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Neuromodulation, the targeted regulation of nerve activity, has emerged

as a promising approach for treating various neurological and psychiatric

disorders. While deep brain stimulation has shown efficacy, its invasive nature

poses substantial risks, including surgical complications and high costs. In

contrast, non-invasive neuromodulation techniques, particularly those utilizing

magnetic fields (MFs), have gained increasing attention as safer, more accessible

alternatives. Magnetothermal stimulation has emerged as an innovative method

that enables precise modulation of neuronal ion channels through localized

heating induced by interaction of MF with biological tissues. This review

discusses the principles of MF-based neuromodulation and highlights the critical

role of ion channels in synaptic transmission, and the therapeutic potential of

these advanced techniques. Additionally, it highlights key challenges such as

spatial targeting precision, safety considerations, and the long-term effects of

magnetic exposure on brain function. The findings presente the promise of MF-

based neuromodulation as a non-invasive, highly targeted therapeutic strategy

for conditions such as epilepsy, movement disorders, and neurodegenerative

diseases, with potential applications in chronic pain management and future

clinical interventions.

KEYWORDS

neuromodulation, magnetic fields, magnetothermal stimulation, ion channels, deep
brain stimulation

1 Introduction

Neuromodulation, the process of altering neural activity through targeted delivery
of stimuli, has emerged as a transformative approach in treating neurological and
psychiatric disorders (Luan et al., 2014). By modulating specific neural circuits, this
technique offers precise control over brain function, providing alternatives to traditional
pharmacological treatments, which are often associated with systemic side effects (Chen
et al., 2024; Davis and Gaitanis, 2020). Over the past few decades, neuromodulation
has evolved significantly, with techniques ranging from highly invasive methods,
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such as transcranial magnetic stimulation (TMS) and transcranial
direct current stimulation (tDCS) (Marquez-Franco et al., 2022).
While invasive methods such as DBS have shown remarkable
efficacy in treating conditions such as Parkinson’s disease, the
associated surgical risks-including infection and bleeding-have
driven the development of safer and non-invasive alternatives
(Jiang et al., 2020; Liu X. et al., 2022) (Figure 1).

Non-invasive neuromodulation techniques, such as TMS and
tDCS, have revolutionized the field by enabling brain modulation
without the need for surgical intervention (Alfihed et al., 2024).
TMS uses MFs to induce electrochemical currents in targeted
brain regions, while tDCS applies low-intensity electrical currents
to modulate neuronal excitability (Ekhtiari et al., 2019). These
methods have shown promise in treating conditions such as
depression, anxiety, and epilepsy, offering greater accessibility
and decreased risks compared to invasive procedures (Aderinto
et al., 2024). However, their relatively diffuse stimulation patterns
often result in limited spatial precision, potentially affecting
unintended neural areas and compromising therapeutic outcomes.
This limitation has driven the exploration of more targeted
approaches, such as magnetothermal stimulation and focused
ultrasound (FUS), which aim to achieve deeper and more
precise modulation of neural activity (Liu X. et al., 2022;
Woods et al., 2016).

Magnetothermal stimulation represents a cutting-edge
advancement in non-invasive neuromodulation. By combining
MFs with functionalized nanoparticles, this technique enables
localized heating of targeted neural tissues, selectively modulating
ion channels and neuronal activity with high precision (Kim
et al., 2023). Similarly, FUS leverages acoustic waves to achieve
deep brain modulation without the need for nanoparticles,
offering an alternative pathway for precise neuromodulation.
Both approaches address the critical need for greater specificity
in non-invasive techniques, minimizing off-target effects and
enhancing therapeutic efficacy (Jin et al., 2024).

This review provides the latest advancements in non-
invasive neuromodulation, with a particular focus on MFs-based
techniques. It explores the mechanisms, advantages, and challenges
of established methods such as TMS and tDCS, as well as emerging
approaches such as magnetothermal stimulation and FUS,
highlighting a promising alternative for targeted neuromodulation.
By integrating insights from neurobiophysics and biomedical
engineering, this article presents a comprehensive overview of
the evolving landscape of magnetic neuromodulation and its and
its potential for clinical applications. Furthermore, it aims to
advance the development of targeted, effective neuromodulation
therapies and identify key directions for future research, paving the
way for innovative therapeutic interventions in neurological and
psychiatric disorders.

2 The potential of physics in
neuroscience

The application of physical principles to the study and
modulation of the nervous system establishes a foundational
framework for advancing neuromodulation technologies. By
exploring the interactions between electromagnetic fields (EMFs)

and neuronal activity, this interdisciplinary field provides essential
insights into how magnetic nanoparticle (MNP)-based approaches
can achieve precise and targeted neuromodulation (Wang et al.,
2023). Through its integration of physics and neuroscience-often
referred to as neurobiophysics-this approach not only deepens our
understanding of neural function but also drives the development
of innovative therapies for neurological disorders (Alipour and
Hajipour-Verdom, 2021; Pattabhi and Gautham, 2002).

A key strength of neurobiophysics is its emphasis on
experimental control. Researchers meticulously design studies to
isolate variables and observe neural processes under well-defined
conditions, ensuring reproducibility and reliability. For instance,
investigations into the effects of MFs on neuronal ion channels
require precise control of environmental factors to confirm
that observed changes are directly attributable to the applied
stimuli. This rigorous approach is essential for advancing our
understanding of how external physical forces, such as EMFs, can
modulate neural activity (Goychuk, 2018; Mantovani, 2019).

The base of neurobiophysics is the use of physical laws to
construct predictive models of neural phenomena. Drawing from
principles of thermodynamics, electromagnetism, and quantum
mechanics, these models provide a structured framework
for interpreting complex neural processes. For example,
electromagnetic theory-based models predict how specific
frequencies and intensities of MFs interact with neural tissue,
guiding the development of targeted neuromodulation therapies.
Such models are invaluable for optimizing therapeutic outcomes
while minimizing off-target effects (Takemura et al., 2020).

Neurobiophysicists also manipulate physical quantities-such
as temperature, pressure, EMFs, sound, and electrical currents-to
study their effects on biological systems (Alipour and Hajipour-
Verdom, 2021). This approach enables precise control and
measurement of neural activity, shedding light on how these
parameters influence neuronal function at both microscopic
and macroscopic levels. Techniques such as functional magnetic
resonance imaging (fMRI), which measures brain activity by
detecting changes in blood flow, and DBS, which modulates
neural circuits through electrochemical impulses, are rooted in
neurobiophysical principles (Yen et al., 2023). These applications
highlight the field’s pivotal role in bridging theoretical insights with
practical therapeutic tools (Chaari et al., 2011; Liu et al., 2019).

A fundamental assumption in neurobiophysics is that all
neural activity can be explained through established physical
laws (Franze and Guck, 2010). This premise drives research
efforts to uncover mechanistic explanations for neural phenomena
within the framework of known physics. Given the centrality
of electrochemical signaling in nervous system function, many
neurobiophysical models are grounded in electrical principles.
These models elucidate the mechanisms underlying synaptic
transmission, neural excitability, and the generation of complex
neural rhythms, offering a quantitative understanding of brain
function (Marshall et al., 2016; Sotero et al., 2024).

Neurobiophysics also plays a critical role in advancing MNP-
based neuromodulation techniques. By examining how EMFs
interact with neuronal structures, researchers can elucidate the
mechanisms by which MNPs influence ion channel gating,
membrane potentials, and synaptic activity (Chen et al., 2015). For
instance, magnetothermal stimulation leverages localized heating
and electromagnetic interactions to modulate neuronal excitability
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FIGURE 1

Various neuromodulation strategies, organized by their primary targets, clinical applications, and associated challenges. (A) Deep brain stimulation
(DBS) modulates neuronal membrane potentials to treat Parkinson’s disease, essential tremor, and dystonia, though its invasive nature poses risks
such as infection and bleeding. (B) Transcranial direct current stimulation (tDCS) similarly alters neuronal membrane potentials and is used to
manage depression and cognitive impairments. However, it is limited by difficulties in precisely localizing target regions. (C) Transcranial focused
ultrasound (tFUS) targets mechanical and pressure-sensitive ion channels for the treatment of Parkinson’s, essential tremor, and dystonia, but it
carries the challenge of potential unintended effects on adjacent tissues. (D) Transcranial Magnetic Stimulation (TMS) modulates neuronal activity
through the interaction of magnetic and electric fields. A rapidly changing magnetic field, generated by an electric current in a coil, induces an
electric field in the brain tissue via electromagnetic induction. This electric field influences ion channel gating and neuronal membrane potentials via
Lorentz forces acting on moving ions, enabling precise modulation of neural circuits. TMS is used to treat conditions such as epilepsy, Parkinson’s
disease, schizophrenia, multiple sclerosis, chronic pain, depression, anxiety, and stroke. (E) Magnetothermal Stimulation uses magnetic hyperthermia
to affect ion channels and neuronal excitability, showing promise for treating Parkinson’s, epilepsy and depression, while uncertainties regarding the
biocompatibility and safety of magnetic nanoparticles (MNPs) remain.

with high precision. This approach exemplifies the practical
application of neurobiophysical principles, enabling targeted
modulation of neural circuits while minimizing unintended effects
on surrounding tissue (Munshi et al., 2017).

The insights gained from neurobiophysics have far-reaching
implications for treating neurological disorders. By understanding
the biophysical basis of ion channel function and neural excitability,
researchers can develop more precise neuromodulation therapies
for conditions such as epilepsy, chronic pain, and depression
(Denison and Morrell, 2022). Additionally, neurobiophysics
contributes to the design of advanced brain-machine interfaces,
enhancing the integration of prosthetic devices with the nervous
system. These advancements indicate the transformative potential
of neurobiophysics in both basic research and clinical applications
(Ebrahimzadeh et al., 2022; Yen et al., 2023).

In summary, neurobiophysics provides a mechanistic and
quantitative foundation for understanding and modulating
neural activity. By integrating physical principles with biological
knowledge, this field not only advances our understanding of
brain function but also drives the development of innovative

neuromodulation techniques. From predictive modeling to the
design of MNP-based therapies, neurobiophysics continues to
shape the future of neuroscience and its applications in treating
neurological disorders.

2.1 Basics of neuronal activity

Neurons rely on electrochemical processes to communicate,
a fundamental mechanism that underpins everything from basic
reflexes to complex cognitive functions. These processes are driven
by the movement of ions across neuronal membranes, which is
tightly regulated by ion channels (Gamper and Ooi, 2015). The flow
of ions in response to various stimuli generates action potentials
and synaptic signals, facilitating communication between neurons
and other cells (Pastor and Attali, 2024; Spekker et al., 2023).
Modulating ion channel activity provides a powerful means
of influencing neuronal behavior, offering potential therapeutic
avenues for a wide range of neurological and psychiatric disorders
(Alipour et al., 2023; Chen et al., 2001). A deeper understanding

Frontiers in Human Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnhum.2025.1489940
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-19-1489940 April 22, 2025 Time: 17:41 # 4

Alipour et al. 10.3389/fnhum.2025.1489940

of these principles is essential for exploring how MFs and other
neuromodulation techniques can influence brain function, paving
the way for innovative treatments and interventions.

Ca2+ ions serve as vital second messengers, regulating key
cellular processes such as neurotransmitter release and gene
expression (Mitra et al., 2024). However, maintaining calcium
homeostasis is essential, as its dysregulation can result in cellular
toxicity and neuronal damage (Pikor et al., 2024). Pharmacological
agents that target ion channels have been extensively employed
to treat a range of medical conditions. For example, calcium
channel blockers are particularly notable, they inhibit Ca2+ influx,
thereby reducing vascular smooth muscle contraction and cardiac
muscle activity (Suzuki et al., 2024). This mechanism makes them
highly effective in managing cardiovascular disorders, including
hypertension, angina, and arrhythmias, as they lower blood
pressure and improve blood flow by preventing excessive calcium-
induced constriction of arterial walls (Arfat et al., 2023; Faucon
et al., 2023). Additionally, during ischemic events, such as strokes,
uncontrolled Ca2+ influx exacerbates neuronal injury and cell
death. To counteract these detrimental effects, cells rely on precise
regulatory mechanisms to maintain balanced Ca2+ levels, ensuring
proper cellular function while minimizing the risk of toxicity (Nava
et al., 2020; Ochoa et al., 2021; Qu et al., 2022; Singh et al., 2019).

Furthermore, potassium channel play a critical role in
stabilizing neuronal membrane potentials, making them essential
for proper cellular function. Blocking these channels can lead
to membrane depolarization, increasing neuronal excitability
and influencing physiological processes such as vascular smooth
muscle contraction and neurotransmitter release (Jackson,
2017). Conversely, activating potassium channels hyperpolarizes
neurons, reducing their likelihood of firing. This delicate balance
highlights their importance as key regulators of neuronal
activity and potential them as promising therapeutic targets for
conditions such as depression and epilepsy (Sibille et al., 2015;
Sun and Kapur, 2012).

Beyond the nervous system, potassium channels serve diverse
roles in other tissues. In the heart, they contribute to the regulation
of cardiac rhythm by stabilizing the membrane potential of
cardiomyocytes (Grandi et al., 2017). In the brain, they modulate
neuronal excitability and synaptic transmission, particularly in
regions such as the hippocampus and cortex, which are crucial
for memory and learning (Zhang J. et al., 2024). Additionally, in
pancreatic β-cells, potassium channels respond to fluctuations in
intracellular ATP levels, playing a pivotal role in regulating insulin
secretion (Gil-Rivera et al., 2021). These varied functions indicate
their importance in maintaining physiological homeostasis and
their potential as targets for treating a wide range of disorders.

The gating process of channels is tightly regulated, ensuring
that ion flow occurs only under precise conditions, which is
essential for maintaining neuronal excitability and proper nervous
system function (Alipour et al., 2023).

Ion channels can be categorized based on their gating
mechanisms:

1. Voltage-gated ion channels that open or close in response to
changes in the membrane potential. Voltage-gated Na+ and
K+ channels are crucial for the initiation and propagation
of action potentials, the electrochemical impulses that enable

rapid signal transmission in neurons (Alipour et al., 2023;
Gwanyanya and Mubagwa, 2022; Haustrate et al., 2019).

2. Mechanically-gated ion channels that respond to physical
forces such as tension or pressure on the cell membrane.
Found in sensory neurons, they play a key role in detecting
touch, pressure, and stretch, contributing to our sense of
touch and proprioception (Chakrabarti et al., 2024).

3. Ligand-gated ion channels that open in response to
the binding of specific chemical messengers, such
as neurotransmitters. They are essential for synaptic
transmission, as they allow ions to flow in response to
chemical signals released by neighboring neurons, facilitating
communication within neural networks (Bowie, 2021).

4. Temperature-sensitive ion channels that open in response
to changes in temperature, enabling neurons to detect heat
or cold. They are integral to thermosensation, allowing
organisms to respond to environmental temperature changes
(Wang and Siemens, 2015).

Neurons exhibit the remarkable capability to detect and
respond to both external and internal stimuli. Signal transmission
initiates with the generation of an electrochemical impulse,
which propagates rapidly along the axons. Upon reaching
the axon terminal, the electrochemical signal triggers the
release of neurotransmitters into the synaptic cleft, facilitating
communication with adjacent neurons or target cells (Gamper and
Ooi, 2015; Yang et al., 2022).

Synapses can be broadly classified into two types:

1. Electrical synapses that neurons are directly connected by
gap junctions, which allow ions to pass freely between cells.
This direct connection enables rapid and synchronized signal
transmission, crucial for coordinating activity in regions such
as the thalamus and hippocampus (Steyn-Ross et al., 2007).

2. Chemical synapses that involve a small gap, known as the
synaptic cleft, between the presynaptic and postsynaptic
neurons. When an action potential reaches the presynaptic
neuron, it triggers the release of neurotransmitters, which
diffuse across the synaptic cleft and bind to receptors
on the postsynaptic neuron. This binding opens or closes
ion channels, altering the postsynaptic membrane potential
and propagating the signal (Thomson and Jovanovic, 2010;
Toman et al., 2020).

2.2 Membrane potential and ion
dynamics

The membrane potential of a neuron refers to the
electrochemical potential difference across its membrane, which
is crucial for neuronal excitability and signal transmission. At
rest, the neuron maintains a stable baseline known as the resting
membrane potential, typically around −70 mV. This potential
is primarily sustained by the Na+/K+ pump, an active transport
mechanism that expels Na+ from the cell and imports K+, creating
an electrochemical gradient essential for neuronal function (Garg
et al., 2022; Yoo et al., 2023).
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The resting membrane potential can be quantitatively described
using the Goldman-Hodgkin-Katz (GHK) equation (Equation 1)
(Shirai et al., 2017; Sun, 2019), which accounts for the permeability
of the membrane to different ions and their respective intracellular
and extracellular concentrations.

Vm =
RT
F

ln(
pk

[
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[
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[
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i
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Where:

1. Vm is the membrane potential,
2. R is the gas constant,
3. T is the temperature in Kelvin,
4. F is the Faraday constant,
5. Pk, PNa, PCl represent the membrane permeability for

potassium, sodium, and chloride ions, respectively,
x o and [x]i denote the extracellular and intracellular

concentrations of the respective ions (K+, Na+ and Cl).

Once the membrane potential is determined, the current
flowing across the neuronal membrane can be calculated using
Ohm’s law (Equation 2). This equation relates the membrane
current (Im) to the membrane conductance (gm) and the difference
between the membrane potential (Vm) and the equilibrium
potential (Em):

Im = gm(Vm − Em) (2)

This relationship is fundamental for understanding the dynamics of
ion flow across the membrane, which directly influences neuronal
signaling. The rate of ion flow, governed by the activity of
ion channels, determines changes in membrane potential and,
consequently, the initiation and propagation of action potentials.
These processes are essential for neuronal communication, as
they enable the transmission of electrochemical signals along
neural networks.

3 The application of magnetic fields

MFs are generated by moving electric charges and can exert
forces on other moving charges, such as the ions that flow
through neuronal ion channels. When applied to biological tissue,
MFs can induce electrochemical currents without direct physical
contact, a phenomenon known as electromagnetic induction. This
principle forms the foundation for using MFs in neuromodulation
(Gorobets et al., 2024; Kohno et al., 2023). Through electromagnetic
induction, time-varying MFs can generate electrochemical currents
in targeted brain regions thereby influencing neuronal activity
with precision. This mechanism supports techniques such as DBS,
where magnetic pulses modulate brain activity by altering neuronal
excitability (Kaur et al., 2019; Shibata et al., 2022). Additionally,
MFs can impact the behavior of ion channels, either by directly
affecting their gating mechanisms or by modifying the local electric
field around the neuron (Goychuk, 2018; Wu et al., 2022).

MF-based techniques offer a non-invasive alternative to
surgical interventions, reducing risks associated with neurosurgery
and increasing accessibility for patients. Additionally, non-
invasive methods are better suited for repeated or prolonged

treatments, which are often necessary for managing chronic
conditions (Deblieck et al., 2021; Sawada and Yamakage, 2024).
The versatility of MFs allows for a range of therapeutic outcomes
depending on stimulation parameters. For example, extremely low-
frequency EMFs (ELF-EMFs) have been shown to inhibit neuronal
activity, reducing seizure frequency in epilepsy (Wang et al.,
2024). Conversely, high-frequency fields can enhance neuronal
activity, improving symptoms in conditions such as depression
by targeting hypoactive brain regions (George and Post, 2011;
Lefaucheur et al., 2014).

3.1 Effects of magnetic fields on cellular
functions

The interaction of electric, magnetic, and EMFs with biological
cells and tissues has been extensively studied. Despite notable
progress, the precise mechanisms by which MFs influence living
organisms remain incompletely understood, highlighting the need
for further research. MFs can interact directly with moving charges,
such as ions and proteins, as well as with magnetic materials within
tissues, through various physical mechanisms (Hou et al., 2010).

Viewing living cells as electrochemical systems with charged
components provides a useful framework for understanding how
static MFs and EMFs can influence cellular functions. According
to the “window effect” theory, the biological effects of MFs are
typically observed within specific frequency or intensity ranges,
suggesting that cells respond to physical stimuli in a manner
analogous to their response to chemical signals such as hormones
(Alipour et al., 2022a; Hajipour Verdom et al., 2018; Latypova
et al., 2024; Wu et al., 2022). This theory implies that MFs can
act as cellular messengers, eliciting physiological responses such
as changes in cell survival, proliferation, apoptosis, differentiation,
gene expression, protein synthesis, enzymatic activity, and ion
homeostasis (Alipour et al., 2022a; Barati et al., 2021; Hajipour et al.,
2017; Hajipour Verdom et al., 2018; Kashani et al., 2023; Krylov
and Osipova, 2023; Ouyang, 2019; Wasak et al., 2019). Additionally,
MFs have been explored for therapeutic applications, including
pain relief and the treatment of certain medical conditions
(Paolucci et al., 2020).

The biological effects of MFs depend on several factors,
including the type of MF, its strength, frequency, pattern, and
duration of exposure, and the specific properties of the target tissue
(Hajipour Verdom et al., 2018). MFs interact with metals, ions,
and charged or magnetic particles in tissues, potentially increasing
the concentration, activity, and lifespan of reactive species such as
reactive oxygen species (ROS) and reactive nitrogen species (RNS)
(Alipour et al., 2022a; Hajipour Verdom et al., 2018; Schuermann
and Mevissen, 2021). For example, paramagnetic metals can
participate in ROS production through Fenton or Haber-Weiss
reactions, which, at elevated levels, may cause oxidative damage to
proteins, nucleic acids, and lipids, leading to cell death (Hajipour
Verdom et al., 2018; Shabanpour et al., 2024). However, ROS also
play essential roles as signaling molecules, regulating metabolic
pathways and the activity of transcription factors such as AP-1 and
Nrf-2 (Alipour et al., 2022a; Priya Dharshini et al., 2020).

Moreover, direct interactions between MFs and biological
tissues can be described using Maxwell’s equations, though
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different tissue components exhibit varying responses to MFs (Chi
et al., 2020). In the case of ELF-EMFs, the photon energy is
insufficient to directly break chemical bonds or damage DNA
molecules. For example, at frequencies of 50–60 Hz, the photon
energy is approximately 10–12 times smaller than the energy
required to break the weakest chemical bonds (Panagopoulos
et al., 2021). However, MFs can exert a Lorentz force on moving
charged particles, potentially influencing electrochemical currents
within cells, particularly in neurons (Yachi et al., 2022). Low-
frequency EMFs may induce cellular resonance effects (Tian et al.,
2023), while high-frequency MFs can enhance localized energy
absorption, modulating neuronal excitability (Moliadze et al.,
2010). This dual mechanism indecates the potential of combining
photon energy and MF application for targeted neuromodulation.

3.2 Impact of magnetic fields on tissue
and organ levels

MFs have demonstrated the capacity to modulate brain activity
at both tissue and organ levels, offering promising therapeutic
potential for neurological disorders. These effects span multiple
scales, from molecular and cellular changes within individual
neurons to broader, network-level alterations that influence entire
brain regions (Premi et al., 2018).

At the tissue level, MFs can modulate the collective activity of
neuronal populations. Techniques such as TMS have shown the
ability to non-invasively induce electrochemical currents in specific
brain regions, either enhancing or suppressing neural activity
depending on the frequency and intensity of the magnetic pulses
(Maniglia et al., 2019). For example, repetitive TMS (rTMS) has
been shown to induce long-lasting changes in cortical excitability, a
phenomenon linked to synaptic plasticity. High-frequency rTMS
was applied to the motor cortex has improved motor function
in stroke patients by facilitating synaptic connections within
motor pathways (de Freitas Zanona et al., 2023; Ni et al.,
2023). Conversely, low-frequency rTMS has been used to suppress
hyperactive brain regions, such as in patients with tinnitus
or depression, where it reduces symptoms by downregulating
overactive cortical areas (Adu et al., 2022). These effects are
attributed to the ability of MFs to influence the excitability of
neuronal circuits, thereby altering information flow within the
brain (Asao et al., 2022). By targeting specific regions, MF-based
therapies can modulate the balance of excitatory and inhibitory
signals, offering therapeutic benefits for a range of neurological and
psychiatric disorders (Turner et al., 2014).

At the organ level, MFs can influence larger brain networks,
which play a critical role in coordinating functions such as
motor control, cognition, and emotion (Cameron et al., 2019).
MFs have the potential to reset dysfunctional circuits or enhance
communication between brain regions (Dufor et al., 2023),
providing therapeutic benefits for conditions such as major
depressive disorder (MDD). For instance, rTMS targeting the
dorsolateral prefrontal cortex (DLPFC)-a key region in mood
regulation-has been shown to enhance connectivity within mood-
related networks, leading to sustained improvements in depressive
symptoms (Lu et al., 2024; Vida et al., 2023).

Magnetothermal stimulation, which uses MNPs to generate
localized heating, represents another innovative approach. This
technique allows precise targeting of deep brain structures that
are difficult to reach with conventional TMS (Fiocchi et al., 2022;
Le et al., 2019). In animal models, magnetothermal stimulation of
the hypothalamus has been shown to influence body temperature
regulation and metabolic processes, demonstrating the potential
of MFs to modulate organ-level functions beyond the brain itself
(Jang et al., 2023).

The therapeutic potential of MFs at the tissue and organ levels
has been explored in various neurological conditions:

1. Epilepsy: Low-frequency rTMS has been used to suppress
epileptic activity by targeting seizure-prone brain regions.
Studies have shown reductions in seizure frequency in
patients with drug-resistant epilepsy, likely due to modulation
of excitability in epileptogenic zones (Balestrini and Sander,
2020; de Labra et al., 2023).

2. Parkinson’s disease: rTMS applied to the motor cortex and
basal ganglia has improved motor symptoms, including
tremors, by modulating disrupted dopaminergic pathways
(Spagnolo et al., 2021).

3. Chronic pain: rTMS targeting brain regions involved in pain
processing, such as the primary motor cortex and anterior
cingulate cortex, has reduced pain in conditions such as
fibromyalgia and neuropathic pain. This effect is thought
to result from alterations in the pain matrix within the
brain (Ciampi de Andrade and García-Larrea, 2023; Pinot-
Monange et al., 2019).

The ability of MFs to modulate brain activity at the tissue
and organ levels has significant therapeutic implications. As
research continues to elucidate the underlying mechanisms,
there is potential for developing more effective and targeted
treatments. Combination of MF-based therapies with other
modalities, such as pharmacotherapy or behavioral interventions,
could further enhance outcomes. Advances in neuroimaging
and computational modeling are expected to improve the
precision of brain network targeting, leading to more personalized
neuromodulation strategies.

3.3 Current therapeutic applications of
magnetic fields

MF-based neuromodulation techniques, particularly rTMS,
have emerged as powerful tools for treating a range of neurological
and psychiatric conditions. Supported by a growing body of
research, these non-invasive methods modulate brain activity and
have shown efficacy in managing disorders such as depression,
schizophrenia, and multiple sclerosis (Alashwal et al., 2023).

rTMS uses rapidly changing MFs to induce electrochemical
currents in specific brain regions, modulating neuronal activity
through depolarization or hyperpolarization. Depending on the
stimulation frequency, rTMS can either enhance or suppress
neuronal excitability, making it a versatile tool for treating
conditions such as depression, anxiety, and neuropathic pain
(Lu et al., 2024).
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rTMS involves applying repetitive magnetic pulses through a
coil placed on the scalp, which induces electrochemical currents
in underlying brain tissue (Tubbs and Vazquez, 2024). The effects
of rTMS depend on the frequency, intensity, and duration of
stimulation, as well as the specific brain region being exposed (Han
et al., 2023). Coil designs, such as figure-of-eight or H-coils, are
engineered to optimize MFs strength and focality, ensuring precise
stimulation of the desired neural circuits (Deng et al., 2014).
Additionally, different pulse types-such as monophasic, biphasic,
and burst stimulation-enable frequency-dependent modulation
of neuronal activity (Wendt et al., 2023). Stimulation protocols,
including conventional rTMS and theta-burst stimulation
(TBS), are customized to achieve specific therapeutic outcomes
(Liu et al., 2024).

One of the most well-established and clinically validated
applications of rTMS is in the treatment of MDD, particularly for
patients who have not responded to conventional therapies such as
antidepressant medications or psychotherapy (Lu et al., 2024). The
non-invasive nature of rTMS, coupled with its relatively mild and
transient side effects-such as scalp discomfort or mild headaches-
makes it a compelling alternative for individuals with treatment-
resistant depression (Lanza et al., 2023). Standard rTMS therapy for
MDD typically involves daily sessions administered over a period
of four to six weeks, with each session lasting approximately 30
to 40 min (Al-Ruhaili et al., 2023). This structured regimen has
been shown to significantly improve depressive symptoms in many
patients, offering hope for those who have struggled to find relief
through other treatment modalities.

rTMS has also shown promise in treating bipolar disorder,
particularly for depressive episodes. Preliminary studies suggest
it could serve as an effective adjunctive therapy, though further
research is needed to establish its efficacy (Nguyen et al., 2021). In
schizophrenia, rTMS has been used to target the temporoparietal
cortex, a region associated with auditory hallucinations. Low-
frequency rTMS (1 Hz) applied to this area has reduced the
frequency and severity of hallucinations in some patients (van
Lutterveld et al., 2012). Additionally, rTMS targeting the prefrontal
cortex has been explored for improving cognitive function and
alleviating negative symptoms such as social withdrawal and apathy
(Kos et al., 2024). While not yet a first-line treatment, rTMS is
increasingly used as an adjunctive therapy for medication-resistant
symptoms (Wagner et al., 2021; Xie et al., 2023).

rTMS has been investigated for alleviating symptoms
of multiple sclerosis (MS), a neurodegenerative disorder
characterized by motor dysfunction, fatigue, and cognitive
impairment (Ahmadpanah et al., 2023). High-frequency rTMS
targeting the motor cortex has shown potential in improving
motor performance and reducing spasticity by enhancing cortical
excitability and promoting neuroplasticity (Hassan et al., 2021).
Studies have also explored its use for fatigue and cognitive
symptoms, though results have been mixed (Gaede et al., 2017;
Iglesias, 2020). Despite variability in outcomes, rTMS offers a
non-invasive and well-tolerated option for managing certain MS
symptoms, particularly in patients unresponsive to conventional
therapies.

Beyond rTMS, other MF-based techniques are being explored
for their therapeutic potential:

1. tDCS: a non-invasive technique that applies weak electrical
currents to the scalp to modulate cortical activity. tDCS has
been studied for conditions such as depression, chronic pain,
and cognitive impairments. While less established than rTMS,
it offers a more portable and cost-effective alternative (Klírová
et al., 2024).

2. DBS: an invasive surgical procedure that involves implanting
electrodes into specific regions of the brain (Krauss
et al., 2021). It has demonstrated remarkable efficacy in
treating movement disorders, such as Parkinson’s disease
and dystonia. However, its application in chronic pain
management is less established and warrants further research
to fully understand its potential benefits (Krauss et al.,
2021). Despite being a surgical intervention, DBS highlights
the broader promise of MF-based technologies in the field
of neuromodulation, offering insights into non-invasive
alternatives for targeted brain stimulation.

Unlike DBS, which is a highly targeted, tCS provides non-
specific stimulation across cortical areas. This distinction highlights
the need for advanced techniques such as magnetothermal
stimulation, which combines the precision of targeted
interventions with the non-invasive nature of methods such
as tCS (Zhang E. et al., 2024).

While MF-based neuromodulation holds great promise,
several challenges remain. Precise targeting of ion channels
without affecting surrounding tissues requires further technological
refinement. Additionally, the long-term effects of MF exposure
on brain function and structure are not yet fully understood,
necessitating comprehensive safety studies (Borrione et al., 2020;
Singh et al., 2020).

Standard non-invasive techniques such as tDCS and TMS
are limited in their ability to reach deep brain regions effectively
(Luigjes et al., 2019). These methods typically influence on
superficial cortical areas, making it challenging to modulate
deeper neural circuits that are critical in conditions such as
epilepsy, Parkinson’s disease, and treatment-resistant depression.
Magnetothermal stimulation overcomes this challenge by
using MFs and nanoparticles to enable precise and targeted
neuromodulation deep within the brain (Yuan et al., 2022). This
innovative approach not only expands the range of treatable
neurological and psychiatric conditions but also holds the potential
to enhance therapeutic outcomes significantly.

As research progresses, there is growing interest in personalized
approaches to neuromodulation. By tailoring stimulation
parameters to individual neurophysiological profiles, clinicians can
optimize treatment efficacy and patient outcomes. Furthermore,
combining MF-based therapies with complementary modalities,
such as pharmacotherapy or behavioral interventions, may further
enhance therapeutic results.

4 Magnetothermal neurostimulation

Magnetothermal stimulation is an innovative neuromodulation
technique that utilizes the interaction between MFs and
functionalized nanoparticles to achieve precise, non-invasive
control of neural activity. A key advantage of this approach is its
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ability to remotely and selectively modulate specific brain regions,
providing a highly targeted alternative to invasive procedures.
This method holds significant promise for treating neurological
disorders associated with abnormal neural activity, including
epilepsy, chronic pain, and mood disorders (Hescham et al., 2021;
Sheth and Mayberg, 2023).

Magnetothermal stimulation relies on the application of
alternating magnetic fields (AMFs) to heat functionalized MNPs
localized in targeted brain regions (Figure 2). This localized heating
modulates ion channel activity and neuronal excitability, enabling
precise control over neural circuits (Munshi et al., 2017).

A notable advantage of this technique is its ability to achieve
deep brain modulation without the need for direct physical
access. By functionalizing MNPs with specific ligands, researchers
can enhance their specificity for targeted neural circuits, further
improving the precision of the intervention (Dash et al., 2022). This
level of control is particularly valuable for treating conditions where
abnormal activity is localized to specific brain regions.

While magnetothermal stimulation and focused ultrasound
(FUS) both offer non-invasive targeting of deep brain regions, they
differ in their mechanisms and applications. FUS uses acoustic
energy to influence neuronal activity, eliminating the need for
nanoparticles and simplifying its application (Jiao et al., 2024).
However, FUS lacks the inherent ability to functionalize targeting
agents, which limits its specificity compared to magnetothermal
stimulation. Additionally, FUS requires careful calibration to avoid
unintended tissue heating or cavitation, which can pose risks
during prolonged use (Kim et al., 2014).

Preclinical studies have demonstrated the efficacy and potential
of magnetothermal stimulation in modulating neural activity and
treating neurological disorders. For example, Munshi et al. (2017)
used functionalized MNPs to selectively stimulate the motor cortex
in a rodent model. By applying AMFs at 500 kHz, the study
achieved precise modulation of neuronal activity, as evidenced
by changes in motor behavior and electrophysiological recordings
(Munshi et al., 2017).

Another study by Hescham et al. (2021) explored the use of
magnetothermal stimulation to alleviate chronic pain in a mouse
model. The researchers coated MNPs with ligands targeting pain-
related neural circuits and applied AMFs at 160 kHz. The results
showed significant reductions in pain behaviors, with minimal
off-target effects, underscoring the potential of magnetothermal
stimulation for non-invasive pain management (Hescham et al.,
2021).

The integration of magnetothermal stimulation with other
neuromodulation methods, such as FUS or pharmacological
therapies, could expand its therapeutic applications. Furthermore,
combining this approach with advanced imaging techniques may
enable real-time monitoring, enhancing the precision, efficacy, and
safety of neural modulation.

4.1 Magnetic nanoparticles for
neuromodulation

MNPs represent a cutting-edge approach in neuromodulation,
offering a highly targeted method to influence neuronal ion
channels and modulate brain activity. These nanoparticles can be

introduced into the body and precisely directed to specific brain
regions using external MFs (Latypova et al., 2024; Signorelli et al.,
2022). The physical mechanisms of MNPs in neuromodulation can
be broadly categorized into three hypotheses:

1. Localized heating: AMFs induce localized heating of MNPs
through Neel and Brownian relaxation processes. This
thermal fluctuations can influence the kinetics and gating
behavior of temperature-sensitive ion channels, modulating
neuronal activity (Huang et al., 2023; Leuchtag, 2023).

2. Mechanical effects: MFs generate torque or force on
MNPs, causing mechanical stress on neuronal membranes
or ion channels. This stress can open mechanically-gated
ion channels or alter membrane properties, influencing
excitability (Barbic, 2019; Gribanovsky et al., 2022).

3. Direct electromagnetic interaction: MNPs generate localized
EMFs that interact with neuronal structures, influencing
ion flow through electromagnetic induction or modulating
membrane potentials (Liu N. et al., 2022; Yu et al., 2022).

While these hypotheses provide a framework for understanding
MNP-based neuromodulation, several challenges remain. For
instance, the extent of localized heating and its specificity to
target neurons need further investigation (Roet et al., 2019).
Similarly, the magnitude of mechanical effects and their impact on
neuronal membranes require quantification to establish thresholds
for therapeutic efficacy (Romero et al., 2022). Moreover, advances
in imaging and simulation techniques are essential to bridge these
gaps and validate the proposed mechanisms in vivo (Ge et al.,
2024). To overcome these challenges, researchers are exploring
the use of high-resolution imaging modalities, such as MRI
and optogenetic tools, to visualize MNP behavior in real-time.
Additionally, computational models that simulate MNP-neuron
interactions under various field conditions can provide insights
into optimizing neuromodulation protocols (Alipour and Zali,
2022; Alipour et al., 2022b; Kamkar et al., 2022).

One of the most promising aspects of MNPs is their
ability to achieve precise targeting of specific brain regions. By
functionalizing the surface of MNPs with ligands, antibodies, or
peptides, these particles can be engineered to selectively bind to
specific neuronal populations or ion channels. This specificity
allows for the modulation of distinct neural circuits, offering highly
selective therapeutic interventions (Dominguez-Paredes et al.,
2021; Liu et al., 2020).

For example, MNPs can be directed to regions such as the
basal ganglia in Parkinson’s disease, where they modulate voltage-
gated ion channels in affected neurons, potentially restoring
normal function and alleviating symptoms (Xu et al., 2023).
Delivery methods for MNPs include systemic administration (e.g.,
intravenous injection) or localized application (e.g., intracranial
infusion), with external MFs guiding the nanoparticles to the
desired site to enhance precision and minimize off-target effects
(Ashoori et al., 2023; Kazemi-Ashtiyani et al., 2022; Satari et al.,
2024).

The interaction of MNPs with ion channels is grounded
in neurobiophysical principles. Localized heating alters ion
permeability coefficients, as described by the Goldman-Hodgkin-
Katz (GHK) equation (Equation 1), influencing membrane
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FIGURE 2

The schematic of magnetothermal stimulation process. Designed magnetic nanoparticles (MNPs) are targeted and accumulate in the specific
regions of brain, where an external alternating magnetic field (AMF) induces localized heating (highlighted in red). This controlled thermal energy
modulates ion channel activity and neuronal excitability, offering a promising non-invasive strategy for neuromodulation therapies.

potential (Vm) and neuronal excitability. Changes in membrane
conductance (gm) and equilibrium potential (Em) can be
quantified using Ohm’s law, illustrating the direct impact of
magnetothermal stimulation on neural activity (Alvarez and
Latorre, 2017).

The thermal energy generated by MNPs can also influence
the surrounding cellular environment, affecting membrane
fluidity, enzyme activity, and metabolic processes. These indirect
effects further modulate ion channel function and neuronal
signaling, demonstrating the multifaceted nature of MNP-
based neuromodulation (Evtushenko et al., 2023; Li et al., 2021;
Montalbetti et al., 2021).

Preclinical studies have demonstrated the promising potential
of MNPs for neuromodulation in animal models. For example,
MNPs have been successfully used to modulate activity in the
motor cortex of rodents, resulting in changes in motor behavior and
electrophysiological responses (Hescham et al., 2021; Romero et al.,
2022; Wu et al., 2021). Similarly, MNPs targeting circuits associated
with pain have shown efficacy in alleviating chronic pain in mouse
models, with minimal off-target effects (Wu et al., 2017).

A key advantage of MNPs is their capacity for repeated and
adjustable interventions. The same population of nanoparticles
can be activated multiple times through the reapplication of a
MF, offering a flexible, reversible, and non-invasive approach
to neuromodulation (Roet et al., 2019). However, the clinical
translation of MNPs for magnetothermal stimulation in humans
faces several safety challenges that must be addressed:

1. Toxicity of MNP materials: Some nanoparticle coatings or
core materials may trigger cytotoxicity or inflammatory
responses. This risk can be mitigated by using biocompatible
coatings such as polyethylene glycol (PEG) or silica, which
reduce immune recognition and enhance biostability

(Park et al., 2023). Additionally, ROS generated
during magnetothermal stimulation play a dual role in
neuromodulation. While moderate ROS levels can act as
signaling molecules, influencing neuronal plasticity and
synaptic function, excessive ROS production must be
carefully controlled to prevent oxidative stress and cellular
damage (Tommasini et al., 2024).

2. Long-term retention: The accumulation of MNPs in tissues
raises concerns about chronic inflammation or interference
with normal physiological processes. Strategies such as
designing biodegradable nanoparticles or developing
techniques for efficient clearance from the body are critical
(Ansari et al., 2024).

3. Localized heating risks: Overheating during magnetothermal
stimulation can cause damage to surrounding tissues.
Ensuring safety during therapy requires real-time
temperature monitoring and precise control of MF
parameters (Shoshiashvili et al., 2023).

4. Off-target effects: Non-specific accumulation of MNPs
in unintended tissues can reduce therapeutic efficacy
and lead to unintended side effects. Functionalization of
nanoparticles with specific ligands can improve targeting
precision and minimize off-target effects (Aram et al., 2022;
Markides et al., 2012).

To overcome these challenges, future studies should focus on
developing advanced imaging techniques, such as MRI, to track
the real time biodistribution of MNPs (Ebrahimpour et al., 2022;
Remmo et al., 2024). Computational modeling of MF interactions
with biological tissues can also help optimize parameters to
minimize risks (Singh et al., 2024). Collaboration between materials
scientists, biophysicists, and clinicians will be essential to design
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and test biocompatible MNPs that meet regulatory standards for
human use.

Furthermore, optimizing the size, composition, and
surface chemistry of MNPs is essential for maximizing their
efficacy while minimizing adverse effects (Dehghani et al.,
2024; Shamsipur et al., 2024). Advance in nanotechnology
and materials science are expected to drive the development
of more sophisticated MNPs capable of precise and
controlled modulation of ion channels. These innovations
could pave the way for novel treatments for a range of
neurological disorders, including chronic pain, epilepsy, and
neurodegenerative diseases.

4.2 How magnetothermal stimulation
works

Magnetothermal stimulation uses the unique properties of
MNPs to achieve precise and localized neuromodulation. This
technique is based on the ability of MNPs to convert energy from
an AMF into heat (Castillo-Torres and Páez-Maggio, 2022; Chen
et al., 2015). The amount of heat generated depends on several
factors, including the magnetic susceptibility of the nanoparticles,
their size, the strength of the applied MF, and the frequency of
the AMF (Kuppe et al., 2020; Ovejero et al., 2021). Typically,
magnetothermal stimulation utilizes AMFs with field strengths
ranging of 10–100 mT and frequencies between 100 kHz and 1 MHz
(Kim et al., 2024; Kuckla et al., 2023). These parameters are carefully
optimized to ensure efficient energy transfer to the MNPs while
minimizing off-target heating and potential tissue damage. The
MFs are generated using specialized devices such as Helmholtz coils
or solenoids, which create uniform AMFs around the target region.
For clinical applications, wearable or implantable MF generators
are being developed to facilitate localized and patient-specific
neuromodulation (Davidson et al., 2024; Oh et al., 2024; Sarica
et al., 2021).

Generally, magnetothermal stimulation offers several
advantages over established MFs-based neuromodulation methods:

1. Precision and localization: By combining MFs with
functionalized MNPs, this approach enables highly localized
modulation of neuronal activity (Ko et al., 2022). The
heat generated is confined to the region containing the
nanoparticles, minimizing effects on surrounding tissues.

2. Targeting specificity: Functionalized MNPs can be engineered
to bind to specific neuronal populations or ion channels,
enhancing the precision of neuromodulation (Zhang et al.,
2023). This allows for targeted modulation of deep brain
regions or specific neural circuits that are difficult to reach
with conventional techniques.

3. Non-invasiveness: Unlike invasive methods such as
electrical DBS, magnetothermal stimulation does not
require surgical intervention, reducing risks and improving
patient accessibility (Hescham et al., 2021).

4. Controlled modulation: The ability to adjust MF parameters
(strength, frequency, and duration) allows for modified
control over the thermal effect, enabling personalized
therapeutic interventions (Chang et al., 2025).

4.3 Advantages of remote
neuromodulation

The development of remote neuromodulation techniques,
particularly those utilizing MFs, represents a transformative
advancement in neuroscience. These methods combine
precision, safety, and versatility, offering significant
advantages for both research and clinical applications
(Zhi et al., 2025). By enabling non-invasive modulation of
neuronal activity, remote neuromodulation introduces a new
paradigm in the treatment of neurological and psychiatric
disorders.

One of the most compelling advantages of remote
neuromodulation is its non-invasive nature. Techniques such
as DBS require surgical implantation of electrodes, which carries
risks such as infection, bleeding, and complications from anesthesia
(Shoshiashvili et al., 2023). In contrast, MF-based methods, such
as TMS and magnetothermal stimulation, modulate brain activity
without penetrating the skull or brain tissue. This eliminates
the need for surgery, reducing the risk of adverse effects and
avoiding the recovery time associated with invasive procedures
(Radyte et al., 2022). Indeed, remote neuromodulation offers a
high degree of precision in targeting specific neuronal circuits.
This precision is achieved by carefully calibrating MF parameters,
such as strength, frequency, and focus, allowing for the modulation
of neural pathways implicated in various (Park et al., 2020;
Zhang et al., 2023).

The non-invasive nature of these techniques enhances the
accessibility of neuromodulation to a broader range of patients,
including those who are ineligible for surgery due to underlying
health conditions. Furthermore, the ability to administer these
treatments repeatedly without surgical intervention makes them
ideal for managing chronic conditions that require ongoing
therapy (Lv et al., 2023). This approach is especially beneficial
for populations traditionally underserved by surgical interventions,
such as pediatric patients, the elderly, and individuals with
comorbidities that increase surgical risks (Ege et al., 2023).
Additionally, the reversibility of remote neuromodulation allows
treatments to be adjusted or discontinued without the long-
term consequences associated with implanted devices, expanding
therapeutic possibilities without the need for invasive procedures
(Zanos, 2019).

The use of functionalized MNPs further enhances specificity,
as they can be engineered to bind selectively to specific neuron
types or ion channels, enabling highly targeted neuromodulation.
This precision is particularly beneficial for treating conditions such
as epilepsy, chronic pain, and depression, where dysregulation
neural circuits plays a key role (Yu et al., 2021). Additionally,
the ability to modify treatments based on patient response
improves therapeutic outcomes and minimizes side effects. This
flexibility supports the advancement of precision medicine, where
treatments are customized to the unique characteristics of each
patient.

As remote neuromodulation technologies continue to
advance, their potential applications are poised to expand
significantly. Innovations in imaging, computational modeling,
and nanotechnology will further refine the precision and efficacy of
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these techniques. For example, integrating real-time neuroimaging
with MF-based neuromodulation could allow for dynamic
treatment adjustments, optimizing outcomes for patients with
complex neurological conditions.

5 Conclusion

The MF-based neuromodulation, particularly magnetothermal
stimulation presents a promising, non-invasive approach for
modulating neuronal activity. However, its translation into clinical
practice faces significant technical and biological challenges.
A primary hurdle is achieving precise targeting of specific
ion channels within neuronal populations without affecting
surrounding tissues. Ongoing research focuses on developing
functionalized nanoparticles and advanced imaging technologies
to enhance targeting accuracy and minimize off-target effects.
Additionally, the long-term safety of magnetic exposure remains a
critical concern, as its impact on neural plasticity and overall brain
function is not yet fully understood. Addressing these issues will
require extensive animal studies and clinical trials to ensure both
efficacy and safety.

The potential clinical applications of magnetothermal
neuromodulation are extensive, offering hope for non-invasive
treatments for a variety of neurological and psychiatric disorders.
For example, it could provide alternatives to surgical interventions
in epilepsy, modulate dysregulated pain networks in chronic pain
conditions, and offer therapeutic benefits for neurodegenerative
diseases such as Alzheimer’s. In psychiatry, this technology
holds promise for treating treatment-resistant depression,
anxiety disorders, and schizophrenia by targeting specific
neural circuits. Beyond therapeutic applications, magnetothermal
neuromodulation could play a significant role in cognitive
enhancement and rehabilitation, aiding in stroke recovery,
traumatic brain injury treatment, and maintaining cognitive
function in older adults.

The future of this field lies in personalized medicine, where
precision-targeted and adaptive neuromodulation protocols are
customized to individual patient responses. By integrating real-
time imaging, computational modeling, and artificial intelligence,
researchers can optimize treatment parameters and improve
therapeutic outcomes. This manuscript synthesizes current
advancements in MNP-based neuromodulation, examining its
underlying mechanisms-such as localized heating, force generation,
and electromagnetic induction-while highlighting its potential
applications. Although the field continues to evolve, this review
emphasizes the importance of bridging theoretical insights with
practical applications to develop more precise and effective
neuromodulation therapies.

To fully realize the potential of magnetothermal
neuromodulation, future research should focus more deeply
on the fundamental biophysical interactions between MFs and
biological tissues, particularly the effects of MFs on ion channels
and cellular pathways. Innovations in hardware, nanoparticle
engineering, and the integration of real-time imaging and
artificial intelligence will enhance the precision and effectiveness
of these therapies. Comprehensive studies are essential to
evaluating the long-term effects of MF exposure, ensuring
both safety and therapeutic efficacy. Expanding research into

new conditions, combination therapies, and preventative care
strategies will further broaden the scope of magnetothermal
neuromodulation. As the technology advances, addressing
ethical concerns-such as informed consent, privacy, and societal
implications-will be crucial for its responsible development
and implementation.

In summary, magnetothermal neuromodulation represents
a transformative approach to treating neurological and
psychiatric disorders, with the potential to revolutionize
personalized medicine. By addressing current challenges
and advancing research in key areas, this technology could
provide new hope for patients and significantly improve
clinical outcomes.
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