcement 
learning for preadolescents: (1) RewP, (2) P300 and (3) N2pc 
components. Specifically, poor learners (i.e., those with low learning 

rates) showed greater reward-related positivity amplitudes relative to 
good learners (i.e., those with high learning rates), indicating greater 
reward sensitivity. As expected, P300 amplitudes during feedback 

FIGURE 6

P300 amplitudes in central, parietal ROIs as a function of feedback type and behavioral strategy. (A) Using P300 amplitudes in the central -parietal ROIs 
between 400 and 600 ms for good and poor learners, we found that poor learners (i.e., those with low learning rates), relative to good learners, 
showed higher P300 amplitude differences in central-parietal ROI when they switched their responses on the next trial after gain feedback vs. after 
loss feedback. (B) For all children, we found greater P300 amplitudes in the central-parietal ROI when participants switched their choice on the next 
trial after loss feedback (i.e., lose-switch strategy) compared to when they chose the same choice after gain feedback (i.e., win-stay strategy). (C) The 
P300 amplitudes in the same central-parietal ROI were higher when participants received loss feedback compared to gain feedback. Error bars 
indicate standard error; asterisks indicate significance level: **p = 0.01; ***p =.005.

FIGURE 7

The cue-evoked attentional bias of N2pc toward the to-be-chosen side on each trial. To increase signal-to-noise ratio, we collapsed over whether the 
chosen image was that of a face or a house and analyzed the effect of choice behavior on the N2pc over the course of the 18-trial set. The cue-
evoked N2pc amplitudes measured after onset of the cue image pair, from corresponding left and right occipital ROIs was found from 175 to 225ms 
(see red dots in the topography for the location of the ROI electrodes).
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TABLE 4 Results of repeated measures analysis of variance (ANOVA) on reward learning behavior and strategies.

Reward learning behavior F (1,28) p 2ηp

Strategy (i.e., win-stay, lose-switch) 58.75 2.3806E-8*** 0.67

Blocks (i.e., 1-10, 11-20 blocks) 4.04 0.05 0.12

Learner type (i.e., good learners with high learning 

rate, poor learners with low learning rate)

0.51 0.47 0.01

Strategy × learner type 19.23 0.000148*** 0.41

Block × learner type 3.24 0.08 0.10

Strategy × block 4.07 0.05 0.12

Strategy × block × learner type 0.43 0.51 0.02

***p < 0.001. To examine differences in behavioral strategies between good and poor learners throughout the CPLearn task, a repeated measures ANOVA was conducted with behavioral 
strategies (i.e., Win-Stay, Lose-Switch), blocks (i.e., 1-10 vs. 11-20 blocks) as within-subject factors, and subgroups (i.e., good versus poor learners) as a between-subject factor.

FIGURE 8

The interaction of behavioral strategies and learning types during the Child-version of Probabilistic Reward Learning task (CPLearn). During 18 blocks 
of the task, poor learners with low learning rates were more likely to change their choice on the next trial following loss feedback (i.e., Lose-Shift 
strategy). On the other hand, good learners with high learning rates were more like to make the same choice on the next trial following gain feedback 
(i.e., Win-Stay strategy). The error bars indicate standard error. **p = 0.007; ***p <0.001.

FIGURE 9

Comparison of behavioral strategies between good and poor learners in the first-half and second-half blocks. The win-stay strategy is defined as the 
proportion of trials in which subjects choose the same option as the previous trial, provided that previous trial was rewarded. The lose-switch strategy 
is defined as the proportion of trials in which subjects choose a different stimulus/option from the previous trial, provided that the previous trial was 
unrewarded. The proportion of win-stay and lose-switch strategy trials did not differ from the first to second half of the task for good learners (n =15). 
However, for poor learners (n =15), the proportion of lose-switch strategy trials was lower during the second half of the task, compared to the first half.
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evaluation were modulated by different behavior strategies. We also 
found attention shifting toward to-be-chosen stimuli, as evidenced by 
cue-evoked N2pc amplitudes, but not toward the set winner. These 
results suggest that the CPLearn task is a behaviorally-validated one, 
which could be a promising tool in preadolescents to identify either 
or both typical and atypical RL-related specific neurocognitive 
processes (i.e., reward sensitivity, attention shifting toward favored 
stimuli, and/or updating reward values according to feedback).

Reward positivity amplitude varies based 
on learner types

Most existing ERP studies with children (age from 8 to 12 years) 
have focused mainly on the RewP component as a neural index of 
reward responsivity by comparing reward vs. no-reward feedback 
processing (e.g., Burani et al., 2019; Ethridge et al., 2017; Ferdinand 
et al., 2016; Kessel et al., 2016; Kessel et al., 2019; Lukie et al., 2014). 
Consistent with this prior work, there was a small-amplitude RewP 
positivity averaged across all preadolescents. In contrast to our 
predictions, however, and providing a unique extension of this prior 
work, we found that poor preadolescent learners with low learning 
rates showed greater amplitudes of the RewP components than did 
good learners, indicating greater reward-feedback sensitivity. Indeed, 
good learners actually appeared to show an inverted (negative-
polarity) difference for gain minus loss.

Based on many animal and human studies, the basal ganglia are 
suggested to evaluate ongoing events in the environment and predict 
whether the events will more likely lead to success or failure. When 
the basal ganglia revise the predictions for the better, a phasic increase 
in the activity of midbrain dopaminergic neurons occurs. But, once 
the stimulus–reward outcome associations have been learned, there is 
a phasic decrease in the activity of midbrain dopaminergic neurons 
during reward delivery, specifically when reward-predictive cues are 
presented (reviewed in Daw and Tobler, 2014). For example, according 
to seminal animal work by Schultz et al. (1997), when a reward was 
consistently paired with a predictive stimulus, the phasic increase in 
dopamine firing rate observed at the time of reward delivery 
diminished over time and instead a phasic increase in dopamine firing 
rate was observed shortly after the onset of the predictive stimulus. 
More recently, this has also been demonstrated in humans. According 
to the Krigolson et al. (2014) study with adults (n = 18), novel rewards 
elicited neural responses at the time of reward outcomes that rapidly 
decreased in amplitude with learning. Furthermore, they identified the 
presence of the RewP component at choice presentation, a previously 
unreported ERP that has a similar timing and topography (Krigolson 
et al., 2014).

In line with the RL framework (Holroyd and Coles, 2008), 
we  speculate that the blunted (or even inverted) RewP effect that 
we observed in good learners with high learning rates in response to 
gain-minus-loss outcomes might reflect such phasic decrease in 
dopamine firing associated with learning, but it might be the case that 
these subjects had RewP increases in response to the reward-
predicting cues instead. In contrast, poor learners with low learning 
rates might have showed greater RewP during the reward outcome 
period, as they had not learned the stimulus-outcome associations. 
Nevertheless, while the current study is unable to inform this 
distinction given the absence of post training trials (i.e., measuring 

ERPs in response to isolated cues following training), it would be of 
value for future work to explore this possibility.

Behavioral strategies are reflected by 
feedback-locked P300 amplitudes in 
preadolescents

The P300 ERP component has been widely used for evaluating 
cognitive processes related to evaluating unexpected or salient 
information such as loss feedback and adapting behavior. Despite 
successful application of P300 ERP component to investigate reward-
based decision-making in adults (e.g., Schuermann et al., 2012; San 
Martín et  al., 2013), prior studies with children have typically 
measured the P300 component during non-reward, cognitive 
processes such as memory, attention or executive function and 
without consideration of a reinforcement learning framework 
(reviewed in Peisch et al., 2021; Van Dinteren et al., 2014).

In the current study, and in line with previously reported findings 
in adults, we  provide novel findings in preadolescent children 
demonstrating the contextual modulation of the feedback-locked 
P300 over the parietal cortex during reinforcement learning. More 
specifically, P300 amplitudes were larger following loss feedback 
rather than gain feedback in both good and poor learners. As such, 
our current findings are in line with prior work suggesting that the 
P300 component is typically elicited by the presentation of salient 
information (e.g., unexpected loss feedback) during the feedback 
evaluation process (reviewed in Glazer et  al., 2018). Further 
implications of the P300  in relation to behavioral strategies (i.e., 
Win-Stay-Lose-Switch; WSLS) are discussed below.

The WSLS strategy model in the current study revealed that poor 
preadolescent learners tended to more automatically “switch” their 
choice following losing feedback, a finding consistent with prior work 
with college students (Worthy and Maddox, 2014). The WSLS is a 
rule-based strategy that has been shown to be commonly used in 
binary outcome choice tasks (e.g., Otto et al., 2010). According to 
Worthy and Maddox (2014), college students with higher probabilities 
of shifting following a loss trial (i.e., “Lose-Shift” behavior strategy) 
showed poorer learning performance. Along with prior work with 
adults, our current findings add converging evidence that combining 
the WSLS and PRL models may provide a better account of decision-
making behavior even in preadolescents compared to a single PRL 
model. Also, it is possible that preadolescents with greater reward 
sensitivity, as reflected by greater RewP amplitude, might have been 
more distracted when exposed to cues that were previously associated 
with high reward values but were associated with non-reward 
outcomes. Such distraction might have led to choosing inefficient 
learning strategies, such as the Lose-Shift strategy. Indeed, a recent 
meta-analytic review by Rusz et  al. (2020) showed converging 
evidence for strong reward-driven distraction effects on reward-
learning mechanisms.

Consistent with prior work with college students (van den Berg 
et al., 2019), preadolescents learned the stimulus–reward outcome 
association at a group level. Within the PRL framework, our behavior 
data indicated major differences in strategy between good and poor 
learners, with good learners using win-stay strategy and poor learners 
using more of a lose-switch strategy. PRL theory generally assumes 
that the most recent outcomes exert the most influence on the current 
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choice, such that behavior on a given trial, n, depends particularly 
upon the choice and outcome on the preceding trial, n − 1. This 
relationship has been formalized as a simple, heuristic learning 
strategy called Win-Stay-Lose-Shift (WSLS: Hernstein et al., 2000). In 
our prior work in college students (San Martín et  al., 2013), the 
amplitude of the feedback-locked P300 over central and parietal 
cortex, but not of the FN (RewP), predicted behavioral adjustments 
(i.e., lose-switching strategy) on the next trial. These results are in line 
with the more general context-updating hypothesis of the P300 ERP 
component (Nieuwenhuis et  al., 2005). According to this view, 
decisions on each trial are informed by an internal model of the 
symbol/probability (win) contingencies, and the P300 amplitude 
reflects the extent of the feedback-triggered revision of such a model. 
Thus, the feedback-locked P300 distributed over central and parietal 
cortex may reflect adjustment processes to maximize gain and/or 
minimize loss in the future. In line with this view, the present study 
also provided novel findings showing the modulation of the P300 over 
central and parietal cortex as a function of behavioral strategy and 
feedback type, in that the feedback-locked P300 amplitudes were 
greater on lose-switching trials compared to win-staying trials, and in 
response to loss vs. gain reward feedback. In contrast to our 
expectation, however, we  did not find overall differences in the 
feedback-locked central-parietal P300 amplitudes between good and 
poor learners, even though our data indicated a modulation of the 
P300 amplitudes as a function of behavioral strategy and feedback 
more generally. We cannot rule out a possibility that there was not 
enough power to detect the interaction effect of P300 amplitudes and 
learner types due to limited number of participants (n = 15 per each 
learner type).

N2pc ERP component indexes early 
attention shifting toward the to-be-chosen 
stimulus

One key component of PRL processing is the instantiation of 
attentional shifts toward stimuli associated with higher probability of 
reward. Previously learned reward values can have a pronounced 
effect on the allocation of selective attention, which can be indexed as 
an increase in amplitude of the attention-sensitive, lateralized negative 
deflection (the N2pc) contralateral to the set-winner in the cue-pair 
presentation. Prior ERP studies in adults have reported that once a 
stimulus–reward association is learned, the presentation of that 
stimulus tends to trigger a larger or stronger attentional shift. 
Additionally, this learned association can help predict the likelihood 
of the choice that will be made on that trial (Hickey et al., 2010; Hickey 
and van Zoest, 2012; San Martín et al., 2016; Van den Berg et al., 2019).

Consistent with our prior work with adults (Van den Berg et al., 
2019), we also observed the presence of an N2pc for the to-be-chosen 
stimulus type after the onset of each cue-pair stimulus. These N2pc 
changes indicate rapid orientation of spatial attention toward the 
to-be-chosen stimulus on that trial, regardless of prior history of 
reward outcome for the set-winner across blocks. However, we did not 
observe an increased N2pc toward the set winner stimulus type that 
was being learned across the block, an effect previously observed in 
young adults (van den Berg et  al., 2019). We  speculate that one 
possibility for this lack of effect was that any learning-based 
modulation of the attention-sensitive N2pc amplitudes may have been 

too small to be detected here. This may have been because it occurred 
only in the good learners, was relatively small in magnitude, and 
occurred only during the later trials of the blocks. Such an idea should 
be tested in future studies with larger samples of both good and poor 
child learners.

The N2pc is a cue-evoked component that is often observed in 
both children and adults typically involving visual attention, when 
participants are required to shift spatial attention to potential target 
items. It is thought to indicate attentional-control and target-detection 
systems driven by parietal and frontal cortices (reviewed in Luck, 
2011). The fact that we  observed an N2pc for the to-be-chosen 
stimulus on a trial shows that these children were able to shift their 
spatial attention and that this shift was reflected neurally by an N2pc. 
We speculate, however, that this attentional shifting process might not 
have been able to be  linked very well to the reward learning and 
updating function in these children. According to source location 
studies of the N2pc component in adults, it is thought to be composed 
of two distinct neural responses - an early parietal source (180-200 ms) 
and a later occipital-temporal source (220-240 ms) (e.g., Hopf et al., 
2000). The later occipital-temporal cortex may play a particularly 
important role in RL by integrating visual information with reward 
expectations, allowing for the identification and learning of relevant 
visual cues (i.e., set winner in current study) that predict positive or 
negative outcomes (Tomov et  al., 2023). In the current study, the 
absence of modulation in N2pc amplitudes toward the set-winner 
stimulus in preadolescents may suggest that these children have not 
yet developed their ability to engage the additional resources 
associated with linking visual input with updated reward value, which 
are thought to come from the later-developing temporal-occipital 
cortex and/or frontal cortex (Tomov et  al., 2023). Future source 
localization studies of the N2pc, with direct comparisons of 
preadolescents, adolescents, and adults, are needed to clarify the 
neural generators of the N2pc component in a developmental context.

Limitations and future directions

As with all research, the current study should be viewed within 
the context of its limitations. This includes having a relatively small 
sample size for examining individual level differences and differential 
subgroup interactions, which may have resulted in our missing more 
nuanced distinctions in our behavioral measures of RL behavior and 
brain function (e.g., no significant N2pc to the stimulus with a higher 
likelihood of reward – i.e., the set winner – as that reward association 
was being learned). In addition, our sample was limited to 
preadolescent children, without a direct comparison to other age 
groups, such as adolescents. Future studies could thus replicate the 
current findings with the inclusion of different age groups. 
Furthermore, most participants in the current study were white, 
preadolescents from fairly affluent parents. Emerging evidence 
suggests that lower socioeconomic status (SES) may influence reward 
sensitivity and learning behavior differently than high SES (Decker 
et al., 2024). Therefore, the inclusion of children and adolescents from 
diverse SES background will be important for future studies using RL 
paradigms. Importantly, given the lack of ERP studies in children and 
adolescents examining attentional modulation in the context of 
reward learning, future studies should address how early versus late 
attention processing (e.g., reflected by the N2pc and P300, 
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respectively) underlie reward sensitivity by comparing cue-driven 
versus feedback-driven RewP components.

Conclusion

In summary, the results of the current study provide novel 
insights into core neurocognitive processes associated with 
preadolescents’ behavior during a child-appropriate probabilistic 
reward learning task: (1) The RewP component was modulated by 
individual learning rates in preadolescents: good learners with 
high learning rate appear to show more blunted (or even inverted) 
RewP amplitudes with their learning; (2) There was evidence of an 
updating of reward values as a function of behavior strategy, 
reflected by the modulation of the feedback-elicited P300 
amplitudes depending on lose-switch vs. win-stay strategies in the 
good vs. poor learning groups; and (3) There was an early 
attentional orienting toward the stimulus that would be chosen on 
a trial, as evidenced by the N2pc, but such an orienting process was 
not observed as a function of the learning of the reward 
associations. Thus, the current study provides initial validation for 
the CPLearn task as a promising tool for investigating the 
relationships between attentional processing, learning, and reward 
sensitivity in preadolescents, while also providing some initial 
findings about the neural underpinnings of these cognitive 
functions. This line of future research, including longitudinal 
studies that include both children and adolescents, could reveal 
developmental changes in neural maturation and behavioral 
strategies underlying the development of effective reward learning 
abilities. In addition, the present work may help advance our 
understanding of the neurobiological factors contributing to the 
risk of depression and other cognition-development issues in this 
key demographic group.
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