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Introduction: Anhedonic depression is a subtype of depression characterized by

deficits in reward processing. This subtype of depression is associatedwith higher

suicide risk and longer depressive episodes, underscoring the importance of

e�ective treatments. Anhedonia has also been found to correlate with alterations

in activity in several subcortical regions, including the caudate head and nucleus

accumbens. Low intensity focused ultrasound pulsation (LIFUP) is an emerging

technology that enables non-invasive stimulation of these subcortical regions,

which were previously only accessible with surgically-implanted electrodes.

Methods: This double-blinded, sham-controlled study aims to investigate

the e�ects of LIFUP to the left caudate head and right nucleus accumbens

in participants with anhedonic depression. Participants in this protocol will

undergo three sessions of LIFUP over the span of 5–9 days. To investigate

LIFUP-related changes, this 7-week protocol collects continuous digital

phenotyping data, an array of self-report measures of depression, anhedonia,

and other psychopathology, and magnetic resonance imaging (MRI) before and

after the LIFUP intervention. Primary self-report outcome measures include

Ecological Momentary Assessment, the Positive Valence Systems Scale, and

the Patient Health Questionnaire. Primary imaging measures include magnetic

resonance spectroscopy and functional MRI during reward-based tasks and at

rest. Digital phenotyping data is collected with an Apple Watch and participants’

personal iPhones throughout the study, and includes information about sleep,

heart rate, and physical activity.

Discussion: This study is the first to investigate the e�ects of LIFUP to the

caudate head or nucleus accumbens in depressed subjects. Furthermore, the

data collected for this protocol covers a wide array of potentially a�ected

modalities. As a result, this protocol will help to elucidate potential impacts of

LIFUP in individuals with anhedonic depression.

KEYWORDS

anhedonia, anhedonic depression, major depressive disorder, low intensity focused

ultrasound pulsation (LIFUP), transcranial focused ultrasound (tFUS), digital

phenotyping, neuroimaging
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1 Introduction

Anhedonic depression is a subtype of depression characterized

by an array of deficits in reward processing, including reduced

enjoyment of activities and rewarding events (Serretti, 2023).

The presence of anhedonia in patients with major depressive

disorder is associated with longer depressive episodes, greater

illness severity, and increased suicidality (Gabbay et al., 2015;

Ducasse et al., 2018; Auerbach et al., 2022). In addition to its

association with worsened illness prognosis, anhedonia has been

found to respond less reliably than negative affective symptoms

to standard psychotherapeutic and psychiatric treatments for

depression (Dunn et al., 2020; Craske et al., 2024). Anhedonia’s

unreliable response to treatment is especially problematic given

that prior analyses of patient perspectives has found that many

patients view the return of positive affect to be a critically important

factor in recovery from depression (Zimmerman et al., 2006;

Cummergen et al., 2022). This demonstrates the critical need for

improved, targeted treatments for anhedonic symptoms in patients

with anhedonic depression.

Low intensity focused ultrasound pulsation (LIFUP) is an

emerging brain stimulation technique that shows potential to

stimulate subcortical brain regions non-invasively. Preliminary

data have demonstrated that when administered within the FDA

safety guidelines for ultrasound in soft tissue, LIFUP is capable of

reversibly modulating neural activity without causing damage to

tissue (Pasquinelli et al., 2019). Furthermore, it is able to modulate

deep brain regions with high spatial specificity (Kuhn et al., 2023;

Chou et al., 2024; Pellow et al., 2024; Riis et al., 2024a,b). While

surgical deep brain stimulation (DBS) to reward-related subcortical

regions, such as the caudate and nucleus accumbens, has been

shown to be efficacious for the treatment of anhedonic depression,

it is highly invasive, requiring major brain surgery that poses

significant risk of complications (Fenoy and Simpson, 2014; Figee

et al., 2022). This makes LIFUP an intervention of interest for

anhedonic symptoms, as it is able to non-invasively stimulate these

same deep brain regions in a non-invasive manner.

Investigating LIFUP in Anhedonic Depression (ILIAD) is a

complementary interventional study to a broader observational

study: Operationalizing Digital PhenoTyping in the Measurement

of Anhedonia (OPTIMA). These two studies are distinct and have

only partially overlapping subject populations; while OPTIMA

recruits participants across the spectrum of anhedonia severity,

ILIAD only enrolls participants with high levels of anhedonia.

Additionally, ILIAD recruits from both the OPTIMA subject pool

and from external sources. However, many elements of the two

studies are harmonized in order to facilitate potential merging of

data. Both of these studies are performed in the Wellcome Leap

Multi-Channel Psych Consortium, a broader multi-site program

that seeks to develop integrated models of anhedonic depression.1

This sham-controlled, double-blinded study investigates the

impact of multiple sessions of LIFUP targeting either the left

caudate head or right nucleus accumbens on an array of anhedonia-

related self-report and neuroimaging measures. The two targets

1 https://wellcomeleap.org/mcpsych/

for this study were selected due to the literature implicating them

in the pathophysiology of anhedonic depression and their central

role in mesolimbic reward circuitry (Haber and Knutson, 2010;

Wang et al., 2021). Reduced caudate volume has been found to

correlate with anhedonia severity, and both the nucleus accumbens

and the caudate have been found to have significantly weaker

reward responses in individuals with major depressive disorder

when compared to healthy controls (Pizzagalli et al., 2009). The

left caudate in particular was selected for this study due to

literature suggesting that a longitudinal increase in left caudate

connectivity with the bilateral superior frontal gyrus may correlate

with anhedonia improvement over the same time period (Yang

et al., 2022). The right nucleus accumbens was chosen based on

literature showing a correlation between anhedonia severity and

altered right nucleus accumbens connectivity (Liu et al., 2021).

However, the right nucleus accumbens was removed from this

study midway through due to funding changes.

A handful of studies have investigated the effect of DBS to the

caudate on depressive symptoms. While the one study to-date of

caudate DBS in individuals with major depression as their primary

diagnosis found a lack of response, this study only tested caudate

DBS in individuals for whom a similar-duration trial of nucleus

accumbens DBS had already failed (Millet et al., 2014). In contrast

to these findings, a study of caudate DBS in an individual with

severe treatment resistant obsessive-compulsive disorder (OCD)

and concomitant major depression observed remission of major

depressive symptoms within 6 months of implantation, well-

before remission of OCD symptoms was observed (Aouizerate

et al., 2004). This suggests that the caudate may merit further

investigation as a potential target for deep brain stimulation in

depressive disorders.

DBS of the nucleus accumbens has also been found effective

for depression, with one study finding a 50% response rate

in participants with severely treatment-resistant depression in

which an average of eight prior medical treatments had failed

to sufficiently alleviate symptoms, including psychotherapy and

electroconvulsive therapy (Bewernick et al., 2010). Additionally,

nucleus accumbens DBS has been found to rapidly impact

symptoms of anhedonia in depressed patients (Schlaepfer et al.,

2008). Given this literature, the nucleus accumbens is a promising

potential target for non-invasive brain stimulation with LIFUP.

Our study is the first to investigate the effects of LIFUP to

the caudate and nucleus accumbens in individuals with anhedonic

depression. However, preliminary studies in other populations have

demonstrated the safety and feasibility of LIFUP to these regions.

A recent study of LIFUP to the caudate in two veterans with

post-traumatic headache observed reduced pain levels after several

sessions (Yoon et al., 2024). Additionally, a study of long-term

repeated administration of LIFUP to the caudate and putamen in

non-human primates showed a slight but significant increase in

motivation and task accuracy (Munoz et al., 2022). Stimulation

of the nucleus accumbens using LIFUP has been found to reduce

substance cravings in participants with substance use disorder

and to increase connectivity between the nucleus accumbens and

medial prefrontal cortex in healthy controls (Mahoney et al., 2023;

Peng et al., 2024). Several other studies have also found beneficial

effects of LIFUP to other brain regions in depressed participants,
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namely the subcallosal cingulate cortex and frontotemporal cortex

(Reznik et al., 2020; Riis et al., 2024a,b).

Through this double-blinded, sham-controlled study, we hope

to gain a better understanding of the feasibility and potential effects

of LIFUP stimulation to the caudate head and nucleus accumbens

in individuals with anhedonic depression. The study utilizes a

wide array of self-report, digital phenotyping, and neuroimaging

metrics in order to obtain a maximally comprehensive picture of

the potential effects of LIFUP.

2 Materials and methods

2.1 Subject population

This protocol will enroll up to 100 right-handed adult

participants with high anhedonia andmoderate or high depression,

with the goal of achieving an evaluable sample of at least

40 participants. For the purposes of this protocol, evaluable

participants are defined as those who complete all three LIFUP

sessions, both MRI scans, and at least one outcome measure after

completing LIFUP.

2.1.1 Inclusion/exclusion criteria
A complete list of inclusion/exclusion criteria for this study is

available in Table 1.

2.1.2 Recruitment methods
A primary recruitment source for this study is the UCLA

OPTIMA study. Study staff screen participants fromOPTIMAwho

have consented for future contact for research and appear eligible

based on their self-reported depression and anhedonia scores. The

study is also recruiting individuals from the Los Angeles area based

on self-reported depression and anhedonia scores.

2.1.3 Participant retention
In order to promote participant retention, reminders for visits

are sent throughout the study via e-mail, text message or phone

call. Additionally, participants receive a final reminder about their

in-person visits 24 h before each scheduled visit.

3 Data collection and intervention

For an overview of the timeline of data collection and

intervention procedures described below, please refer to Figure 1.

3.1 Intervention protocol

3.1.1 Condition assignment
Following screening and enrollment, participants are block-

randomized to one of two conditions at equal rates: (1) active

stimulation to the left caudate or (2) sham stimulation to

the left caudate. A previous version of this protocol block-

randomized participants into three conditions at equal rates: (1)

active stimulation to the left caudate head, (2) active stimulation

to the right nucleus accumbens, or (3) sham (assigned to left

caudate or right nucleus accumbens to maintain concealment of

conditions); however, due to budget changes, randomization to

the “active stimulation to the right nucleus accumbens” condition

was removed; a total of six participants were assigned to the active

nucleus accumbens condition prior to its removal.

3.1.2 LIFUP intervention
Participants receive the appropriate LIFUP intervention at each

of three sessions; each session is spaced 2–4 days apart from the last,

such that sessions occur at a minimum schedule of days 1, 3, 5 and

at a maximum schedule of days 1, 5, 9. At each of these sessions,

LIFUP is administered in ten 30-s sonications, with 30 s gaps

between each sonication. LIFUP parameters are 5ms pulse width,

100Hz pulse repetition frequency, 50% duty cycle, ISPTA.3 720

mW/cm2, ISPPA.3 14.4 W/cm2. These parameters were selected

due to previous literature suggesting that a 50% duty cycle can

achieve excitatory effects (Zhang et al., 2021). The transducer is

aimed at the appropriate target using BrainSight neuronavigation

(BrainSight, Rogue Research, Montreal, Quebec, Canada) with a

participant’s T1-weighted structural scan. LIFUP is administered

using the Brainsonix BX Pulsar 1002 focused ultrasound device

with a 55, 65, or 80mm transducer, depending on what depth

is needed to reach the target for a given participant based on

individual anatomy (Schafer et al., 2021). To minimize ultrasound

energy exposure to air, a gel pad and water-based ultrasound gel

are placed between the transducer and the participant’s scalp. For

active sonication, the transducer is used with a gel pad that allows

the ultrasound energy to pass through; for sham sonication, the

transducer is used with a gel pad that blocks ultrasound energy.

Participants are asked to sit comfortably and remain still for the

duration of the 10-min sonication procedure. If a participant

expresses discomfort at any point, they are given the option to stop

the procedure.

3.1.3 Randomization and blinding
Active and sham conditions are concealed through the use of

a set of identical gel pads factory-designated solely as A or B.

The active and sham gel pads are visually identical to maintain

blinding, and the retailer providing the gel pads (BrainSonix Corp.,

Sherman Oaks, California, United States) will maintain condition

concealment until after the conclusion of the study. Staff are

only informed which gel pad to use with blinded labels (A or

B) and conduct all appointment procedures the same regardless

of condition. As a result, staff performing the intervention,

study investigators, and study participants all remain blinded to

condition assignment. Participants are never informed if they

received active or sham interventions. Condition assignments may

be selectively revealed to research investigators and staff by steering

committee consensus, when data analysis or research operations

and monitoring require that conditions be known.

Randomization is performed via computer-generated random

sequencing with blocking to reduce cohort effects. In the

REDCap database, research staff are provided with a “randomize”
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TABLE 1 Inclusion and exclusion criteria.

Inclusion criteria Exclusion criteria

Age 18–65 Current tobacco smoker of >11 cigarettes/day or the nicotine equivalent

Fluent in English Current report of alcohol or substance abuse or dependence

Right-handed Recent changes in antidepressant dosing or medication (dose and medication need to

be stabilized within the last 2 weeks)

Healthy or corrected to healthy vision Reported diagnosis of schizophrenia or psychotic symptoms

Residing in Los Angeles area for the duration of study Currently taking benzodiazepines, or taken benzodiazepines in the past 8 weeks

Own functioning iOS smartphone (iPhone 8 or later, iOS 15 or newer) with

access to reliable data plan and Wi-Fi

History of medical event(s) or diagnoses likely to result in neurological abnormalities

including diagnoses of Alzheimer’s, Parkinson’s, neurodegenerative disorders,

movement disorders, reports of past seizures or stroke, or history of brain tumors or

brain surgery.

Able to read and understand a written informed consent form Medical conditions involving chronic mobility impairment including spinal cord

injuries, or severe osteoarthritis of knee or hip

Willing to participate in the study and complete required tasks as outlined in

study timeline, including MRI, LIFUP, Apple Watch wear, and surveys

Unwilling or unable to refrain from making significant changes to hairstyle after

enrollment and before LIFUP sessions are complete (i.e., full hairstyle to shaved head,

significant change in locs, etc.)

Eligible for MRI scanning and neuromodulation Contraindications for MRI scanning, including pregnancy, metal implants, braces,

significant grip impairment and claustrophobia

PVSS < 6.5 at screening and stable for ≥12 weeks, as indicated by average scores

across OPTIMA protocol or by self-report for those screened from general

population

Any previous treatment with electroconvulsive therapy (ECT) or deep brain

stimulation (DBS) due to increased risk of seizure and unclear evidence of how LIFUP

will affect individuals who have received these treatments.

PHQ scores > 10 at screening and stable for ≥12 weeks, as indicated by average

scores across OPTIMA protocol or by self-report for those screened from general

population

Less than 6 months since any other neuromodulation treatment such as transcranial

magnetic stimulation (TMS), Vagal nerve electrostimulation, or transcranial direct

current stimulation (TDCS).

If screened from OPTIMA, have completed the majority of OPTIMA assessments Less than 6 months since prescribed ketamine infusion or other intensive, acute

therapy for depressive symptoms.

FIGURE 1

Study timeline. Pink (bottom left): OPTIMA participants only. Purple (top left): Non-OPTIMA participants only. Blue (right): all participants.

function within each record, which provides them with condition

assignment (i.e., gel pad A or B) after the command is executed.

The initial design of this study utilized three gel pads, one of

which was sham. Participants in both the nucleus accumbens and

caudate group were randomized to gel pads A, B, and C at equal

rates, such that 1/3 of participants would receive active caudate,

1/3 would receive active nucleus accumbens, 1/6 would receive

sham caudate, and 1/6 would receive sham nucleus accumbens.

When it was determined due to funding changes that the study

design should be reduced to two conditions, one individual

on the team was unblinded by steering committee consensus.

This individual then performed analyses on the imaging data

from the Card Guessing Task to determine changes in reward

attainment and anticipation across LIFUP in each group in order
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to guide a data-informed decision on which condition to keep

in the study. Results of the analyses were then presented to the

investigative team, keeping conditions concealed. Based on these

results, investigators chose a condition to keep in the revised

protocol, and an alternate condition was designated to keep in the

case that the primary choice was sham. Investigators were informed

that the nucleus accumbens target would be removed, but were

not informed which group in the presented analyses was the active

caudate group. The only individuals who were knowledgeable

about condition assignment were the individual who performed

the analysis and the research program manager who supervised

the staff performing LIFUP. Conditions remained concealed to all

other members of the research team. A total of six participants

received active nucleus accumbens LIFUP prior to the removal of

this condition.

To maximize the integrity of blinding, outcome assessors

refrain frommaking any guesses regarding active/sham conditions.

In the case where a participant guesses their condition based on

how they feel during sessions, staff listen to their thoughts but

refrain from discussion, and no records of these guesses are kept.

3.2 Self-report assessments

3.2.1 Primary outcome assessments
The primary self-report outcome measures for this study

are the Patient Health Questionnaire (PHQ-14), the Positive

Valence Systems Scale (PVSS-21), and the Ecological Momentary

Assessment (EMA). The PHQ-14 and PVSS-21 are completed

weekly throughout the course of study participation; the schedule

of EMA administration is described below and in Figure 1.

3.2.1.1 Patient Health Questionnaire - 14 item

version (PHQ-14)

The PHQ-14 is a modified version of the Patient Health

Questionnaire (Kroenke et al., 2010) developed by Cohen, Cohen

& Fried (in preparation)2 that separates the four compound

symptoms from the original PHQ into individual items (e.g., “poor

appetite or overeating” was split into two items) and adds two new

symptoms: irritability and libido. Score is summarized as a total

score aligned with the PHQ-8, where a higher score indicates the

severity of depressive symptoms; further information and a copy

of the full inventory are available in the Supplementary Method S4

and Supplementary Forms. This assessment was chosen as a

primary outcome measure in order to provide information about

any changes in overall depressive symptoms in response to LIFUP,

given the association between depression symptoms and the LIFUP

target regions.

3.2.1.2 Positive Valence Systems Scale (PVSS-21)

The PVSS-21 (Khazanov et al., 2020) is a 21-item self-

report survey assessing features of reward processing associated

with anhedonia. This assessment was selected as a primary

outcome measure due to the literature demonstrating connections

2 see https://osf.io/w4rj9/ and Supplementary material for

more information.

between alterations in caudate and nucleus accumbens activity and

anhedonia symptoms (Wang et al., 2021).

3.2.1.3 Ecological Momentary Assessment (EMA)

The EMA is a 3-part, 19-item assessment that measures

current mood and experiences.3 Part 1 contains 8 questions about

current mood, e.g. “How sad are you feeling right now?” Part 2

asks participants to rate their agreement with 6 reward-related

statements, such as “I’m looking forward to an upcoming activity”.

Part 3 asks participants to rate their enjoyment of their current

company and activities on a 7-point likert scale. This assessment

was selected as a primary outcome measure due to its ability

to provide data on immediate mood and reward-related states

with high temporal resolution, thereby minimizing the impact of

recall biases that have been documented for surveys asking about

depressive symptoms over a longer time range (Horwitz et al.,

2023).

For non-OPTIMA participants, baseline EMA data is collected

5× a day for the 15 days prior to the first LIFUP session; for

OPTIMA participants, baseline data is taken from the 5× daily

EMAs collected at several points during the OPTIMA protocol.

All participants subsequently complete 1× daily EMA from the

day of LIFUP 1 through the day of LIFUP 3, and 8 days of 5×

daily EMAs starting 7 days prior to scan 2 through the day of

scan. If scan 2 is <8 days after LIFUP 3, the 5× daily EMAs will

override the 1× daily EMAs on any overlapping days. Lastly, an

additional 8 days of 5× daily EMA data is collected during Week

5 of the protocol. See Figure 1 for an illustration of the EMA

timeline. Further information regarding the development of this

assessment and a copy of the full assessment are available in the

Supplementary Method S1 and Supplementary Forms.

3.2.2 Secondary outcome measures
An additional set of behavioral questionnaires assessing aspects

of anhedonia, depression, anxiety, and general mental wellbeing

are collected at baseline and at the end of the study. A

list of assessments used for this study is available in Table 2,

alongside descriptions of each assessment. Two secondary outcome

assessments, The Modified SITBI-R + CSSRS-SR (MSC-SR)4 and

the Eudaimonic Wellbeing Questionnaire,5 were developed by the

study team for the purposes of this study; further information

regarding the development of these assessments is available in the

Supplementary Methods S2, S3. The schedule of administration for

these measures is available in Supplementary Table S2, and full

assessments are available in the Supplementary Forms.

3 EMA items developed in consultation with Eiko Fried, Gabi Khazanov,

and Courtney Forbes, and drawn from the SCOUT study (Kirtley et al., 2024),

WARN-D (Fried et al., 2023), and the ESM Item Repository (Kirtley et al., 2018).

4 Lifetime and current suicidality measure that combines items from the

CSSRS-SR (Posner et al., 2011) and the SITBI-R (Fox et al., 2020); adapted in

consultation with Kathryn Fox and Shirley Wang.

5 Adapted in consultation with Sandman (2023) from the Mental Health

Continuum Short Form (MCH-SF; Keyes et al., 2008) and Daily Meaning Scale

(DMS) (Steger et al., 2008).
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TABLE 2 A list of the self-report questionnaires, neurocognitive tests, and interviews administered as part of the ILIAD protocol and descriptions of each

measure.

Assessment Assessment type Description

Ecological Momentary Assessment (EMA) Primary outcome Self-reported current mood, environment, experiences, and anhedonic state

Positive Valence Systems Scale (PVSS-21) Primary outcome Self-reported index of anhedonia and reward processing, 21 items

Patient Health Questionnaire - modified

(PHQ-14)

Primary outcome Self-reported depression severity, 14 items

Patient Health Questionnaire (PHQ-9) Secondary outcome/adverse

event monitoring

Self-reported depression severity, 9 items

Quick Inventory of Depressive Symptoms

(QIDS-SR15)

Secondary outcome Self-reported depression symptoms, 15-items

Brief Irritability Test (BITe) Secondary outcome Self-report irritability measure, 5-items

Modified SITBI-R+CSSRS-SR (MSC-SR) Secondary outcome Self-report of suicidal ideation and behavior

Generalized Anxiety Disorder Questionnaire

(GAD-7)

Secondary Outcome Self-reported anxiety symptoms, 7-items

Work and Social Adjustment Scale (WSAS) Secondary outcome Self-reported functional impairment of current symptoms in work/school, social

life, and family life

World Health Organization (WHO)-5 Wellbeing

Index

Secondary outcome Self-reported current mental wellbeing

Pittsburgh Sleep Quality Index (PSQI) Secondary outcome Self-reported recent sleep quality

Snaith-Hamilton Pleasure Scale (SHAPS) Secondary outcome Self-reported hedonic experience or positive valence

Apathy Motivation Index (AMI) Secondary outcome Self-report index of apathy and motivation

Ruminative Response Scale (RRS) brooding

subscale (state)

Secondary outcome Self-reported symptoms of rumination

Eudaimonic Wellbeing Questionnaire (EWBQ) Secondary outcome Self-reported wellbeing focused on values, meaning and purpose in life.

Treatment History Questionnaire Covariate Self-reported mental health treatment history (current/recent psychotherapy or

psychiatric medication use)

Holmes Rahe Life Stress Survey (HRLSS) Covariate Self-reported exposure to moderate-to-major stressful life events

Prescribed Medication Questionnaire Covariate Self-report measure of currently prescribed medications, with a focus on

psychiatric medications

Demographics Questionnaire Covariate Standard self-report measures of demographics (e.g., age, sex, ethnicity,

education, etc.)

USDA Housing/Food Insecurity Covariate Self-report measure of household food security

Comorbidities Questionnaire Covariate Self-reported medical comorbidities commonly occurring with major depressive

disorder

Trauma History Questionnaire Covariate Self-report measure of traumatic life events

Screening Assessment for Guiding Evaluation -

Self-Report (SAGE-SR)

Covariate An online, self-report-based comprehensive behavioral health diagnostic tool

developed to cover the Diagnostic Statistical Manual (DSM); mirrors the

Structured Clinical Interview for DSM Disorders.

TestMyBrain Neurocognitive battery (TMB) Covariate Computerized neurocognitive assessment; see Section 3.6

A/V recorded affect interview Covariate Seven-question affect induction interview; see Section 3.5.

Routines Descriptive Measure Self-report of daily activities and phone usage

Items listed as secondary outcome measures may also be utilized as covariates in some analyses. Full assessments and schedule of administration are available in the Supplementary material.

3.2.3 Additional measures
In addition to primary and secondary outcome measures,

participants will complete an array of assessments to obtain

information about demographics and medical and psychiatric

history. These will be used as covariates and sample descriptives,

as well as potential outcome predictors in later analyses. These

assessments are listed in Table 2 alongside descriptions of

each metric.

3.3 Magnetic resonance imaging

All magnetic resonance imaging (MRI) data is obtained on

a Siemens MAGNETOM Prisma 3 Tesla MRI scanner with a

32 channel head coil at the UCLA Staglin Center for Cognitive

Neuroscience or the UCLA Ahmanson-Lovelace Brain Mapping

Center. Prior to the MRI scan, all participants complete a

comprehensive MRI safety screening to ensure their safety to
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undergo MRI. Participants are asked to remain still for the entire

duration of the scan and are offered a short break halfway through

the scan if needed. Participants recruited from the OPTIMA

study receive their baseline MRI during week 13 of the OPTIMA

protocol; the first LIFUP session typically is scheduled within

30 days of this scan. Participants who do not have MRIs from

OPTIMA receive baseline scans 2–7 days prior to their first LIFUP

session. All participants receive a second MRI scan 3–14 days after

their third LIFUP session. All scans listed below are collected both

at baseline and post-LIFUP, with the exception of the T2-weighted

structural scan, which is only collected at baseline.

3.3.1 Structural MRI
Two structural images are collected for each participant: a

multi-echo T1-weighted structural image with 0.8mm isotropic

voxels, TR 2,500ms, TEs 1.81ms, 3.60ms, 5.39ms, 7.18ms, TI

1,000ms, FOV 256mm, flip angle 8 degrees, GRAPPA acceleration

factor 2, and a T2-weighted structural image with 0.8mm isotropic

voxels, TR 3,200ms, TE 564ms, FOV 256mm, and GRAPPA

acceleration factor 2.

3.3.2 Resting state functional MRI
A total of 18min of resting state fMRI data is collected, divided

into two ∼9-min, 300-volume scans with opposite phase encoding

(anterior-posterior and posterior-anterior) but otherwise identical

sequence parameters. Resting state fMRI is collected with a multi-

echo, multi-band BOLD sequence with 2.5mm isotropic voxels,

TR 1,670ms, TEs 15.60ms, 38.20ms, 60.80ms, 83.40ms, GRAPPA

acceleration factor 2, multiband factor 4, echo spacing 0.50ms.

During the resting state fMRI scan, participants are asked to remain

awake, look at a white crosshair presented on a black screen, and

to think about nothing in particular. Active noise cancellation

during resting state is done using OptoAcoustic noise canceling

headphones (Optoacoustics Ltd, Mazor Israel).

3.3.3 Functional MRI tasks
Two reward-based fMRI tasks are utilized for this study: the

Apple Gathering Task and Card Guessing Task. For both tasks,

fMRI is collected using a multi-band BOLD sequence with 2.0mm

isotropic voxels, TR 1,300ms, TE 22.80ms, multiband factor 3,

FOV 208mm, flip angle 64 degrees, echo spacing 0.53 degrees,

GRAPPA acceleration factor 2. For each task, an additional brief

(<1min) scan is collected prior to the task scan with identical

sequence parameters but with opposite phase encoding. Active

noise cancellation during functional MRI tasks is done using

OptoAcoustic noise canceling headphones (Optoacoustics Ltd,

Mazor Israel).

3.3.3.1 Apple Gathering Task

The Apple Gathering Task (AGT) (Bonnelle et al., 2016;

Armbruster-Genç et al., 2022) is an effort- and reward-based

decision-making task. Participants are informed that they will

receive an extra monetary reward based on their performance on

this task; this reward ranges from $12 to $24. Participants are

presented with a screen showing an apple tree with a variable

number of apples (3, 6, 9, or 12). The apple tree is accompanied

by a horizontal line across the tree trunk; the height of this line

indicates the amount of effort that would be required to collect the

apples on that tree (low, med-low, med-high, high), calibrated to

each participant’s personal maximum hand grip strength for each

hand. Effort is expended by participants squeezing a hand-grip

measurement tool (i.e., two dynamometers from Biopac Systems,

Inc. using the MP160 and two DA100C amplifiers); this sends a

signal to the screen, which then shows a vertical bar indicating the

amount of effort they are expending. If participants successfully

squeeze the hand grip above the required effort threshold for at least

2 s, they win all of the apples on the tree. If they do not successfully

squeeze the hand grip, they do not win any apples that round. At the

beginning of each trial, an apple tree is presented with a quantity of

apples and required effort level; participants are then asked yes/no if

they want to accept the trial or decline it. Upon acceptance of most

trials, the apple tree will appear on either the left or the right side

of the screen (counterbalanced), and participants will squeeze the

grip measurement tool on the side where the tree appears to try to

make their effort bar reach the horizontal line. In 25% of trials that

are accepted, the participant does not need to squeeze the hand grip

and instead simply acquires the apples. If the participant declines a

trial, theymove on to the next trial in which a new number of apples

and amount of effort are offered. The task involves 80 trials in a

4 (Apples: 3, 6, 9, 12) × 4 (Effort: low, med-low, med-high, high)

design with 5 trials for each of the 16 levels; each trial lasts 12 s. This

task lasts up to 26min in total, depending on the number of trials

that the participant accepts. The AGT was originally administered

during fMRI, but is now being collected as an outside-scanner task

due to funding changes. Participants are informed of the monetary

reward amount they will receive at the end of the scan (or at the

end of the task, for those completing it outside of the scanner).

The behavioral dependent variable is the participant’s propensity to

accept trials based on the number of apples and amount of effort.

The primary neural dependent variables are reward anticipation

(i.e., neural response when thinking about whether to accept or

decline a trial) and response to reward attainment (i.e., neural

response upon successfully obtaining apples).

3.3.3.2 Card Guessing Task

The Card Guessing Task (CGT) (Forbes et al., 2009) is a

reward-based task in which participants are informed that they

will receive monetary reward for their performance on the task;

however, the task is designed such that participants will have the

same number of wins, losses, and neutral outcomes regardless of

the choices they make, resulting in each participant receiving the

same monetary reward. Participants are debriefed on this design

at the end of their study participation. Prior to beginning the task,

participants are told that the compensation will be as follows: +$6

for each win, -$2.50 for each loss, and no addition or deduction

for neutral outcomes. Participants first have 3 s to guess whether

the next randomly chosen card will be higher or lower than 5.

If they do not guess within 3 s, the task skips to the next trial.

Once a guess is submitted, it is briefly presented on the screen.

Then, the participant is shown a screen revealing trial type; the

three trial types are gain (win if correct, neutral if incorrect), loss

(loss if incorrect, neutral if correct), and gain/loss (win if correct,

loss if incorrect). Then, some number from 1 to 9 (excluding 5)
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is presented on the screen; this number is not fully random, but

rather randomized within whatever range would align with the

predetermined outcome for that trial based on the participant’s

guess. For example, if the predetermined outcome was for the

guess to be correct, and the participant selected “high”, the screen

would present some number from 6 to 9. Finally, the predetermined

outcome feedback is presented, informing the participant if the

outcome was a win (green up arrow and dollar sign to indicate

gaining reward), loss (red down arrow and dollar sign with an “X”

through it to indicate losing reward), or neutral (a yellow circle).

The duration of each screen varies from trial to trial; the average

trial duration across the task is 13 s. There are 36 trials, for a total

task duration of ∼8min. There are no reward-based behavioral

dependent variables in this task, as the only behavioral measure

is the percentage of trials participants guess on, in which a low

percentage would indicate inattention to the task. The main neural

dependent variables are reward/loss anticipation and attainment of

gains, losses, or neutral outcomes.

3.3.4 Magnetic resonance spectroscopy
Proton magnetic resonance spectroscopy (MRS) data is

acquired using the HERMES sequence (TR: 2,000ms; TE: 80ms;

320 averages) (Chan et al., 2016; Saleh et al., 2016). This includes

a full spectrum of brain metabolites as well as edited spectra for

gamma-aminobutyric acid and glutathione quantification. A 2.5

× 2.5 × 3 cm voxel is placed on the midline of the brain in the

prefrontal cortex and rotated to cover the dorsal anterior cingulate

cortex and the dorsomedial prefrontal cortex (Figure 2). Siemens

automatic shimming is used, with manual shimming if necessary,

to achieve a displayed full-width half-max value of <17Hz for the

unsuppressed water peak. Previous literature has demonstrated that

at least in some regions of the brain, LIFUP is capable of altering

metabolites as measured by MRS, though that study investigated

the regions being stimulated rather than downstream regions

FIGURE 2

MRS voxel placement. The typical location and orientation of the

MRS voxel overlaid on the MNI152 brain template.

(Yaakub et al., 2023). The placement of this voxel was chosen

given literature suggesting alterations in an array of metabolites

in the prefrontal cortex and anterior cingulate cortex of patients

with depression (Xie et al., 2023). We anticipate that LIFUP to the

caudate and nucleus accumbens may be able to alter metabolites in

these regions due to the well-documented connections between the

striatum and the anterior cingulate and medial prefrontal cortices

as part of reward processing pathways (Haber, 2011).

3.3.5 Field maps
For each functional MRI sequence, a pair of spin echo-based

EPI images is collected with opposite phase encoding to each other,

but matched along the axis of the phase encoding for the functional

data and with identical voxel size to the corresponding sequence;

this pair of images can be processed to create field maps to use for

fMRI distortion correction.

3.4 Digital phenotyping

Participants in this study will wear an Apple Watch for the

duration of the study in order to collect data on sleep, physical

activity, heart rate, heart rate variability, and other digital measures

available through Apple HealthKit and SensorKit. Participants will

also download an app to their personal iPhone which collects

additional digital measures, such as activity, environmental light,

and wake and sleep patterns. A full list of data collected is available

in Supplementary Tables S3, S4. This data is collected throughout

the entirety of the 5 week protocol (7 weeks for non-OPTIMA

participants). Participants continuing from OPTIMA are asked to

continue wearing their Apple Watch during any gap between the

end of the OPTIMA protocol and the beginning of the ILIAD

protocol (typically <30 days), such that these participants will have

digital phenotyping data available for the same pre-LIFUP period

as non-OPTIMA participants.

3.5 A�ect interview

Participants complete an affect interview prior to the first MRI

scan. This is a video-recorded interview in which an experimenter

asks seven questions:

1. How are you feeling today?

2. Did anything happen this week that made you feel angry,

stressed, or sad? If yes, describe what happened and how you felt.

3. Did anything happen this week that made you feel good? If yes,

describe what happened and how you felt.

4. Is there something you are worrying about? If yes, please

describe what is it you’re worrying about and how it makes

you feel.

5. Is there something good you expect will happen soon that you

are looking forward to? If yes, what is it, and how does it make

you feel?

6. Have you been planning or working toward a positive future

event or experience? If yes, what is it and what have you

been doing?
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7. Tell me about your happiest memory.

Using sentiment analysis from natural language processing

(bidirectional encoder representations from transformers; BERT)

(Acheampong et al., 2021) of interview data, we will estimate

the probability that the response to each interview question was

positive, negative, or neutral in emotional valence. Specifically,

we will use the roBERTa-base model, which is trained on 60

million tweets of varying levels of positive and negative sentiment,

to estimate the sentiment of each interview question response

(Barbieri et al., 2020). Due to the established risks of bias in natural

language models trained on social media data, we aim to develop

procedures to address potential model bias prior to final analysis of

this data (Straw and Callison-Burch, 2020).

3.6 TestMyBrain neurocognitive tasks

Neurocognitive tasks are administered remotely through the

use of TestMyBrain, a digital platform for cognitive testing.

Table 3 lists the name of each task administered, the domain(s)

of measurement, and a brief description of each task. A total

of seven neurocognitive tasks are administered during pre-scan

week (7 days before first scan). At study exit, two neurocognitive

tasks are repeated: Multiracial Emotion Identification and Gradual

Onset Continuous Performance Test. Tasks can be completed on a

participant’s smartphone or home computer. All tasks are presented

in the fixed order listed in Table 3.

3.7 Data management and monitoring

3.7.1 Data entry and storage
3.7.1.1 Research Electronic Data Capture

This project utilizes REDCap for data collection and storage.

REDCap employs relational database tables within a single

MySQL database to store project records and all collected data.

Survey data are collected directly from participants through

External REDCap utilizing emailed survey links. Collected survey

data are automatically synced from the external database to

Internal REDCap. Non-survey data such as participant schedules,

medication history, and records of in-person data collection

are manually input by research staff and stored in Internal

REDCap behind secure firewalls. Where third party services

are utilized to collect survey data—as is the case for the

SAGE Diagnostic Assessment and TestMyBrain Neurocognitive

Assessment—External REDCap surveys are used to provide links to

the third party site for assessment administration, and the REDCap

API is utilized to copy that assessment data into the Internal

REDCap database for secure storage within each record.

3.7.1.2 The DGC Study App

The UCLA Depression Grand Challenge Study App (DGC

Study App) built by Avicenna Research is installed on participant

iPhones and used to collect digital health data. The DGC Study

App uses HealthKit and SensorKit APIs for passive measures

and deploys ecological momentary assessments (EMAs). The

DGC Study App sends collected information to an Amazon

Web Services (AWS) environment where EMA data and DGC

Study App use activity are stored in a PostGreSQL server and

passive sensor data (heart rate, accelerometer, etc.,) are stored in

a CassandraDB instance. Data is periodically moved from the AWS

server to a UCLA hosted Azure storage environment for storage

and analysis.

3.7.2 Data monitoring
Data quality is monitored weekly by the research staff

and the program manager in order to ensure data collection

occurred as prescribed by the protocol. Bi-weekly progress

reports on participant compliance with digital phenotyping

data collection are provided by the informatics team. Input

and range restrictions for data entry are built into the database

whenever possible. Research staff perform quality checks

for all records of database entries that are transposed from

paper records.

3.8 Trial management

3.8.1 Trial registration
This study is registered on clinicaltrials.gov as NCT06285474.

It has been approved by the UCLA Institutional Review Board

as IRB#22-001323.

3.8.2 Role of study sponsor and multi-institution
collaboration

This study was developed by investigators at UCLA as part

of the international and multi-institution Wellcome Leap Multi-

Channel Psych Program (MCPsych). To facilitate harmonization of

collection measures across the program and comparable outcome

measures for joint analyses, sites synchronized collection of specific

measures across several data collection modalities (i.e., self-report

surveys, digital phenotyping, neuroimaging, etc.) in order to have

harmonized outcome measures that would be comparable across

sites in this consortium. Several protocol changes were initiated

due to funding changes during the conduct of the study; the

most notable of these changes were the removal of the nucleus

accumbens LIFUP group (see Section 3.1) and the transition of the

Apple Gathering Task to be outside of the scanner (see Section 3.3).

The trial sponsor is not responsible for any data collection,

analysis, or interpretation related to this protocol. However,

publications and presentations related to the data collected under

the Wellcome Leap contract must receive approval fromWellcome

Leap to ensure appropriate protection of intellectual property from

other performing sites.

3.8.3 Trial steering committee
The Trial Steering Committee for this protocol comprises

the directors of the Depression Grand Challenge, principal and

co-investigators of this protocol, as well as other professors,

researchers, project scientists, and post-doctoral fellows. This group

meets weekly with the research program manager to review

Frontiers inHumanNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnhum.2025.1478534
http://clinicaltrials.gov
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Rotstein et al. 10.3389/fnhum.2025.1478534

TABLE 3 A description of tasks administered in the TestMyBrain neurocognitive battery.

Task name Domain Description

Vocabulary (4min) Long-term verbal memory,

crystallized cognitive ability,

verbal reasoning

A vocabulary word is presented and the user must select 1 of 5 presented words

that most closely matches the meaning of the vocabulary word.

Matrix reasoning (7.5min) Fluid cognitive ability,

nonverbal reasoning

A series of image patterns are presented and the user is asked to select from

options, which image will complete the pattern presented.

Multiracial emotion identification (3.5min) Face emotion perception,

emotion identification

Photographs are presented of individuals expressing either anger, happiness, fear

or sadness. The user must select which of the four emotions best describes the

face presented.

Choice reaction item (1.5min) Processing speed, response

selection/inhibition, attention

Three colored boxes are presented, each box contains an arrow that points left or

right. Two boxes are the same color, one box is a different color. The user must

indicate the direction of the arrow in the box that is a different color than the rest.

Digit symbol matching (2min) Processing Speed, visual short

term memory

A key that matches numbers with symbols is shown, and the user is asked to

match numbers to symbols as they are presented.

Multiple object tracking (5min) Visual working memory and

visuospatial attention.

A set of target circles moves around the screen, among a larger set of identical

distractor circles. The user must remember which circles were designated as

targets, and track them throughout their movement alongside distractor circles.

Gradual onset continuous performance test

(6min)

Sustained attention, response

inhibition, cognitive control

The user is presented with either a city image or a mountain image at varying

intervals. For each image, the user must press a key when a city image appears

and not press when a mountain image appears.

study progress, data quality, deviations, protocol amendments, and

participant care.

3.8.4 Trial monitoring
A Data Monitoring Committee was not considered as this

is a low-risk intervention. Protocol deviations are reported to

the relevant centers as directed by the UCLA IRB and Office

of Human Research Protection Program. Protocol amendments

are communicated to investigative and research operations team

members by the program manager through email notifications

describing the changes and any impacts to operations. These

email notifications include the updated protocol and relevant

updated study documents. The clinical trial registry is kept up to

date with protocol amendments and trial descriptions as changes

are made.

3.8.5 Research operations team
This study is being performed by research operations staff

under the UCLA Depression Grand Challenge. The research

operations project director provides supervision of study

operations and ensures adherence to departmental standards.

The project manager is responsible for protocol implementation,

management of IRB submissions and study documents, database

maintenance, data quality control, data monitoring, and study

reporting. The research coordinator is responsible for participant

screening, enrollment, and communication, as well as data

collection and management. A team of research assessors is

responsible for MRI data collection and managing participants in

theMRI environment, as well as conducting LIFUP administration.

Informatics specialists are an integral part of this protocol, as they

are responsible for the management and storage of the multitude

of data types, including digital sensing data, survey data, and scan

data. Informatics specialists built the study screening website and

are responsible for database technical support for this protocol.

The study utilizes a third party company, Avicenna (previously

Ethica) for app development and hosting to collect data for digital

phenotyping and Ecological Momentary Assessment (EMA).

This study collects information relating to suicidal ideation, and

responses to participants that indicated imminent risk are managed

in collaboration with Protocall Services—a third party, 24 h call

service—as well as Depression Grand Challenge licensed clinical

social workers.

3.8.6 Adverse event monitoring
Adverse events are not explicitly solicited nor investigated

under this protocol. However, monitoring for suicidality is

conducted 24 h after each LIFUP appointment, as well as 72 h after

the final LIFUP appointment. Spontaneously reported events are

reported to the investigators in order to assess the probability that

they were related to the study intervention. If events are determined

to be possibly related, they are reported to the relevant centers

as directed by the UCLA IRB and Office of Human Research

Protection Program.

3.8.7 Progress reports and auditing
Quarterly (once every 3 months) progress reports are provided

to the study sponsor. These reports include data quality checks,

interim analyses to evaluate protocol efficacy, and summary

data. As a part of the larger program, our group participates

in weekly communication with other sponsored sites as well

as the trial sponsor in order to troubleshoot data collection

methods and amend operating procedures as indicated. Auditing

of trial conduct is performed by the investigators and the research

operations team.
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4 Planned analyses

4.1 Analysis of self-report measures

Primary analyses of self-report data will leverage multi-level

modeling to assess the time course of response to LIFUP as

well as the difference in response between the active and sham

LIFUP groups. The active nucleus accumbens and active caudate

conditions will be pooled for the primary analyses, with a second

analysis being conducted with only the caudate group vs. sham. The

primary variables of interest for these models will be total score on

the PVSS and PHQ-14, and EMA variables measuring positive and

negative affect. As a secondary analysis, we will re-run this multi-

level modeling with the inclusion of the total score on the first eight

items of the PHQ-9 (such that total score aligns with PHQ-14 total

score) administered one day after each LIFUP session.

Additionally, chi-square analyses will be conducted to assess

differences in response rate between sham and active LIFUP, where

response will be defined as a 25% or greater score reduction on

PHQ-14 or score increase on the PVSS between baseline and

the Week 3 survey timepoint (i.e., ∼1 week post-LIFUP). We

hypothesize that active stimulation of either caudate or nucleus

accumbens will be associated with a decrease in PHQ-14 score and

increase in PVSS score relative to sham stimulation. This hypothesis

is supported by literature showing associations between decreased

reward sensitivity in anhedonic depression and hypoactivity in the

striatal regions that this study aims to excite (Wang et al., 2021).

Similarly, we hypothesize that the EMA data will show an increase

in positive affect and a decrease in negative affect after active

stimulation relative to sham.

For secondary outcome measures with only two timepoints,

repeated measures ANOVA will be used to investigate the effect

of time (pre vs. post-LIFUP) and group (active caudate vs. active

nucleus accumbens vs. sham).

4.2 Analysis of MRI data

Primary imaging analyses will include pre vs. post-LIFUP

analysis of reward processing, activation, and connectivity of the

caudate and nucleus accumbens as measured with resting state

fMRI and task fMRI. Preprocessing of functional MRI data will

be done with fMRIprep, Tedana, and XCP-D (Esteban et al., 2020;

DuPre et al., 2021; Mehta et al., 2023). Resting state and task fMRI

analyses will be conducted using the fMRIB Software Library (FSL)

(Woolrich et al., 2001, 2004).

The functional MRI data collected during the Card Guessing

Task will be used to assess changes in reward processing across

active and sham LIFUP. Reward processing will be assessed by

comparing fMRI activation during gain vs. loss trials as well

as during gain trials vs. inter-trial intervals. Then, a repeated-

measures ANOVA design will be used to assess the effect of

time and group on these lower-level contrasts. We hypothesize

that participants who received active LIFUP will have higher

reward-responsive activity in their respective target regions (i.e.,

either nucleus accumbens or caudate) compared to those who

received sham. This would represent a normalization of activity, as

decreased activity has been observed in both regions in response to

reward-related tasks (Wang et al., 2021).

Connectivity values between multiple regions of interest will be

extracted from the resting state fMRI data in order to investigate

changes across LIFUP vs. sham using multi-level modeling. Some

particular variables of interest for this analysis due to prior

implications for anhedonia in the literature include default mode

network average connectivity, left caudate to superior frontal

gyrus connectivity, right nucleus accumbens shell to left subgenual

anterior cingulate cortex, and right nucleus accumbens core to right

precuneus (Dunlop et al., 2019; Liu et al., 2021; Yang et al., 2022).

Additionally, several metabolites measured by MRS will be

investigated to elucidate potential changes in reward system

neurotransmission across LIFUP vs. sham. MRS data will be

processed using Osprey, a software platform developed by the

same team that developed the HERMES MRS sequence used for

this study (Oeltzschner et al., 2020). Osprey reports metabolite

concentrations, relative to water, after correcting for voxel tissue

composition and water relaxation rates. GABA+measurements are

additionally corrected to account for differing concentrations in

gray and white matter. Primary variables of interest for analysis

of the MRS data due to their associations with depression and

anhedonia in the literature include concentrations of GABA, Glx

(sum of glutamate and glutamine), and glutathione (Sanacora et al.,

2012; Luscher and Fuchs, 2015; Tuura et al., 2023). We hypothesize

that active LIFUP will result in increases in both GABA and Glx

concentrations in the dorsomedial prefrontal cortex, representing a

normalization in neurotransmitter levels similar to that observed

after successful treatment with other modalities (Sanacora et al.,

2003; Chen et al., 2014). Furthermore, we hypothesize that we

will observe increased glutathione levels after active LIFUP relative

to sham, given our hypothesis of decreased anhedonia and prior

findings of lower glutathione in anhedonic participants (Lapidus

et al., 2014).

4.3 Analysis of digital phenotyping data

Primary variables of interest from the digital phenotyping data

include heart rate, heart rate variability, sleep duration, and active

energy burned. Multi-level modeling will be utilized to investigate

between-group differences in these measures across LIFUP (or

sham) stimulation. After analysis of these primary variables, further

exploratory analyses will be conducted with a broader set of digital

phenotyping variables; selection of these variables will likely be

guided by OPTIMA analyses assessing correlations between digital

phenotyping measures and anhedonia severity.

4.4 Predictive analyses

Two primary sets of predictive analyses will be conducted

utilizing a machine learning approach, both aiming to identify

predictors of LIFUP response as measured by change in score on

the PVSS and PHQ-14. First, in order to maximize power given

the relatively small sample size of this study, a smaller subset

of potential predictors (∼50) will be analyzed. These predictors
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will be selected based on both the literature and the results

of analyses from the OPTIMA study exploring potential MRI,

digital phenotyping, and self-report-based predictors of anhedonia

severity. Subsequently, an exploratory bottom-up approach will

be used to investigate other potential predictors that were not in

the initial subset. This analysis will utilize all features across all

data modalities in conjunction with ensemble machine learning

techniques including dimensionality reduction and automated

machine learning.

4.5 Post-hoc exploratory analyses

Given the breadth of data collected through this protocol, a

wide variety of both hypothesis-based and exploratory analyses will

be possible that have not yet been developed.

5 Discussion

Direct stimulation of reward-related subcortical regions is

an approach that has proven highly effective in individuals

with major depressive disorder (Figee et al., 2022). However,

due to the invasiveness and risks associated with surgical

DBS, the studies conducted to date have been primarily open-

label, small-sample studies of participants with severe, highly

treatment-resistant depression. The investigation of caudate and

nucleus accumbens stimulation with LIFUP in this protocol

will therefore help to elucidate the potential efficacy of this

intervention in individuals with a wider range of depression

severity and treatment resistance than those who have been

studied previously. Furthermore, despite the literature implicating

the caudate in the mechanism of anhedonic depression, direct

stimulation of the caudate has been minimally investigated

as a potential treatment for depressive symptoms. If caudate

stimulation is found to be effective through this protocol,

it could highlight a new potential target for both invasive

and non-invasive deep brain stimulation for individuals with

depressive disorders.

This study is also one of the first studies to investigate the

effects of multiple sessions of deep brain LIFUP on depressive

and anhedonic symptoms; previous multi-session LIFUP studies

in clinical populations have found significant impacts on anxiety

symptoms (Mahdavi et al., 2023), autism spectrum disorder

symptoms (Cheung et al., 2023), and worry symptoms (Reznik

et al., 2020). Furthermore, a single, 40-min session of LIFUP to the

subcallosal cingulate cortex was recently found to reduce depressive

symptoms in individuals with treatment resistant depression (Riis

et al., 2024a,b). However, none of these previous studies included

longitudinal neuroimaging measures or continuous physiological

monitoring. As a result, this study is a critical step forward in the

investigation of the potential neurological and physiological effects

of multi-session deep brain LIFUP. This is especially important

given that most other non-invasive brain stimulation techniques

used in psychiatric applications, such as transcranial magnetic

stimulation (TMS) and transcranial direct current stimulation

(TDCS) require multiple sessions for optimal treatment response

(Li et al., 2022; Hutton et al., 2023). While this study still

does not reach the 10+ sessions typically used in TMS and

TDCS applications, a demonstration of the feasibility and safety

of multi-session LIFUP through this protocol would provide

support for the investigation of more intensive LIFUP protocols in

future studies.

A notable limitation of this study protocol is the timeline

variability across participants. The time course of LIFUP effects

after multiple consecutive sessions has not yet been investigated

and is therefore unknown. Thus, while the 3–14 day window

between the last LIFUP session and the post-LIFUP MRI is

necessary for the logistical feasibility of the study, there is a

chance that the effects observed in the neuroimaging data for

each participant may be strongly impacted or even rendered

undetectable by the relative timing of the post-LIFUP MRI.

This is a critical confound that will need to be controlled

for in analyses; however, this range of timepoints may also

facilitate investigation of the time course of post-LIFUP changes in

neurological function.

Due to budget changes partway through the study, it was

necessary to remove the nucleus accumbens condition from this

study. As a result, the nucleus accumbens group sample size is

markedly smaller than initially intended, limiting the power of

subsequent analyses for this target. However, this reduced sample

(six active participants) still represents the largest study to date

of nucleus accumbens LIFUP, and the only one in depressed

participants (Mahoney et al., 2023; Peng et al., 2024). Furthermore,

the previous studies found significant effects even with smaller

samples, suggesting that the data collected for this condition

may still be sufficient to detect potential effects (Mahoney et al.,

2023; Peng et al., 2024). Another sample-related limitation lies

in the nature of study participation; depressed participants who

are willing and able to participate in a research study requiring

multiple in-person visits and an array of remote tasks may have

different characteristics and symptom profiles than the broader

population of individuals with anhedonic depression, limiting the

generalizability of our data.

In conclusion, this double-blinded, sham-controlled study

aims to investigate the effects of non-invasive subcortical brain

stimulation with LIFUP to the left caudate head and right nucleus

accumbens in individuals with anhedonic depression. Through

the extensive MRI, self-report, and digital phenotyping data being

collected through this protocol, it will be possible to investigate

a wide variety of potential effects of LIFUP, as well as an

array of potential predictors of response. If LIFUP is found to

effectively modulate brain activity and levels of anhedonia, it

could open up a path toward a new, critically-needed alternative

to surgical deep brain stimulation in patients with treatment-

resistant depression.
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