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The human brain naturally responds to music, with happy music enhancing

attention and sad music aiding emotion regulation. However, the specific

electroencephalogram (EEG) microstates linked to these cognitive and

emotional e�ects remain unclear. This study investigated the microstates

associated with happiness and sadness, focusing on the alpha band, using

classical music as stimuli. Results revealed a significant increase in class

D microstate, associated with attention, during happy music listening. An

inverse relationship between class C (linked to mind-wandering) and class

D microstates was observed. Analysis of global explained variance (GEV) and

global field potential (GFP) indicated that happy music upregulated class D and

downregulated class C microstates compared to baseline. In contrast, sad music

elicited an increased presence of class B, class C, and class D microstates, with

GEV and GFP analyses showing upregulation of class C and class D compared to

the resting state. These findings suggest distinct cognitive e�ects: (1) an increase

in class D and reduction in class Cmicrostates explain enhanced attention during

happy music listening, and (2) the concurrent upregulation of class C and class D

microstates underpins enhanced emotion regulation and self-regulatory goals

observed upon sad music listening. Notably, compared to baseline, the mean

microstate duration was significantly longer for both happy (p = 0.018) and

sad (p = 0.0003) music, indicating that music listening enhances the temporal

stability of active microstates. These findings advance the understanding of

the neural mechanisms underpinning music’s cognitive and emotional e�ects,

providing a framework to explore music-induced changes in brain dynamics

and their implications for emotion regulation and attentional modulation.
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1 Introduction

Music possesses a unique ability to influence various musical as well as non-music

domains, including intelligence (Rauscher et al., 1993; Rideout and Laubach, 1996),

attention (Putkinen et al., 2017;Markovic et al., 2017; Jäncke et al., 2015), emotion (Van den

Tol et al., 2016), and the Default Mode Network (DMN) (Trost et al., 2012; Wilkins et al.,

2014). The DMN is a neural system primarily associated with internally focused cognitive

processes, including daydreaming, mind-wandering, self-referential thinking, reminiscing

about the past, and planning for the future (Yeshurun et al., 2021). The broad impact of

music has led to positive effects on cognitive, motor, emotional, and social functioning in
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both healthy individuals and those with aging or neurological

conditions (Särkämö, 2018). Cognitive functions such as attention

and emotion regulation are essential processes for normal human

functioning, and music has been used as a supplementary tool

to enhance these functions (Rauscher et al., 1993; Rideout and

Laubach, 1996; Putkinen et al., 2017; Markovic et al., 2017; Jäncke

et al., 2015).

Studies have shown that even brief exposure to music can

enhance the spatiotemporal performance (Rauscher et al., 1995;

Wilson and Brown, 1997; Rauscher et al., 1993; Rideout and

Laubach, 1996) of individuals, often referred to as theMozart effect.

Furthermore, research suggests that musical stimuli (Mammarella

et al., 2007) capable of inducing a moderate arousal and pleasant

mood in individuals can lead to significant improvements in

several cognitive performance (Schellenberg and Hallam, 2005;

Schellenberg et al., 2007). Pleasant music stimulates brain regions

associated with memory, attention, cognition, and IQ (Verrusio

et al., 2015). Recent research (Gupta et al., 2018) suggests that

music affects the cognitive system, enhancing brain efficiency

through three distinct mechanisms. First, it activates specific

regions of the brain in the prefrontal and occipital lobes, which

are responsible for IQ and attention. Additionally, music reduces

unwanted brain activities, effectively minimizing interference and

optimizing cognitive processes.

People generally gravitate toward happy music (Van den Tol

et al., 2016) and strive to avoid sadness in their lives. However,

paradoxically, they exhibit a strong inclination toward sad music

(Taruffi and Koelsch, 2014), particularly during adverse moments’

ranging from everyday struggles to relationship difficulties and

profound experiences such as the loss of a loved one (Hanser

et al., 2016). Research has provided evidence that sad music can

evoke a pleasurable experience characterized by a sense of solace

(Van den Tol et al., 2016) and profound beauty (Sachs et al., 2015).

This feeling is different from real-life sadness (Gupta et al., 2023;

Taruffi and Koelsch, 2014; Sachs et al., 2015). The positive effects

of listening to sad music on managing difficult circumstances have

been extensively studied and well-documented (Van den Tol et al.,

2016; Van den Tol and Edwards, 2013; Hanser et al., 2016).

Sad music is frequently sought after by healthy adolescents and

young adults as a means of seeking solace (Van den Tol et al., 2016),

consolation (Ter Bogt et al., 2017), comfort (Taruffi and Koelsch,

2014), and coping with their emotions (Van den Tol et al., 2016).

Listening to sad music during challenging situations consistently

serves various self-regulation goals in the cognitive, social, memory

retrieval, distraction, mood enhancement, and affect re-experience

domains (Van den Tol et al., 2016; Van den Tol and Edwards,

2013). Furthermore, a recent study (Gupta et al., 2023) has shown

that listening to sad music after recalling a personal sad event

is associated with improved emotion and memory processing,

as well as improved alertness. Findings suggest that sad music

can have a profound impact on our emotional and cognitive

experiences, facilitating the processing and regulation of emotions

in challenging situations.

A comparative study (Taruffi et al., 2017) found that happy

music had a notable positive impact on meta-awareness, while

sad music exhibited a considerable rise in mind-wandering when

contrasted with happy music. This is further supported by the

heightened centrality observed within the core nodes of the DMN

during sad music listening compared to happy music (Taruffi et al.,

2017). The DMNhas been recognized as the key network associated

with mind-wandering (Mason et al., 2007; Kucyi et al., 2013;

Andrews-Hanna et al., 2010a,b; Christoff et al., 2009). Numerous

other studies have consistently linked the DMN activity to music

listening (Trost et al., 2012; Wilkins et al., 2014; Janata, 2009; Ford

et al., 2011; Brattico et al., 2011). It should be noted that the

experience of wandering of the mind while listening to sad music is

different from ordinary wandering of the mind and is characterized

by a unique blend of melancholy and pleasure associated with sad

music (Gupta et al., 2023; Taruffi and Koelsch, 2014; Sachs et al.,

2015) and comprises of spontaneous, self-referential thoughts,

emotions, and cognitive processes (Taruffi et al., 2017).

However, the field of music research is confronted with

several obstacles, including the lack of a consistent scientific

method for delivering musical interventions, the tendency to

reduce its effects to surface-level emotional or esthetic experiences,

and an incomplete understanding of how the brain functions

while engaging with music. To address these issues, detailed and

comprehensive studies are essential to reveal the deeper impact

of music on cognitive abilities such as attention and emotion

regulation. This line of research has the potential to reshape

strategies in mental healthcare, educational methodologies, and

cognitive therapy, paving the way for innovative and non-intrusive

tools to enhance quality of life.

The application of EEG microstates, which represent distinct

and non-overlapping topographies (Khanna et al., 2015; Koenig

et al., 2002) in recorded electrical signals, has become increasingly

popular in the field of electrical neuroimaging. EEG microstates,

representing brief instances of coordinated electrical activity in the

brain enduring tens of milliseconds, are considered quasi-stable

functional states (Michel and Koenig, 2018). One notable advantage

of the microstate method is the reliability and comparability of the

topographies obtained across different studies (Khanna et al., 2015;

Michel and Koenig, 2018), regardless of the number of electrodes

used (Zhang et al., 2021), instructions given to participants (such

as open or closed eyes) (Zanesco et al., 2021), or the frequency

range analyzed (Férat et al., 2022). Importantly, these microstates

have demonstrated the potential to function as biomarkers (Schiller

et al., 2020) for neuropsychiatric disorders (Soni et al., 2019; Michel

and Koenig, 2018), includingmood and anxiety disorders, as well as

Alzheimer’s disease (Al Zoubi et al., 2019; Tait et al., 2020). Recently,

it has been applied across a diverse array of studies, encompassing

brain resting states (Schiller et al., 2020), neuropsychiatric disorders

(Nishida et al., 2013; Soni et al., 2019; Terpou et al., 2022), sleepiness

(Cantero et al., 1999), and task-based brain activities (Seitzman

et al., 2017; Hu et al., 2023; Gu et al., 2022; Jiang et al., 2024).

Research has consistently identified specific spatiotemporal

brain microstates in independent studies, commonly categorized

into four distinct classes, A, B, C, and D, based on their unique

topological orientations. Map A is characterized by a left-right

orientation, Map B by a right-left orientation, Map C by an

anterior-posterior orientation, and Map D by a fronto-central

maximum. This labeling convention has been widely adopted in

various studies (Michel and Koenig, 2018; Hu et al., 2023; Pal

et al., 2021; Liu et al., 2021; Pascual-Marqui et al., 2014). Each
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microstate is associated with specific functions, namely auditory

information processing, visual information processing, DMN, and

attention (Khanna et al., 2015; Michel and Koenig, 2018; Koenig

et al., 2002). A recent review (Tarailis et al., 2023) on the

functionality of EEGmicrostates has additionally associated class A

with arousal. The author finds that in addition to visual processing

by class B microstate, it plays a key role in scene visualization

and self-representation within those scenes (Bréchet et al., 2019).

It is frequently observed during tasks involving autobiographical

memory (Bréchet et al., 2019). Furthermore, microstate B exhibits

a stronger propensity to transition to microstate C (Bréchet et al.,

2019), which is linked to the self-experience system. The review

further finds that class C relates to mind-wandering specifically

to self-reflection and self-referential processes (Bréchet et al.,

2019; Custo et al., 2017), while class D is linked to executive

functioning, including processes such as working memory and

attention (Bréchet et al., 2019; Kim et al., 2021).

Emotional states tend to evolve gradually, whereas EEG

signals fluctuate rapidly, leading to significant variability in the

features derived from them. Consequently, Chen et al. (2021)

propose that examining EEG microstates provides a more nuanced

understanding of emotions than conventional EEG analyses.

Emotional research has benefited from the successful utilization

of microstate analysis (Prete et al., 2022; Chen et al., 2021;

Coll et al., 2019), which has the potential to enhance emotion

classification (Chen et al., 2021; Shen et al., 2020). The research

findings indicate that the four microstates successfully capture

the dynamic attributes of emotions (Prete et al., 2022; Hu

et al., 2023). However, research investigating the microstates’

underpinnings of basic emotions in music (especially audio) is

very limited. In addition, to ensure consistency and allow precise

neurophysiological interpretations in our current investigation,

we chose four microstates that have shown reliability in previous

research studies (Prete et al., 2022; Hu et al., 2023; Khanna et al.,

2015; Michel and Koenig, 2018; Koenig et al., 2002).

Although microstate topographies are believed to be unrelated

to oscillatory activity (Férat et al., 2022) and various approaches

(Zulliger et al., 2022), the alpha bands have been identified as

the primary driving force behind microstates (Milz et al., 2017).

These alpha oscillations can also affect the number of peaks in the

global field power (GFP). The periodic nature of EEG microstates

is associated with the alpha band rotating phase observed during

periods of rest (von Wegner et al., 2021). Multiple studies have

demonstrated that the alpha band microstates outperform those of

other frequency bands in classifying conditions such as eyes open

or eyes closed (Férat et al., 2022), as well as emotions (Shen et al.,

2020). A recent EEG microstate study highlighted the efficacy of

the alpha band (8–13 Hz) in examining the impact of happy and

sad music on the brain (Gupta et al., 2025). Based on this, our

investigation focused specifically on the alpha band.

In summary, this study investigates the brain’s microstates

associated with the fundamental emotions of happiness and sadness

within the alpha band. It also seeks to uncover the neural

mechanisms underlying the observed cognitive and emotional

enhancements during music listening.

As previously discussed, music is known for its ability to

influence both emotional states and cognitive functions. Research

suggests that listening to happy music can enhance cognitive

abilities such as intelligence and attention (Gupta et al., 2018), while

sad music often serves as an effective tool for emotional regulation

and coping in challenging situations, as well as for improving

attention (Gupta et al., 2023).

To achieve the study’s objectives, we conducted a comparative

microstate analysis across three conditions—baseline (BL), music

(MUS), and post-music (PMS)—for each case while participants

listened to happy and sad musical stimuli. We hypothesize

that happy music will predominantly affect class D microstates,

signifying enhanced attention during the experience of pleasant

music. In contrast, sad music is expected to influence both class C

and class D microstates, which are associated with self-referential

processing (DMN) and attention, respectively.

2 Method

2.1 Participants

This study utilized two separate secondary datasets to

investigate the effects of happy and sad classical music, respectively.

The first dataset (Gupta et al., 2018) consisted of 20 participants

with a mean age of 24.06 years (SD = 2.69), who listened to

happy classical music. The second dataset (Gupta et al., 2023)

consisted of 20 participants with a mean age of 22.14 years

(SD = 3.68), who listened to sad classical music following an

adverse experience of sad autobiographical recall (SAR) of a

negative real-life event in which they experienced sadness such as

feelings of loss, loneliness, misunderstanding, heartbreak, betrayal,

loss of a loved one, etc. (Gupta et al., 2023; Hanser et al.,

2016). Participants in both experiments were enrolled from a

technology institute.

The methodology for these steps has been well-documented

in the original study, and only relevant processing steps or

modifications specific to this study are described below. To be

eligible for the study, participants had to meet the criteria of having

no formal or informal music training and being right-handed.

The literature highlights differences in EEG microstates between

musicians and non-musicians. Therefore, trained musicians were

excluded from the analysis in the current study to maintain

consistency. Exclusion criteria also encompassed hearing disorders,

psychopathological diseases, neurological diseases, and recent

usage of psychoactive drugs. Additionally, participants in the sad

music experiment were screened out for any predisposition to

depression. This precaution aimed to prevent the maladaptive

use of sad music as a coping mechanism for emotion regulation

in individuals prone to depression. To minimize potential

confounding factors, only male participants were included in both

experiments. This decision was based on previous observations

of differences in biomarkers for cognitive (Neubauer and Fink,

2009) and emotional processes (Goshvarpour and Goshvarpour,

2019) between male and female participants (Whittle et al.,

2011). The studies were duly approved by the Institutional

Ethics Committee (IEC) involving human subjects of the Indian

Institute of Technology, Kanpur (IEC Communication no:

IITK/IEC/2019–20/I/18, IITK/IEC/2017–18 I/3). Throughout the

entire study, adherence to relevant guidelines and regulations was

strictly upheld.
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2.2 Stimulus and experimental procedure

The experiments were conducted in a soundproof laboratory

to minimize external interference. Participants were seated

comfortably, with stereo speakers positioned symmetrically

about 2 m away for free-field auditory stimulus delivery.

The room was dimly lit to create a calm atmosphere and

reduce distractions, ensuring auditory stimuli were the

primary focus.

Indian classical music was selected as an experimental stimulus

due to its proven effects on cognitive and emotional brain functions

(Gupta et al., 2018, 2023). Researches show that Indian Ragas

reduce stress, anxiety, and blood pressure (Kar et al., 2015; Siritunga

et al., 2013), while enhancing life satisfaction and optimism (Gupta

and Gupta, 2016). Previous EEG studies have demonstrated their

ability tomodulate neural activity (Gupta et al., 2018, 2023), making

them ideal for exploring their impact on brain’s microstates. The

stimulus utilized for our investigation was performed by skilled

professional musicians (Gupta et al., 2018, 2023).

The first experiment investigated the effects of listening

to happy music. It comprised three distinct states: a baseline

resting state (duration: 275 s), a music listening state involving

participants attentively hearing the happy music with their eyes

closed, and finally a post-music silence state (duration: 275 s).

Raga Darbari segment (duration: 9 min and 53 s) was used as

the happy musical stimulus. Participants also rated their mood on

an 11-point Likert scale upon listening to Raga Darbari during

the experiment.

The second experiment investigated the effects of listening to

sad music during an adverse situation. It encompassed four distinct

conditions of 9 min each. First, there was a baseline resting state.

Following that, participants engaged in a SAR condition, where

they recalled a personal episode that evoked sadness. Subsequently,

participants listened to sad music. Finally, there was a post-music

silence condition. The Mishra Raga Jogiya segment (duration: 8

min and 44 s) was used as the sad musical stimulus. During the

baseline, sad music listening, and post music silence conditions,

participants were instructed to maintain a calm seated position

while focusing their gaze on a centrally printed cross displayed on

a blank sheet of paper. However, during the SAR condition, the

cross was substituted with a writing pad. In this condition, they

were encouraged to vividly and in detail report the real-life episode

that evoked feelings of sadness, encompassing experiences such as

loss, loneliness, heartbreak, betrayal, etc. (Hanser et al., 2016) in

the writing pad while supporting their elbow to minimize hand

movements. Furthermore, participants were instructed tominimize

any movement, including eye, head, and body movements, to

minimize artifacts during the task while performing it in a

natural manner.

Participants evaluated the vividness and reliving of

autobiographical recall on a five-point scale. They also evaluated

their mood on an 11-point Likert scale during the three states.

Following the EEG experiment, participants completed a standard

Self-Regulatory Goals Assessment questionnaire to asses self-

regulatory goals upon sad raga listening. Additionally, they rated

the efficiency of the sad musical stimulus in managing the SAR

condition on an 11-point bidirectional scale with a range from –5

to+5.

2.3 EEG recording and preprocessing

In both studies, the EEG signals from the participants

were recorded using a g.HIamp bio-signal amplifier (Guger

Technologies, OG, Graz, Austria). The EEG data were recorded at

a sampling frequency of 512 Hz, and it was collected from 32 scalp

positions following the International 10-20 system. The impedance

level was maintained below 5 Kohms. To ensure appropriate

signal quality, the EEG data was band-pass filtered between 0.01

and 100 Hz. In addition, EEG data were also recorded from

four electrooculography (EOG) positions, including the upper and

lower right eye and the outer canthus locations of both eyes, to

detect and eliminate any artifacts caused by eye blinks.

EEG preprocessing was performed using the EEGLAB toolbox

(Delorme and Makeig, 2004). To enhance data processing, EEG

data were down-sampled to a frequency of 256 Hz, and a high-pass

filter with a 0.5 Hz cutoff was employed to eliminate any DC drift

present in the signals. Visual inspection was performed to identify

and mark any artifacts resulting from eye movements, muscle

activity, or electrode movement. Bad electrodes were identified and

interpolated to improve data quality. The EEG data were average-

referenced. Independent Component Analysis (ICA) and SASICA

(Semi-Automatic Selection of Independent Component Analysis)

were employed to further eliminate artifacts caused by eye and

muscle movements (Chaumon et al., 2015; Crespo-Garcia et al.,

2008). EEG data were filtered to obtain the alpha band between

8 and 13 Hz. After excluding participants with high EEG artifacts

and previous exposure to music, we were left with a total of

15 participants for each experiment, who were included in the

subsequent microstate analysis.

2.4 Microstate analysis

We conducted a spatial k-means cluster analysis using the

EEGLAB toolbox for each condition (Poulsen et al., 2018). The

analysis utilized maps based on the local maxima of the GFP,

which identifies time points characterized by the largest signal-

to-noise ratio. The analysis did not consider the polarity of

the maps. The microstate cluster analysis was conducted on the

combined EEG data of all participants within each condition. Brain

microstate maps are typically categorized into classes A, B, C, and

D based on their topological orientations (Koenig et al., 1999).

Specifically, microstate map A has a left-right orientation, map B

shows a right-left orientation, map C displays an anterior-posterior

orientation, and map D has a fronto-central maximum. This

labeling convention has been consistently used in various studies

(Michel and Koenig, 2018; Hu et al., 2023; Pal et al., 2021; Liu et al.,

2021; Pascual-Marqui et al., 2014) (Supplementary Figures S2–

S4). In our research, we followed this convention and classified

the microstates into classes A, B, C, and D according to their

topographical orientations as described initially by Koenig et al.

(1999), in line with subsequent studies (Hu et al., 2023; Pal et al.,

2021; Liu et al., 2021; Pascual-Marqui et al., 2014).

Additionally, we calculated the spatial correlation among the

four microstates of the brain under different conditions. Once

the maps were identified for each condition, they were applied to

Frontiers inHumanNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnhum.2025.1472689
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Gupta et al. 10.3389/fnhum.2025.1472689

FIGURE 1

A schematic of the microstate analysis process: (a) preprocessed EEG data, (b) high SNR topographies extracted from GFP maxima, (c) clustering for

reliable microstate map detection, and (d) mapping microstates back to EEG data, assigning each time point to a dominant state, followed by feature

computation.

each participant’s EEG data within that specific condition. Each

frame of time in the EEG data was assigned to the template

that exhibited the best spatial correlation match. This procedure

produced a microstate sequence unique to each participant,

and these sequences were subsequently employed to compute

participant-specific microstate parameters for each condition.

Figure 1 illustrates the microstate analysis procedure applied to

each participant under each condition.

(1) GFP: It serves as a reference-independent measure,

representing the magnitude of the scalp electric field.

GFP is equivalent to the spatial standard deviation of voltage

amplitude and is typically measured in micro-volts (µV)

(Murray et al., 2008; Skrandies, 1990).

(2) GEV: This parameter quantifies the degree to which the

selected template effectively represents the entire dataset. It

is computed by summing the explained variances, with each

value weighted according to the corresponding GFP at each

time point (Murray et al., 2008).

GEVt = corr(st ,mlt )
2 GFP2t
∑T

t′ GFP
2
t′

In this context, GFPt represents the global field power

for the tth time sample. The variable st denotes EEG data

corresponding to the tth time, lt signifies the label of the

microstate of tth EEG data, mlt stands for the microstate map

corresponding to the ltht , and T is the total time period.

(3) Coverage: It represents the percentage of time

frames in which a particular microstate is present,

indicating the relative duration of its activation

(Khanna et al., 2015; Murray et al., 2008).

(4) Occurrence: The mean number of times the microstate is

observed within a 1-s period. It reflects the tendency of

intracortical sources to synchronize their activation and is

measured in Hertz (Hz) (Khanna et al., 2015).

(5) Duration: The mean temporal duration pertains to the average

time span over which consecutive maps are attributed to the

same microstate class (Khanna et al., 2015).

For correlation analysis during music listening, we divided

the duration of the MUS condition into 10 segments. Microstates

parameters calculated for each segment for each participant

were utilized for correlation analysis. For comparative microstate

analysis between BL, MUS, and PMS conditions, we selected 200

s of segment duration from each condition in both experiments

(Supplementary Figure S1).

2.5 Statistical analysis

To investigate the effects of microstate class on parameters such

as global explained variance (GEV), occurrence, duration, global

field power (GFP), and coverage during music listening, a one-

way repeated measures ANOVA was conducted using SPSS, with

microstate class treated as a within-subject factor. Additionally, to

examine the combined effects of microstate class and experimental

conditions, a two-way repeated measures ANOVA was performed,

considering both factors as within-subject variables.

The mean values of the above variables (Post hoc analysis) and

the subjective questionnaire scores were compared using a two-

tailed t-test at a significance level of (α) = 0.05, and false discovery

rate (FDR) correction was applied to address issues related to

multiple comparisons. Furthermore, correlation analyses were
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FIGURE 2

Microstate analysis for happy Indian raga. (a) Four EEG microstates underpinning music (MUS) conditions. (b) Relative GEV for each microstate class

during music listening. (c) Relative GFP in each microstate class during music listening. (d) Correlation between the microstate class D and class C for

GEV. (e) Correlation between the microstate class D and class C for Coverage. (f) Correlation between the microstate class D and class C for GFP

(**FDR corrected, p < 0.05; error bars = 1 SD).

conducted between Class C and Class D microstates for parameters

including GEV, coverage, and GFP during music listening.

3 Results

3.1 Experiment 1

3.1.1 Microstate analysis for a happy Indian raga
We performed microstate analysis for the full duration

of Raga Darbari music. Figure 2a shows the four microstates

underpinning raga darbari that explain 77.4% of GEV. The

microstates are arranged according to the standard convention

of classes A-D. The microstate maps were fitted back into the

EEG data of the participants, yielding various parameters such

as GEV, coverage, occurrence, duration, and inter-microstate

transition probability.

GEV: We applied a one-way repeated ANOVA to examine the

effect of microstate class on GEV. The results show a significant

effect with a Greenhouse-Geisser correction (F1.741,24.379 = 12.246,

p < 0.001). The post hoc paired t-test shows that the microstate of

class D is significantly higher compared to class A (t= 4.4643, df=

14, p < 0.005, d = 1.1527), class B (t = 4.8103, df = 14, p < 0.005,

d= 1.2420), and class C (t= 3.3471, df= 14, p < 0.05, d= 0.8642)

during happy music listening as shown in Figure 2b.

GFP: One-way repeated ANOVA with a Greenhouse-Geisser

correction indicates a significant effect of microstate class on the

GFP (F1.797,25.163 = 28.452, p < 0.001). Post hoc paired t-test shows

that class D microstate has significantly higher GFP than class A (t

= 7.1884, df = 14, p < 0.001, d = 1.8560), class B (t = 8.0431,

df = 14, p < 0.001, d = 2.0767), and class C (t = 5.1199, df

= 14, p < 0.001, d = 1.3220) during happy music listening, as

shown in Figure 2c. One-way repeated ANOVA effects of coverage,

occurrence, duration, and inter-microstate transition probability

were not significant. The results also showed a significant negative

correlation between microstate class C and class D for GEV (r =

–0.72, p < 0.001) as shown in Figure 2d, for coverage (r = –0.81,

p < 0.001) as shown in Figure 2e, and positive correlation between
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FIGURE 3

Microstate maps. Four EEG microstates under baseline (BL), music (MUS), and post-music silence (PMS) conditions. Spatial correlation between the

corresponding microstate class across conditions.

microstate class C and class D for GFP (r= 0.9, p < 0.001) as shown

in Figure 2f.

3.1.2 Comparative microstate analysis among
baseline resting state (BL), music (MUS), and
post-music silence (PMS)

Figure 3 shows four microstates that explained the variance

(GEV) of 75.5%, 77.4%, and 74.43% during BL, MUS, and PMS

conditions, respectively, for experiment 1. The underpinning

microstates for the three conditions are arranged according to the

standard convention. Results show strong spatial correlation of 0.9

among all the conditions for the corresponding microstate classes

A-D (p < 0.001). To compare the conditions of BL,MUS, and PMS,

200 s of time duration for each condition was selected for further

investigation (Supplementary Figure S1).

GEV: A two-way repeated ANOVA with microstate class and

condition as within factors shows a significant interaction with a

Greenhouse-Geisser correction (F2.933,41.068 = 7.474, p < 0.001).

The one-way follow-up repeated ANOVA shows a significant effect

on GEV of class B (F2,28 = 5.015, p < 0.05), class C (F2,28 = 12.960,

p < 0.001), and class D (F2,28 = 9.104, p= 0.001). Further post hoc

paired t-test with FDR correction shows class B microstate during

BL condition to have significantly higher GEV than class B during

MUS (t = 3.5659, df = 14, p < 0.05, d = 0.9207) condition as

shown in Figure 4a. Class C microstate during BL condition has

significantly higher GEV than class C during MUS (t = 5.7033, df

= 14, p < 0.0005, d = 1.4726) and PMS (t = 3.3379, df = 14, p <

0.05, d= 0.8618) conditions as shown in Figure 4b. The results also

showed that the class D microstate during the MUS condition had

a significantly enhanced GEV than that during BL (t= 3.4757, df=

14, p < 0.05, d = 0.8974) and PMS (t = 2.8331, df = 14, p < 0.05,

d= 0.7315) condition as shown in Figure 4c.

Occurrence: A two-way repeated ANOVAwithmicrostate class

and condition as within factors yielded a significant interaction

(F6,84 = 4.995, p < 0.001). Follow-up one-way repeated ANOVA

shows a significant effect on the occurrence of class A (F2,28 = 5.263,

p < 0.011), class B (F2,28 = 5.943, p < 0.01), and class C (F2,28 =

8.138, p < 0.01) microstates. Further post hoc paired t-test with

FDR correction shows class A microstate during BL condition to

have significantly higher occurrence compared to class A during

MUS (t = 2.5521, df = 14, p < 0.05, d = 0.6589) and PMS (t

= 2.6895, df = 14, p < 0.05, d = 0.6944) conditions as shown

in Figure 4d. Class B microstate during the MUS condition has a

significantly lower occurrence than class B during BL (t= –3.8205,

df= 14, p < 0.01, d= –0.9865) and PMS (t= –2.2660, df= 14, p <

0.05, d = –0.5851) conditions as shown in Figure 4e. The results

also showed that the class Cmicrostate during the BL condition had

a significantly increased occurrence compared to that during MUS

(t= 4.2302, df= 14, p < 0.01, d= 1.0922) and PMS (t= 2.5806, df

= 14, p < 0.05, d= 0.6663) conditions as shown in Figure 4f.

GFP: A two-way repeated ANOVA with microstate class and

condition as within factors resulted in a significant interaction effect

(F6,84 = 9.825, p < 0.001). Follow-up one-way repeated ANOVA

shows a significant effect on GFP of class A (F2,28 = 4.411, p <

0.05) and class D (F2,28 = 5.484, p = 0.01) microstates. Further

post hoc paired t-test with FDR correction shows class A microstate

during MUS condition to have significantly higher GFP than class

A during BL condition (t = 2.9839, df = 14, p < 0.05, d = 0.7704)

as shown in Figure 5a. Class D microstate during MUS condition

has significantly higher GFP than class D during BL condition (t=

3.8781, df= 14, p < 0.05, d= 1.0013) as shown in Figure 5b.

Duration: A two-way repeated ANOVA with microstate class

and condition as within factors did not yield a significant

interaction. However, we obtained a simple effect of conditions with

a Greenhouse-Geisser correction (F1.434,41.016 = 3.859, p = 0.05).

Frontiers inHumanNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnhum.2025.1472689
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Gupta et al. 10.3389/fnhum.2025.1472689

FIGURE 4

Microstates’ properties. (a) Relative GEV of microstates class B across conditions. (b) Relative GEV of microstates class C across conditions. (c)

Relative GEV of microstates class D across conditions. (d) Relative occurrence of microstates class A across conditions. (e) Relative occurrence of

microstates class B across conditions. (f) Relative occurrence of microstates class C across conditions (**FDR corrected, p < 0.05; error bars = 1 SD).

Further post hoc paired t-test with FDR correction shows the mean

value of the duration of all microstates during theMUS condition to

have significantly higher compared to the BL condition (t= 3.2203,

df= 14, p < 0.05, d= 0.8315) as shown in Figure 5c.

Subjective ratings: Raga darbari segment significantly

expressed happiness (t = –9.5232, df = 14, p < 0.001, d =

–2.4589)(Gupta et al., 2018) in the participants as shown in

Figure 5d.

3.2 Experiment 2

3.2.1 Microstate analysis for a sad Indian raga
We conducted microstate analysis for the full duration of Raga

Mishra jogiya. Figure 6a shows the four microstates underpinning

the raga that explain 77% of GEV. The microstates are arranged

according to the standard convention of class A-D. The microstate

maps were fitted back into the EEG data of the participants, yielding

various parameters such as GEV, coverage, occurrence, duration,

and inter-microstate transition probability.

GEV: We applied a one-way repeated ANOVA to examine the

effect of microstate class on GEV. The results show a significant

effect with a Greenhouse-Geisser correction (F1.656,23.177 = 7.719,

p < 0.005). The post hoc paired t-test shows significantly higher

presence of microstate of class D than class A (t = 4.3145, df = 14,

p < 0.005, d= 1.1140) and class B (t= 2.4011, df= 14, p < 0.05, d

= 0.6200). Class C and class B microstates are significantly higher

as compared to class A microstate with (t = 3.3963, df = 14, p <

0.01, d = 0.8769) and (t = 5.4788, df = 14, p < 0.005, d = 1.4146),

respectively, during sad music listening as shown in Figure 6b.

GFP: One-way repeated ANOVA with a Greenhouse-Geisser

correction indicates a significant effect of microstate class on the

GFP (F1.911,26.751 = 11.126, p < 0.001). Post hoc paired t-test shows

that the microstate of class D is significantly higher in GFP than

class A (t = 5.2858, df = 14, p < 0.001, d = 1.3648) and class B (t

= 3.6980, df = 14, p < 0.005, d = 0.9548). Class C and class B also

have significantly higher GFP than class A with (t = 3.4829, df =

14, p < 0.005, d = 0.8993) and (t = 5.1187, df = 14, p < 0.001,

d = 1.3217), respectively, during sad music listening as shown

in Figure 6c. We did not observe a significant effect of coverage,

occurrence, duration, and inter-microstate transition probability.

The results also showed a significant negative correlation between

microstate class C and class D for GEV (r = –0.55, p < 0.001) as

shown in Figure 6d, for coverage (r = –0.57, p < 0.001) as shown

in Figure 6e, and a positive correlation between microstate class C

and class D for GFP (r= 0.94, p < 0.001) as shown in Figure 6f.

3.2.2 Comparative microstate analysis between
BL, MUS, and PMS

Figure 7 shows four microstates that explained the variance

(GEV) of 77.95%, 77.77%, and 76.98% during BL, MUS, and

PMS conditions, respectively, for experiment 2. The underpinning

microstates for the three conditions are arranged according to

the standard convention. Results show strong spatial correlation

of 0.9 among all the conditions for the corresponding microstate
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FIGURE 5

(a) Relative GFP of microstate class A across conditions. (b) Relative GFP of microstate class D across conditions. (c) Relative mean duration of all

microstates across conditions. (d) Depicts the average subjective mood assessment before and after listening to music (**FDR corrected, p < 0.05;

error bars = 1 SD).

classes A–D (p < 0.001). To compare the conditions of BL, MUS,

and PMS, 200 s duration was selected for further investigation

(Supplementary Figure S1).

GEV: A two-way repeated ANOVA with microstate class and

condition as within factors shows a significant interaction with

a Greenhouse-Geisser correction (F3.1,43.406 = 3.251, p < 0.05).

Follow-up one-way repeated ANOVA shows a significant effect on

GEV of class C (F2,28 = 4.036, p < 0.05) and class D (F2,28 = 6.236,

p < 0.01) microstates.

Further post hoc paired t-test with FDR correction shows class C

microstate during PMS condition to have significantly higher GEV

than class C during BL (t = 3.4570, df = 14, p < 0.05, d = 0.8994)

condition as shown in Figure 8a. Class D microstate during MUS

condition has significantly higher GEV than class D during BL [t=

2.0696, df = 14, p < 0.05 (uncorrected), d = 0.5344] and PMS (t

= 3.9638, df = 14, p < 0.01, d = 1.0234) conditions as shown in

Figure 8b.

Duration: Two-way repeated ANOVA with microstate class

and condition as within factors did not show a significant

interaction. However, we obtained a simple effect of conditions

(F2,84 = 12.702, p < 0.001). Further post hoc paired t-test with

FDR correction shows mean value of the duration of all microstate

during MUS condition to be significantly higher than BL (t =

5.4489, df = 14, p < 0.001, d = 1.4069) and PMS conditions (t

= 4.2820, df= 14, p < 0.01, d= 1.1056) as shown in Figure 8c.

GFP: We administered a two-way repeated ANOVA with

microstate class and condition as within factors. Although the

interaction was not significant, we obtained the simple effect of

conditions (F2,28 = 11.220, p < 0.001). Further post hoc paired t-

test with FDR correction shows mean GFP of all microstate during

MUS condition to be significantly higher compared to BL condition

(t= 4.0834, df= 14, p < 0.01, d= 1.0543) and PMS condition (t=

2.9317, df= 14, p < 0.05, d= 0.7570) as shown in Figure 8d.

Occurrence: We administered a two-way repeated ANOVA

with microstate class and condition as within factors. The

results show a significant interaction with a Greenhouse-Geisser

correction (F3.299,46.188 = 3.122, p < 0.05). The one-way follow-

up repeated ANOVA shows a significant effect on the occurrence of

class A with a Greenhouse-Geisser correction (F1.369,19.164 = 9.047,

p < 0.005), class B (F2,28 = 8.894, p = 0.001), class C (F2,28 =

10.730, p < 0.001), and class D (F2,28 = 5.313, p < 0.05). Further

post hoc paired t-test with FDR correction shows class A microstate

during MUS condition to have significantly lower occurrence than

class A during BL (t = –3.6758, df = 14, p < 0.01, d = –0.9491)
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FIGURE 6

Microstate analysis for sad Indian raga. (a) Four EEG microstates under MUS conditions. (b) Relative GEV in each microstate class during music

listening. (c) Relative GFP in each microstate class during music listening. (d) Correlation between the microstate class D and class C for GEV, (e)

Correlation between the microstate class D and class C for Coverage, and (f) correlation between the microstate class D and class C for GFP (**FDR

corrected, p < 0.05; error bars = 1 SD).

and PMS (t = –3.4482, df = 14, p < 0.01, d = –0.8903) conditions

as shown in Figure 9a. The class B microstate during the MUS

condition has significantly lower occurrence compared to class B

during BL (t = –3.9214, df = 14, p < 0.01, d = –1.0125) and

PMS (t = –4.1434, df = 14, p < 0.01, d = –1.0698) conditions

as shown in Figure 9b. Class C microstate during MUS condition

to have significantly lower occurrence than class C during BL (t =

–3.7033, df = 14, p < 0.01, d = –0.9562) and PMS (t = –4.1552,

df = 14, p < 0.01, d = –1.0729) conditions as shown in Figure 9c.

The class D microstate during the MUS condition has significantly

lower occurrence than class D during BL (t= –3.0188, df= 14, p <

0.05, d= –0.7795) as shown in Figure 9d.

Subjective ratings: The subjective ratings of memories recalled

during SAR revealed mean scores of 4.2 (SD = 0.67) for vividness,

4.13 (SD = 0.74) for reliving, and 14.2 months (SD = 10.3) for

the age of the memory. Figure 10a shows mood assessment by the

participants with a mean score of 3.9 (SD = 0.7) during the SAR

state and 3.9 (SD = 1.3) during sad music listening, compared

to the baseline mean score of 0.4 (SD = 1.9). The differences

were significant for both SAR (t = –8.663, df = 14, p < 0.001,

d = –2.236) and sad music (t = –6.094, df = 14, p < 0.001,

d = –1.5735) when compared to the BL state. No significant

difference was found between the SAR and sad music conditions.

Re-experiencing emotions was the predominant self-regulatory

goal during sad music, with a mean of 3.7917 (SD = 0.7858).

Other self-regulatory goals observed included a mean of 3.333

(SD = 0.8772) for memory, 2.7778 (SD = 1.0209) for distraction,

3.0444 (SD = 0.9666) for cognition, and 3.2333 (SD = 0.6974)

for friendship (Figure 10b). Participants also unanimously reported

positive experiences upon listening to sad music, with a mean score

of 3.733 (SD= 0.7037), post SAR as shown in Figure 10c.

4 Discussion

Music has been recognized for its ability to influence emotions

and cognitive processes. Happy music has been found to boost

intelligence (Rauscher et al., 1993; Rideout and Laubach, 1996) and
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FIGURE 7

Microstate maps. Four EEG microstates under BL, MUS, and PMS conditions. Spatial correlation between the corresponding microstate class across

conditions.

FIGURE 8

Microstate parameters. (a) Relative GEV of microstates class C across conditions. (b) Relative GEV of microstates class D across conditions. (c)

Relative mean duration of all microstates across conditions. (d) Relative mean GFP of all microstates across conditions (*uncorrected,**FDR

corrected, p < 0.05; error bars = 1 SD).

attention (Putkinen et al., 2017; Markovic et al., 2017; Jäncke et al.,

2015), while sad music has been used to regulate emotions and

cope with challenging situations (Van den Tol et al., 2016; Van den

Tol and Edwards, 2013; Hanser et al., 2016). However, the specific

brain microstates associated with these effects have not been fully

understood. This study aimed to comparatively investigate the
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FIGURE 9

Microstate parameters. (a) Relative occurrence of microstates class A across conditions. (b) Relative occurrence of microstates class B across

conditions. (c) Relative occurrence of microstates class C across conditions. (d) Relative occurrence of microstates class D across conditions (**FDR

corrected, p < 0.05; error bars = 1 SD).

FIGURE 10

Subjective ratings. (a) Depicts average rating of the experiences across all states: BL, SAR, and listening to sad music, (b) shows the subjective ratings

for self-regulatory goals during MUS condition, and (c) shows the average assessment of sad music listening. Findings indicate a positive experience

while listening to sad music. Error bars represent one standard deviation (error bars = 1 SD).

underlying microstates that contribute to the observed effects when

listening to happy and sad Indian raga, in relation to BL and

PMS conditions.

The first experiment investigated the effect of happy music

listening. The subjective assessment shows that the musical

stimulus successfully induced a moderate degree of happiness

in the participants (Figure 5d). Furthermore, we obtained four

microstates that explained the variance (GEV) of 75.5, 77.4, and

74.43 during BL, MUS, and PMS conditions, respectively. These

findings are illustrated in Figures 2a, 3. The results revealed that

the spatial distribution of these four microstates resembled those

of the four classical microstates (Wang et al., 2021; Hu et al.,

2023; Pascual-Marqui et al., 2014; Gu et al., 2022), including earlier

microstate studies involving musical stimulus (Hu et al., 2023;

Gupta et al., 2025).

The analysis of GEV and GFP during the course of happymusic

listening indicates that class D microstate exhibits significantly

higher presence and increased electrical activity than all other
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microstates (Figures 1b, c). Furthermore, the analysis of GEV

and coverage for correlation between class C and class D

microstates demonstrates a robust negative association, consistent

with previous research (Braboszcz and Delorme, 2011) (Figures 2d,

e). It is worth noting that class C microstate is associated with

mind-wandering, especially self-referential thoughts and processes,

while class Dmicrostate is linked to attention, respectively (Khanna

et al., 2015; Michel and Koenig, 2018; Koenig et al., 2002; Tarailis

et al., 2023). This suggests that listening to happy music is

linked with heightened attention, and when attention is heightened

(class D), mind-wandering (including self-referential thoughts and

processes) tends to be diminished during the course of listening

to happy music. Additionally, we observed a strong positive

correlation between the two microstates for GFP, as shown in

Figure 2f. This suggests that, while the electrical activity of both

microstates exhibits a positive correlation during the course of

listening to happy music, there is a negative correlation between

their relative presence. The findings align with previous research

involving Raga Darbari, which indicated enhanced attention and

decreased interference from unwanted noise during the music

listening experience (Gupta et al., 2018).

Furthermore, a comparative microstate analysis was conducted

across three conditions: BL, MUS, and PSM. The analysis of GEV

revealed a significantly greater presence of the class D microstate

in the MUS condition than the other conditions (Figure 4c).

Both the MUS and PSM conditions also revealed a significantly

reduced presence of class C microstate than the BL condition

(Figure 4b). The findings show that a happy music listening state

is characterized by enhanced attention and diminished mind-

wandering. This is further supported by the lower presence of the

class B microstate during the MUS condition as compared to BL

condition (Figure 4a). Class B microstate has been linked to scenes

and self-visualization (Bréchet et al., 2019; Tarailis et al., 2023),

thereby indicating that mind-wandering might be reduced upon

listening to happy music. However, further studies are needed to

ascertain it. The results obtained in our study align with previous

research on music (Gupta et al., 2018, 2025). GFP analysis revealed

that the music listening condition (MUS) exhibited enhanced

electrical activity than the baseline condition for the classes A and

D microstates (Figures 5a, b). Increased GFP for class D indicates

a more activated attention state, consistent with the above findings.

On the other hand, the increase in GFP for class A suggests that

auditory processing is enhanced during music listening than the

baseline condition. These results align with a previous study that

demonstrated an increased level of music awareness during the

listening of happy music (Taruffi et al., 2017).

The second experiment focused on the effect of sad music

listening. Participants’ subjective mood assessments revealed an

increased sad state during sad music listening (Figure 10a).

Although sadness was experienced in both the SAR state and

sad MUS state, the self-regulatory questionnaire indicated a

qualitative variation in the nature of this sadness. The questionnaire

revealed that the sad musical excerpts facilitated the achievement

of various self-regulatory goals, such as re-experiencing past

emotions, enhancing mood, and evoking memories (Figure 10b).

Additionally, the results indicated that listening to sad music

post adverse experience resulted in an overall positive experience

(Figure 10c), aligning with findings from previous studies (Van den

Tol et al., 2016; Van den Tol and Edwards, 2013; Hanser et al., 2016).

We further obtained four microstates that explained variance

(GEV) of 77.95, 77.77, and 76.98 during BL, MUS, and PMS

conditions, respectively. These results are depicted in Figures 6A,

7. The results revealed that the spatial distribution of these

four microstates resembled the classical four microstates (Wang

et al., 2021; Hu et al., 2023; Pascual-Marqui et al., 2014;

Gu et al., 2022), including earlier microstate studies involving

musical stimulus (Hu et al., 2023; Gupta et al., 2025). During

the course of sad music listening, analyses of GEV and GFP

indicate that class A microstate exhibits significantly lower

presence and decreased electrical activity than all other microstates

(Figures 6b, c).

Additionally, we conducted a comparative microstate analysis

across three conditions: BL, MUS, and PSM. The GEV analysis

showed that the presence of class C microstate during the PMS

condition was significantly higher than the BL condition, as shown

in Figure 8a. Additionally, the presence of a class D microstate was

significantly higher during the MUS condition than the BL and

PMS states (Figure 8b).

It is worth noting that the phenomenon of mind-wandering

during sad music listening differs from ordinary mind-wandering,

and is distinguished by its melancholic yet pleasurable nature

(Gupta et al., 2023; Taruffi and Koelsch, 2014; Sachs et al., 2015).

It involves the emergence of spontaneous, self-referential thoughts,

emotions, and cognitive processes (Gupta et al., 2023; Taruffi and

Koelsch, 2014; Sachs et al., 2015). This is also in alignment with the

results obtained in the subjective assessment. Thus, the enhanced

presence of class C and class D microstates as a result of listening

to sad music signifies an enhanced process of mind-wandering,

especially self-referential and attention, respectively. These findings

are consistent with previous studies (Gupta et al., 2023; Van den Tol

and Edwards, 2013; Van den Tol et al., 2016).

Furthermore, the increased presence of class B microstate

during sad music listening might indicate the involvement of scene

and self-visualization with self-referential thoughts and memories

during sad music listening. This aligns with earlier research

(Bréchet et al., 2019; Gupta et al., 2023; Van den Tol and Edwards,

2013; Van den Tol et al., 2016); however, more investigations are

needed to ascertain the fact.

The duration and GFP analysis show that regardless of the

microstate class, the mean duration and GFP of microstates were

higher during the MUS condition than the BL and PMS states,

as shown in Figures 8c, d. This suggests that during sad music

listening, there is a tendency for the brain microstates to persist for

a longer duration with enhanced electrical activity.

Furthermore, the occurrence analysis showed that the

frequency of occurrence for microstates was lower than other states

during the MUS state, suggesting that the music state had a lower

occurrence rate for microstates but with longer duration and larger

GFP (Figures 9a–d).

Moreover, analyses of GEV and coverage for correlation

between class C and class D microstates during the course of

listening to sad music reveal a moderate negative correlation. It

is important to note that this relationship explains only a small

amount of variance in the data, as indicated by low R-squared
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FIGURE 11

Schematic model illustrating the brain’s responses during happy and sad music listening: (a) Happy music stimulates attention and reduces

mind-wandering (depicted by blue color). (b) Sad music stimulates brain regions associated with attention, mind-wandering, particularly

self-referential processes (depicted by yellow color).

values (0.3025 and 0.3249), as shown in Figures 6d, e. This suggests

that there are other factors and parameters that contribute to the

unexplained variance in the data. Future investigations should

explore these additional factors and parameters. However, different

relationships between class C and class D microstates (for GEV

and coverage) during happy and sad music are consistent with

earlier studies and likely highlight the differences in the nature

of mind-wandering (self-referential) process (class C microstates)

between them (Taruffi et al., 2017). We also observed a strong

positive correlation between the two microstates (class C and class

D) in terms of GFP, as shown in Figure 6f. This suggests that

the electrical activity of both microstates is enhanced during the

course of listening to sad music and is in line with the happy

music analysis.

In summary (Figure 11), the present study underscores the

impact of happy and sad music on various mental processes,

particularly in modulating brain microstates. The key findings

indicate that listening to music leads to longer microstate duration

and improved attention. Furthermore, happy music specifically

reduces mind-wandering, fostering sustained focus, whereas sad

music enhances self-referential processing, aiding in self-regulation

during emotionally challenging situations.

This study’s findings pave the way for personalized music

therapy, cognitive training, and mental health interventions for

conditions such as ADHD, depression, and anxiety. Music’s

impact on attention and self-regulation can enhance workplace

productivity, education, and rehabilitation. Additionally, AI-driven

adaptive music systems could tailor recommendations based

on cognitive states. These insights have broad applications in

healthcare, technology, and performance enhancement.

5 Limitations

While this study offers valuable insights, several limitations

warrant further exploration. First, it focused on specific music

genres, and incorporating a wider range of musical styles

could deepen our understanding of music-induced brain

dynamics. Additionally, the study was limited to male participants,

underscoring the need for future research to examine potential

gender differences. Furthermore, it did not consider how varying

intensities of happiness and sadness influence microstates,

particularly classes C and D. The lack of real-time subjective

assessments of attention and mind-wandering also restricts

insights into moment-to-moment cognitive fluctuations during

music listening.

Future research utilizing a dense montage system with 64+

electrodes and source localization analysis could provide a more

precise understanding of the neural mechanisms underlying

microstate changes, particularly in differentiating self-referential

processes during sad music listening. Age can be a crucial factor, as

it may influence both neural processing and microstate dynamics.

Thus, the current findings need to be validated across different

age groups. Furthermore, Studies 1 and 2 were conducted on

separate sample groups. Future research using the same sample

group for both musical stimuli would allow for a more detailed
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comparative analysis of microstate features specific to happy and

sadmusic listening. Addressing these gaps will contribute to a more

comprehensive understanding of music’s effects on brain function

and its therapeutic applications.
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