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Objective: This study aimed to explore how varying levels of interactive motor-

cognitive dual task difficulty affect brain activation, functional connectivity (FC),

and behavioral performance in healthy adults using functional near-infrared

spectroscopy (fNIRS).

Methods: We recruited 28 healthy participants to perform interactive motor-

cognitive dual task at three difficulty levels: easy task (ET), medium task

(MT), and difficult task (DT). The tasks involved walking while simultaneously

engaging in cognitive challenges. A continuous-wave fNIRS system was used

to collect fNIRS data during the task, focusing on 10 regions of interest

(ROIs): left/right prefrontal cortex (LPFC/RPFC), left/right dorsolateral prefrontal

cortex (DLPFC/DRPFC), left/right premotor cortex (LPMC/RPMC), left/right

sensorimotor cortex (LSC/RSC), and left/right motor cortex (LMC/RMC).

Simultaneously, the subjects’ gait data during walking were collected using an

Inertial Measurement Unit (IMU) sensor, and their cognitive performance was

recorded by the researchers.

Results: Statistical analysis revealed statistically significant differences in the

mean HbO levels among the three groups for the DRPFC, LPMC/RPMC, RSC,

and LMC/RMC regions. Additionally, significant differences were found in the

activation of channels 3, 18, 24, 25, 28, and 29 across the three groups. The

group-averaged FC in the DT (0.61 ± 0.21) was significantly higher than that

in the ET (0.46 ± 0.21, P = 0.023). ROI-to-ROI FC analysis showed significant

differences among the three groups in the LSC∼RPMC, RPMC∼RSC, and

RSC∼RMC connections. The lateralization index (LI) ranged from 0.10 to 0.35,

indicating a predominant right-brain lateralization during the interactive motor-

cognitive dual task. Additionally, compared to the MT, both speed and stride

length, as well as cognitive performance, were lower during the DT.

Conclusion: We found that increased task difficulty heightened activation in

the premotor and motor cortices, with a tendency toward right hemisphere
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dominance. Higher task difficulty also strengthened FC, particularly in motor-

related regions, indicating greater neural coordination. Behaviorally, participants

exhibited slower gait parameters and reduced cognitive performance as task

complexity increased, highlighting the impact of dual-task interference.

KEYWORDS

fNIRS, interactive dual task, brain activation, functional connectivity, lateralization

1 Introduction

Most daily activities involve managing motor–cognitive tasks
while processing external information, such as crossing a street
while observing traffic or carrying a cup of tea while thinking about
a shopping list. These motor–cognitive interactions are referred
to as motor–cognitive dual task performance (Wollesen and
Voelcker-Rehage, 2014). Motor and cognitive dual task training
can be categorized into sequential and simultaneous approaches.
Sequential motor-cognitive training involves motor and cognitive
training occurring at separate times, either before or after physical
exercises or on different days (Herold et al., 2018; Tait et al.,
2017). Simultaneous motor-cognitive training, on the other hand,
involves training both motor and cognitive tasks simultaneously
(Lauenroth et al., 2016). A recent review found that simultaneous
training significantly improves cognitive performance across
various populations, whereas evidence regarding the effectiveness
of sequential training remains inconclusive (Tait et al., 2017).
Furthermore, the optimal interval between motor and cognitive
exercises in sequential training is yet to be determined (Herold
et al., 2018; Tait et al., 2017). These findings suggest that
simultaneous motor-cognitive training is a more promising and
time-efficient approach to enhancing cognitive functions compared
to sequential training regimens.

Interactive motor-cognitive dual task is a type of simultaneous
motor-cognitive training, in which cognitive task is “incorporated”
into the motor task. The cognitive task is a relevant prerequisite to
successfully solve the motor-cognitive task (e.g., walking to certain
cones in a predefined order or dancing) (Schott, 2015). Several
studies have shown that interactive motor-cognitive dual task has
many advantages (Herold et al., 2018; Laguë-Beauvais et al., 2015;
Plummer et al., 2015; Shams and Seitz, 2008; Yogev-Seligmann
et al., 2012). Firstly, interactive motor-cognitive dual task is closer
to daily life situations (Herold et al., 2018). For example, it is
unlikely that an older person habitually solves an arithmetic task
during walking, but it is likely that he/she walks through the
supermarket while remembering what goods to buy and where
to find those. Secondly, if the cognitive task is incorporated into
the motor task, no prioritization effects would occur (Plummer
et al., 2015). Such prioritization effects (giving priority either to
the cognitive or the motor task) are known to influence motor
and cognitive performance (Laguë-Beauvais et al., 2015; Plummer
et al., 2015; Yogev-Seligmann et al., 2012). A further advantage of
interactive motor-cognitive dual task could be that multiple sensory
systems are stimulated due to the execution and control of the
cognitive task and the motor task at the same point of time (Shams
and Seitz, 2008).

Functional near-infrared spectroscopy (fNIRS), a non-invasive
neuroimaging technique, has emerged as a promising tool for
investigating brain activation and functional connectivity (FC)
(Leff et al., 2011). By measuring fluctuations in oxygenated
hemoglobin (HbO) and deoxygenated hemoglobin (HbR)
concentrations in response to neuronal activity, fNIRS offers
unique insights into the functional dynamics of the brain. FC refers
to the interactions between different regions of the cerebral cortex
during neurophysiological processes, highlighting important
connections among distinct cortical areas (Chen et al., 2022; Liu
et al., 2021). Previous fNIRS studies have successfully applied
dual task paradigms in both healthy individuals (Yao et al., 2024)
and patients, including hypertension (Yao et al., 2024), cognitive
impairment (Cao et al., 2022), stroke (Hermand et al., 2019),
Parkinson’s disease (Ranchet et al., 2020), and schizophrenic (Ji
et al., 2020; Xia et al., 2022; Yang et al., 2020).

Despite the potential of interactive motor-cognitive dual
tasking, gaps remain in the current literature. Many of these
studies have primarily focused on activation in the prefrontal cortex
(PFC), a region known for its involvement in executive functions
and cognitive control (Lapanan et al., 2023; Miura et al., 2024).
However, research targeting other brain regions associated with
motor and cognitive processes, such as the motor cortex, remains
scarce. Furthermore, the impact of varying task difficulty on brain
activation and FC across these regions is not yet fully understood.
Although some studies have reported that increased task difficulty
leads to heightened PFC activity (Chen et al., 2022), it is still
unclear whether similar patterns are observed in other cortical
areas, especially during tasks requiring both motor and cognitive
engagement. Thus, further investigation is necessary to elucidate
how task complexity influences brain activation beyond the PFC
and whether this extends to changes in FC across multiple brain
regions.

Given the advantages of interactive motor-cognitive dual task,
this study aimed to investigate the neural mechanisms underlying
this approach. Specifically, we used fNIRS to assess how varying
levels of task difficulty affect brain activation, FC, and both
motor (walking) and cognitive performance in healthy adults. By
analyzing changes in brain activity and connectivity across different
task conditions, we aimed to understand how the brain adapts
to increased cognitive and motor demands. Our hypothesis posits
that (1) as task difficulty increases, there will be a corresponding
increase in brain activation across multiple cortical regions,
accompanied by heightened FC between task-relevant regions; (2)
behavioral performance will show differential adaptation based on
task difficulty.
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2 Materials and methods

2.1 Participants

We recruited 28 healthy subjects (age: 22.53 ± 3.46 years,
height: 165.71 ± 6.31 cm, weight: 61.97 ± 9.48 kg, education:
14 ± 2.35 years) from Ningbo Rehabilitation Hospital participated
in the study, including 14 men and 14 women. Inclusion
criteria: participants must have no cognitive impairment, as
indicated by a Mini-Mental State Examination (MMSE) score
of ≥ 24 (Tombaugh and McIntyre, 1992); voluntary consent
to participate in the experiment; absence of cardiovascular,
respiratory, musculoskeletal, or neurological diseases; the ability
to walk independently; and right-handedness. Right-handed
participants were specifically chosen to minimize variability in
brain activation patterns, as handedness has been shown to
influence functional lateralization and cortical activation in motor
and cognitive tasks (Shirzadi et al., 2020). Additionally, while some
of the participants were below the legal age of adulthood in certain
jurisdictions, they were all university students or young adults with
fully developed cognitive and motor capabilities. This age group
was selected to ensure homogeneity in cognitive function and
neuroplasticity, reducing potential confounding effects that might
arise from age-related cognitive decline or neurodevelopmental
differences. Exclusion criteria: visual impairment and use of
medications affecting the nervous system within the last six
months.

The required sample size was calculated using G∗power
software (version 3.1, University of Kiel, Kiel, Germany) (Kang,
2021). The statistical test used in this study was a one-way repeated
measures ANOVA. The input parameters were set as follows:
effect size = 0.4, α error probability = 0.05, power (1—ß error
probability) = 0.85, and number of groups = 3. Based on these
calculations and considering an anticipated rate of approximately
15%, 28 participants were recruited for this study.

Before the fNIRS experiment, the purpose, procedures, fNIRS
system, and potential risks of the study were informed in detail
with the subjects and their family members to ensure participants
could make an informed decision regarding their involvement in
the experiment. All participants provided written informed consent
before data collection. The experimental protocol was approved by
the Institutional Review Board of Ningbo Rehabilitation Hospital
(2022-03-G2). All experimental procedures were performed in
accordance with the latest guidelines and regulations of the
Declaration of Helsinki.

2.2 Experimental protocol

In this study, participants performed an interactive motor-
cognitive dual task, which involved walking while completing a
variant of the color-word Stroop task. Stroop task is one of the
most widely used tasks in cognitive function (Qi et al., 2024). In
most traditional versions of the Stroop task, words are displayed on
a screen, and participants are instructed to quickly and accurately
identify the font color of the words (Qi et al., 2024; Riedel et al.,
2024; Wollesen et al., 2016). To increase ecological validity and
better approximate real-life situations that require simultaneous

motor and cognitive engagement, we adapted the Stroop task into
a dynamic, walking-based format.

A 4 × 4 matrix of color words (red, blue, green, and yellow)
was placed on the ground in a 6 × 6 meter grid, with each row
and column spaced 2 meters apart (Figure 1 and Supplementary
Video). Each word was printed in a specific ink color, which
could either match or differ from the written word (e.g., the word
“red” might be printed in green ink). This created a Stroop-like
cognitive interference task, requiring participants to focus on both
the written word and its ink color. Participants were instructed to
walk at a comfortable pace in an initial point through the grid,
guided by the researcher’s verbal instructions. For example, if the
researcher instructed participants to find the word “red” displayed
in green font, they needed to locate the corresponding card within
the matrix (i.e., the card showing the word “red”). After identifying
the target, the participant would move to its location and await
the next instruction. Subsequent instructions required participants
to continue from their current position, searching for the next
target without returning to the initial point. During the ET and MT
tasks, participants were provided with four possible word options
at each instruction, and they were required to select a different
word each time, ensuring no repetitions. To reduce the potential
influence of learning and adaptation, the three tasks were presented
in a randomized order. Each trial lasted one minute, with the card
layout reshuffled for every test to further minimize any learning
effects. To ensure participants remained engaged and to maintain
measurement accuracy, a one-minute rest period was provided
between tasks to prevent fatigue.

Three levels of difficulty were introduced to the interactive
motor-cognitive dual task:

1. Easy task (ET): The font color and the word itself were
congruent, presenting no conflict (e.g., the word “red” was
printed in red ink, as shown in Figure 1A). This task required
minimal cognitive effort, focusing mainly on motor activity.

2. Medium task (MT): The words were printed in black ink,
removing the color-coding element. Participants had to rely
solely on reading and interpreting the text for the cognitive
challenge (Figure 1B), increasing the cognitive demand.

3. Difficult task (DT): The font color and the word were
incongruent (e.g., the word “red” was printed in green ink,
as shown in Figure 1C), creating a Stroop-like interference.
This task required participants to suppress the automatic
tendency to respond to the font color, significantly increasing
the cognitive load.

2.3 Data acquisition

2.3.1 fNIRS data acquisition
A continuous-wave fNIRS system (Nirsmart, Danyang

Huichuang Medical Equipment Co., Ltd., China) was employed in
this study to measure cortical hemodynamic responses associated
with interactive motor-cognitive dual tasks. This system has been
widely utilized in cognitive and motor neuroscience research,
demonstrating its reliability in detecting functional brain activity
during movement-based tasks (Chen et al., 2022; Li et al., 2020;
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FIGURE 1

Interactive motor-cognitive dual task diagram. (A) Easy task (ET), (B)
medium task (MT), (C) difficult task (DT).

Li et al., 2023; Miura et al., 2024; Ou et al., 2024). The system
operates at two wavelengths (760 and 850 nm) and collects data
at a sampling rate of 11 Hz. The setup consisted of 33 channels,
formed by 17 source optodes and 11 detector optodes, which

were symmetrically placed over both hemispheres following
the 10/20 international electrode placement system (Figure 2).
These channels covered multiple brain regions of interest (ROIs),
including the left and right prefrontal cortex (LPFC/RPFC),
dorsolateral prefrontal cortex (DLPFC/DRPFC), premotor cortex
(LPMC/RPMC), sensorimotor cortex (LSC/RSC), and motor
cortex (LMC/RMC) (Table 1). The selection of these ROIs was
based on Brodmann areas (BA) and anatomical references relevant
to motor and cognitive processes. To ensure standardized spatial
localization, the acquired optode coordinates were transformed
into Montreal Neurological Institute (MNI) coordinates and
mapped onto the MNI standard brain template using the NirSpace
software (Danyang Huichuang Medical Equipment Co., Ltd.,
China) (Li et al., 2023). The emitter-detector distance was 3 cm.
Prior to each recording, a NIR gain quality check was performed to
ensure moderate data acquisition, avoiding both under-gained and
over-gained conditions.

2.3.2 Behavioral data acquisition
The Inertial Measurement Unit (IMU) sensor was positioned

approximately 5 cm above the subject’s medial ankle to collect
walking performance data during the task. The walking
performance index included step speed, step length, and stride
width. Researchers recorded the number of words each subject
found during each task as an indicator of cognitive performance.

2.4 Data processing and analysis

2.4.1 Preprocessing
We preprocessed the data collected using fNIRS in the

preprocessing module of the NirSpark (Danyang Huichuang
Medical Equipment Co., Ltd., China) software, which has been
used in previous experiments (Li et al., 2020; Li et al., 2023). The
preprocessing steps were as follows:

The standard deviation threshold was set to 6.0, and the
amplitude threshold was set to 0.5. Motion artifacts were removed
using standard deviation combined with cubic spline interpolation.
Interference signals caused by heart rate, breathing rate, and Mayer
waves were removed using a 0.01 to 0.2 Hz band-pass filter.
Differential path-length factors were set to 6.0. Optical density
was converted to blood oxygen concentration using the modified
Beer-Lambert law.

2.4.2 Brain activation
In this study, we selected the concentration of HbO as the target

indicator of brain activation, as the HbO signals have a higher
signal-to-noise ratio (Zhang et al., 2023). The steps for analyzing
the HbO time-series data were:

The initial time of the hemodynamic response function (HRF)
was set to −2 s and the end time to 60 s. The baseline state
was retained from −2 s to 0 s, while the single block paradigm
lasted from 0 s to 60 s. The generalized linear model (GLM) was
used to generate an ideal HRF for each task. Experimental HRF
values were compared with the ideal HRF values to determine the
corresponding range. The beta value, indicating the extent of brain
activation, served as an indicator for estimating the HRF prediction
of the HbO signal. The mean HbO for each ROI in the task states
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FIGURE 2

Schematic of fNIRS channel arrangem.

was obtained by dividing the concentration of HbO in all channels
in each ROI by the number of channels in each ROI.

2.4.3 Functional connectivity
The FC matrix was computed in NirSpark using Pearson’s

correlation analysis between the time series for each pair of
channels. Fisher’s r-to-z transformation was conducted to improve
normality. For each participant, a 33 × 33 correlation matrix
was generated. The ROI-to-ROI correlation coefficients for each
participant were calculated. The time series of all channel pairs were
averaged for each participant, contributing to the general FC value
for each participant. To ensure statistical robustness, we applied
a false discovery rate (FDR) correction at q < 0.05 to control for
multiple comparisons when analyzing connectivity data.

2.4.4 Laterality index
The lateralization index (LI) evaluates interhemispheric

regional activation asymmetry during interactive motor-cognitive
dual task. The calculation of the LI was performed as follows:

LI =
ABS (HbO_ < sc > R < /sc >)ABS(HbO_L)

ABS (HbO_R)+ ABS(HbO_L)

HbO_L represents the average oxygenated hemodynamic response
of channels in the left hemisphere, HbO_R represents the average

oxygenated hemodynamic response of channels in the right
hemisphere. The value of the LI ranges between −1 and +1. An LI
value of “−1” indicates complete left hemisphere dominance, while
an LI value of “+1” indicates complete right hemisphere dominance
(Borrell et al., 2023; Seghier, 2008).

2.5 Statistical analysis

Statistical analysis was performed using SPSS 27.0 software.
The Shapiro–Wilk test was applied to assess data normality,
and Levene’s test was used to evaluate the homogeneity of
variances. Given that this study involved the same group of
participants performing multiple tasks under different conditions
(ET, MT, and DT), a one-way repeated measures ANOVA was
chosen to analyze differences in: walking performance (speed,
step length, and stride width), cognitive performance (number
of words found), fNIRS data (ROI activation, channel activation,
channel FC, ROI-to-ROI FC, and LI). Post-hoc comparisons
were corrected using the Bonferroni method. FDR correction
was applied to the fNIRS data. All P-values reported are
based on two-sided tests, with values less than 0.05 considered
statistically significant.
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TABLE 1 The MNI coordinates and ROI corresponding to the measurement channels.

Channel number S-D x Y z ROI

CH 1 S1-D1 −36.909 61.405 −15.8 LPFC

CH 2 S1-D3 −49.314 52.632 −0.63518 DLPFC

CH 3 S2-D1 −10.808 69.15 −16.099 LPFC

CH 4 S2-D2 15.535 68.772 −15.143 RPFC

CH 5 S2-D4 2.7718 70.555 −1.8321 RPFC

CH 6 S3-D2 40.094 60.664 −14.239 RPFC

CH 7 S3-D5 49.805 51.245 −0.16077 DRPFC

CH 8 S4-D1 −27.606 68.604 −1.8545 LPFC

CH 9 S4-D3 −38.615 59.586 16.23 DLPFC

CH 10 S4-D4 −13.138 71.129 16.147 DLPFC

CH 11 S5-D2 30.461 66.68 −2.1316 RPFC

CH 12 S5-D4 16.841 69.921 16.074 DRPFC

CH 13 S5-D5 41.077 58.47 14.91 DRPFC

CH 14 S6-D6 −59.254 −6.0835 47.576 LSC

CH 15 S6-D7 −50.97 −3.9333 56.165 LPMC

CH 16 S7-D7 −41.861 −3.5054 63.365 LPMC

CH 17 S7-D8 −31.739 −4.1798 68.142 LPMC

CH 18 S8-D8 −19.98 −4.271 77.095 LPMC

CH 19 S9-D6 −59.312 −27.448 53.239 LSC

CH 20 S9-D7 −52.518 −26.987 63.059 LSC

CH 21 S10-D7 −43.073 −26.507 68.706 LSC

CH 22 S10-D8 −32.398 −25.435 73.347 LMC

CH 23 S11-D8 −20.701 −26.071 77.376 LMC

CH 24 S12-D9 22.861 −0.59311 74.834 RPMC

CH 25 S13-D9 35.358 −1.364 65.886 RPMC

CH 26 S13-D10 44.834 −1.0439 60.313 RPMC

CH 27 S14-D10 56.272 −1.8706 51.544 RPMC

CH 28 S14-D11 62.484 −2.709 39.983 RSC

CH 29 S15-D9 22.551 −24.71 76.87 RMC

CH 30 S16-D9 34.414 −23.983 72.973 RMC

CH 31 S16-D10 44.927 −23.861 67.31 RSC

CH 32 S17-D10 55.443 −24.5 58.323 RSC

CH 33 S17-D11 63.917 −27.722 48.956 RSC

ROI, regions of interest; LPFC/RPFC, left/right prefrontal cortex; DLPFC/DRPFC, left/right dorsolateral prefrontal cortex; LPMC/RPMC, left/right premotor cortex; LSC/RSC, left/right
sensorimotor cortex; LMC/RMC, left/right motor cortex.

3 Results

3.1 fNIRS data

3.1.1 Brain activation
The results from Figures 3A, B, which show the activation in the

left and right ROIs, indicate the following: the activation of LPMC
in MT (0.032 ± 0.016) was higher than in ET (0.014 ± 0.016),
the activation of LMC in both DT (0.029 ± 0.026) and ET
(0.028 ± 0.018) was higher than in MT (0.026 ± 0.026), the
activation of DRPFC in ET (0.056 ± 0.029) was higher than

in MT (0.039 ± 0.039), the activation of RPMC in both MT
(0.041 ± 0.037) and DT (0.049 ± 0.032) was higher than in
ET (0.029 ± 0.015), and the activation of RSC and RMC in
DT (0.053 ± 0.035, 0.050 ± 0.026) were higher than in ET
(0.041± 0.029, 0.038± 0.034).

Additionally, when comparing the activation of channels across
the three groups, the results show significant differences in channels
3, 18, 24, 25, 28, and 29 (Figure 3C). Specifically: the activation of
channel 3 and 25 in DT (0.080 ± 0.050, 0.036 ± 0.030) was higher
than in ET (0.040± 0.030, 0.028± 0.014), the activation of channel
18 and 24 in DT (0.047 ± 0.013, 0.039 ± 0.027) was higher than in
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FIGURE 3

Results of brain activation. (A) left hemisphere activation, (B) right hemisphere activation, (C) channel activation. *P < 0.05. ET, easy task; MT,
medium task; DT, difficult task; LPFC/RPFC, left/right prefrontal cortex; DLPFC/DRPFC, left/right dorsolateral prefrontal cortex; LPMC/RPMC,
left/right premotor cortex; LSC/RSC, left/right sensorimotor cortex; LMC/RMC, left/right motor cortex.

MT (0.023 ± 0.010, 0.026 ± 0.019), the activation of channel 28 in
MT (0.046± 0.020) was higher than in ET (0.041± 0.030), and the
activation of channel 29 in DT (0.044± 0.023) were higher than in
ET (0.023± 0.013) and MT (0.041± 0.010).

3.1.2 Functional connectivity
The connectivity strength between channels for each group

is shown in Figure 4. The mean channel-to-channel connectivity
strength was 0.46 ± 0.21 for the ET (Figure 4A), 0.58 ± 0.22 for
the MT (Figure 4B), and 0.61 ± 0.21 for the DT (Figure 4C).
There was a significant difference in FC values among the three
groups (F = 3.24, P = 0.04). The group-averaged FC in the DT
was significantly higher than that in the ET (P = 0.023; Figure 4D).

However, there were no significant differences between the ET and
MT (P = 0.15) and between the MT and DT (P = 0.26).

Figure 5 shows the FC of ROI-to-ROI among the three
groups (Figure 5A). Specifically, the FC results showed that the
connectivity strength of ET (0.18 ± 0.16) between LSC and RPMC
was significantly lower than DT (0.44± 0.03, P = 0.033; Figure 5B).
Additionally, the connectivity strength of DT between RPMC
and RSC (0.38 ± 0.15; Figure 5C) and between RSC and RMC
(0.52 ± 0.17; Figure 5D) was significantly higher than both ET
(P = 0.014) and MT (P = 0.034).

3.1.3 Laterality index
Figure 6 shows the cortical activation symmetry. The LI ranged

from 0.10 to 0.35, indicating that subjects mainly realized right
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FIGURE 4

Results of FC of channel-to-channel. *P < 0.05. (A) ET, (B) MT, (C) DT. (D) Mean connectivity strength of 33 channels among three groups. ET, easy
task; MT, medium task; DT, difficult task.

brain lateralization while performing interactive motor-cognitive
dual task. There was a significant difference in the LSC/RSC
between ET (0.21 ± 0.35) and DT (0.24 ± 0.31). Additionally, the
LI value of LMC/RMC was smaller during ET (0.15 ± 0.36) than
during MT (0.26 ± 0.26) and DT (0.28 ± 0.33). No significant
differences in LI values were detected between the other groups
(P > 0.05).

3.2 Behavioral data

3.2.1 Walking performance
The speed (F = 8.69, P = 0.031; Figure 7A) and stride length

(F = 2.53, P = 0.047; Figure 7B) during DT were significantly smaller
than during MT. There was no significant difference in stride width
between the three tasks (F = 1.73, P = 0.062; Figure 7C).

3.2.2 Cognitive performance
The number of words found by the subjects in the DT was lower

than in the ET and MT (F = 4.55, P = 0.042; Figure 8).

4 Discussion

This study aimed to explore the impact of varying difficulty
levels of interactive cognitive-motor dual task on brain activation,
FC, and behavioral performance in healthy adults using fNIRS.
By examining the hemodynamic responses across the PFC and
motor cortex, significant HbO differences were observed in
the DRPFC, LPMC, RPMC, RSC, LMC, and RMC across the
ET, MT, and DT conditions. Additionally, FC analysis showed
distinct connectivity strengths across these regions as task difficulty
increased, particularly between regions such as LSC∼RPMC,
RPMC∼RSC, and RSC∼RMC. These results support our initial
hypothesis that as task difficulty increased, both brain activation
and FC across multiple cortical regions also increased. Our
findings reveal notable adaptations in brain activation patterns
and FC strength in response to increasing task difficulty, offering
valuable insights into the neural mechanisms underlying motor-
cognitive integration.

In this study, significant ROI-level activation differences were
primarily observed in the DRPFC, LPMC, RPMC, RSC, LMC,
and RMC regions. Elevated metabolic activity in the PFC has
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FIGURE 5

Results of FC of ROI-to-ROI. (A) FC of ROI-to-ROI, (B) LSC∼RPMC, (C) RPMC∼RSC, (D) RSC∼RMC. *P < 0.05. ET, easy task; MT, medium task; DT,
difficult task; RPMC, right premotor cortex; LSC/RSC, left/right sensorimotor cortex; RMC, right motor cortex.

proven that it is strongly associated with increased planning and
attention in motor and cognitive tasks (Hamacher et al., 2015;
Wang et al., 2023). The motor cortex plays a critical role in
the planning, coordination, and execution of motor functions,
which are essential for gait control during dual-task walking
(Ou et al., 2024; Rubenstein and Rakic, 2020). Previous studies on
dual-task walking have predominantly focused on PFC activation,
with findings showing that PFC activation generally increases
during dual-task walking compared to single-task walking (Al-
Yahya et al., 2019; Chen et al., 2022; Stuart et al., 2018). However,
in our study, DLPFC activation during MT was lower than during
ET. This discrepancy may be attributed to the specific nature of
the motor-cognitive interaction, where the demands on motor
coordination might outweigh those on cognitive engagement,
supporting the “posture-first” strategy (Bloem et al., 2006). This
strategy, in which individuals prioritize the walking task over other
concurrent tasks, is typically used by younger individuals but less
frequently by older adults (Bloem et al., 2006). In this scenario,
motor cortex, rather than the PFC, may take on a more prominent
role as the cognitive component is deprioritized. These findings
imply that the allocation of cognitive and motor resources could
shift depending on task complexity, with some motor-cognitive
tasks diverting processing demands from the PFC to motor regions.
Furthermore, as task difficulty increased in this study, activation

levels in the LPMC/RPMC and LMC/RMC regions also rose,
reinforcing this explanation.

Further examination of channel-specific activation revealed
significant differences in channels 3, 18, 24, 25, 28, and 29, located
in the LPFC, LPMC, RPMC, RSC, and RMC. These findings
closely correspond to the activation patterns observed in the ROIs,
indicating that task complexity influences not only larger cortical
areas but also distinct neural pathways essential for motor-cognitive
integration. Channel 3 in the LPFC appears to play a crucial
role in higher-order cognitive processing, while the increased
activation in channels 18, 24, 25, 28, and 29 likely reflects a more
nuanced response within motor cortex regions, facilitating precise
motor control under higher task demands. These findings have
implications for designing personalized rehabilitation protocols
based on channel- and ROI-specific activation patterns. For
patients in need of cognitive rehabilitation, exercises can be
designed to intensively engage the LPFC, enhancing executive
function and cognitive control during physical tasks. Conversely,
for patients who require improved motor coordination, activities
engaging the LPMC, RPMC, RSC, and RMC can be prioritized
to bolster motor control and sensory processing. This targeted
approach to rehabilitation may optimize both cognitive and motor
function recovery based on individual activation patterns.

Our analysis of FC showed that the average channel-to-
channel connectivity strength was lower during the ET compared
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Results of walking performance. *P < 0.05. (A) Speed, (B) step length, (C) stride width. ET, easy task; MT, medium task; DT, difficult task.

to the DT, consistent with previous studies indicating that FC
strength typically increases with greater task difficulty and cognitive
load (Chen et al., 2022; Ding et al., 2024). This suggests a
neural recruitment mechanism, where higher task complexity
enhances coordination between brain regions to optimize the
synchronization of cognitive and motor resources (Chen et al.,
2022; Chirles et al., 2017). Interestingly, despite the increase in
cognitive task difficulty, we observed stronger FC in motor regions,
particularly between LSC∼RPMC, RPMC∼RSC, and RSC∼RMC.
This aligns with our activation results, which showed significant
engagement of the LPMC, RPMC, RSC, and RMC, suggesting that
motor regions play a more prominent role under higher cognitive
load. One possible explanation is that greater cognitive demand
increases the need for motor planning and coordination, requiring
greater motor cortex involvement to maintain gait stability and
movement control (Rubenstein and Rakic, 2020). This supports
previous research showing that higher task complexity recruits
additional motor resources to prevent performance deterioration
(Chen et al., 2022; Chirles et al., 2017; Obrig et al., 2000).
Additionally, the strengthened FC in motor regions further
supports the “posture-first” strategy, where individuals prioritize

stable motor execution over cognitive engagement under high
cognitive demand. These findings suggest that even when task
difficulty is primarily cognitive, the motor system adapts to
maintain performance, highlighting the strong interaction between
cognitive and motor networks in dual-task conditions.

The LI analysis in this study revealed a dominant role of
the right hemisphere during the interactive motor-cognitive dual
tasks. Traditionally, the right hemisphere is specialized in functions
such as spatial cognition, visual-spatial processing, and motor
control (Borrell et al., 2023; Güntürkün et al., 2020). In our
dual-task setup, which combined walking with a Stroop task,
participants were required to identify both the color and spatial
position of words, tasks that heavily rely on spatial processing.
This explains the stronger involvement of the right hemisphere,
as it aligns with the cognitive demands of the task. Our findings
are consistent with recent neuroimaging studies, which have
shown right-lateralized activation in the DLPFC during dual-
task paradigms involving spatial navigation and walking (Möller
et al., 2024; Rahman et al., 2021). This suggests that the right
hemisphere plays a crucial role in integrating cognitive and motor
functions, particularly when tasks require simultaneous spatial
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Results of cognitive performance. *P < 0.05. ET, easy task; MT,
medium task; DT, difficult task.

processing and movement control. Additionally, previous studies
have suggested that handedness is one of the factors affecting the
lateralization pattern (Shirzadi et al., 2020). All participants in this
study were right-handed, which is representative of the general
population. Research suggests that both right- and left-handed
individuals tend to show varying degrees of right-hemisphere
dominance for spatial processing (Powell et al., 2012). Some studies
further indicate that while right-handed individuals typically rely
on the right hemisphere for spatial tasks, left-handed individuals
may display less pronounced hemispheric specialization (Shirzadi
et al., 2020; Vogel et al., 2003). These findings highlight the
complexity of hemispheric dominance and its role in spatial-motor
integration.

As task difficulty increased, participants exhibited enhanced
FC, yet their behavioral performance declined, with slower
gait parameters and reduced word identification. This suggests
that although the brain recruits additional neural resources
to compensate for increased cognitive load, this adaptation is
insufficient to fully counteract dual-task interference. When
cognitive demands exceed the brain’s processing capacity,
performance declines become inevitable (Chen et al., 2022; Hairu
et al., 2021). Several theories explain this phenomenon (Pashler
et al., 2001; Wickens, 2002; Wollesen and Voelcker-Rehage,
2014). The central bottleneck theory suggests that a bottleneck in
information processing allows only one task to be processed at a
time; thus, processing of a second task cannot begin until the first
task is complete, often resulting in delayed responses in a dual
task setting (Pashler et al., 2001). The four-dimensional multiple
resource model posits that interference between tasks increases
when they share stages, sensory modalities, processing codes,
or visual information channels (Wickens, 2002). Additionally,
the attentional resource theory explains declines in motor–
cognitive functioning under dual task conditions as stemming
from competing demands for attentional resources, leading to
interference and reduced performance in one or both tasks
(Wollesen and Voelcker-Rehage, 2014). Beyond experimental
findings, these deficits have real-world implications, such as

an increased risk of falls in older adults or individuals with
neurological conditions. While enhanced FC may indicate a neural
compensation mechanism, it does not fully offset the behavioral
impairments caused by higher cognitive demands. This suggests
that under high task loads, the brain’s ability to allocate resources
remains constrained. Future research should investigate whether
dual task training can improve cognitive-motor integration,
potentially reducing interference effects and enhancing both
movement stability and cognitive performance in daily life.

This study provides a critical foundation for developing
intervention strategies in populations with cognitive impairments.
The observed brain activation patterns suggest that personalized
dual-task training (e.g., walking combined with cognitive
challenges) can be designed to enhance specific brain region
functions: LPFC-focused interventions may improve executive
function, while premotor and motor cortex training could optimize
motor coordination. Additionally, the progressive strengthening
of FC with increasing task difficulty supports the implementation
of gradual difficulty progression training, which promotes
efficient neural resource integration and reduces cognitive-motor
interference in daily life. The dominance of the right hemisphere
in spatial processing and motor control, highlights its clinical
significance for patients with right-hemisphere impairments
(e.g., Alzheimer’s disease or right-hemisphere stroke). Future
interventions could prioritize spatial-oriented dual tasks that
activate the right hemisphere, tailored to individual lateralization
patterns, to maximize rehabilitation outcomes.

Despite the valuable insights offered by this study, several
limitations should be acknowledged. First, the sample size was
relatively small, which may limit the statistical power and
generalizability of the results; future studies with larger cohorts
are needed to confirm these findings. Second, the study exclusively
included healthy young adults, which restricts the applicability
of the results to clinical populations. Replicating the study in
individuals with neurological impairments would provide greater
insight into the potential translational value of the findings for
rehabilitation. Finally, although the interactive Stroop-walking
paradigm was designed to mimic real-world dual-task situations,
it may not fully capture the complexity and unpredictability
of everyday environments. Therefore, the ecological validity of
the task remains limited and should be further examined in
future research.

5 Conclusion

We found that increased task difficulty heightened activation
in the premotor and motor cortices, with a tendency toward right
hemisphere dominance. Higher task difficulty also strengthened
FC, particularly in motor-related regions, indicating greater neural
coordination. Behaviorally, participants exhibited slower gait
parameters and reduced cognitive performance as task complexity
increased, highlighting the impact of dual-task interference.

These findings provide valuable insights into the neural
mechanisms of motor-cognitive integration. The right hemisphere’s
crucial role in spatial processing and motor control highlights
the potential benefits of spatially oriented dual-task training
for patients with right-hemisphere impairments, such as stroke
or Alzheimer’s disease. Furthermore, the observed increase in
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FC under high cognitive load supports the use of progressive
dual-task training to improve cognitive-motor coordination. For
individuals with cognitive deficits, interventions targeting the
LPFC may enhance executive function, while motor cortex-focused
training could improve movement stability. Future studies should
investigate these effects in populations with neurological conditions
and explore the long-term impact of dual-task training on brain
plasticity and functional recovery.
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