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The rapid expansion of dialectally unique Arabic material on social media and

the internet highlights how important it is to categorize dialects accurately

to maximize a variety of Natural Language Processing (NLP) applications.

The improvement in classification performance highlights the wider variety of

linguistic variables that the model can capture, providing a reliable solution

for precise Arabic dialect recognition and improving the e�cacy of NLP

applications. Recent advances in deep learning (DL) models have shown

promise in overcoming potential challenges in identifying Arabic dialects. In this

paper, we propose a novel stacking model based on two transformer models,

i.e., Bert-Base-Arabertv02 and Dialectal-Arabic-XLM-R-Base, to enhance the

classification of dialectal Arabic. The proposed model consists of two levels,

including base models and meta-learners. In the proposed model, Level 1

generates class probabilities from two transformer models for training and

testing sets, which are then used in Level 2 to train and evaluate a meta-learner.

The stacking model compares various models, including long-short-term

memory (LSTM), gated recurrent units (GRU), convolutional neural network

(CNN), and two transformer models using di�erent word embedding. The

results show that the stacking model combination of two models archives

outperformance over single-model approaches due to capturing a broader

range of linguistic features, which leads to better generalization across di�erent

forms of Arabic. The proposed model is evaluated based on the performance

of IADD and Shami. For Shami, the Stacking-Transformer achieves the highest

performance in all rates compared to other models with 89.73 accuracy, 89.596

precision, 89.73 recall, and 89.574 F1-score. For IADD, the Stacking-Transformer

achieves the highest performance in all rates compared to other models

with 93.062 accuracy, 93.368 precision, 93.062 recall, and 93.184 F1 score.

The improvement in classification performance highlights the wider variety of

linguistic variables that the model can capture, providing a reliable solution for

precise Arabic dialect recognition and improving the e�cacy of NLP applications.
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Arabic dialects, Bert-Base-Arabertv02, Dialectal-Arabic-XLM-R-Base, transformer,
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1 Introduction

Dialects within a language are crucial as they represent the

various cultural and regional variances within that language

(Gregory and Carroll, 2018). As languages change and spread

over different geographic areas, dialects naturally arise. Dialects

may have their idiomatic phrases, distinct vocabulary, syntax,

and pronunciation. Learning dialects has multiple benefits,

including better communication, a greater understanding of

culture, potential for employment, and increased interaction with

media and literature (Zhang and Hansen, 2018). It makes it more

straightforward to comprehend the variety within a language and

makes it easier to build genuine connections with individuals from

various geographical areas (Samih, 2017).

Given the large geographic area in which Arabic is spoken,

dialects are essential for the Arabic language. Arabic dialects

vary considerably from Modern Standard Arabic (MSA), the

standard form for the language (Zaidan and Callison-Burch, 2014).

Understanding the regional slang, customs, and traditions specific

to each Arabic dialect is possible through understanding dialects.

This improves comprehension of culture andmakes handling social

situations easier. Being fluent in a particular dialect pertinent to

your line of work can help you get better employment and more

significant support to Arabic-speaking communities (Alosaimi

et al., 2024).

Gather a wide range of Arabic language samples across several

dialects. The relevant dialect information needs to be labeled on

the dataset. The data should be preprocessed by dividing it into

training, validation, and test sets, tokenizing the text, and turning

it into numerical representations (Haque et al., 2018). Learn a

transformer model to identify dialects in Arabic. After the input

text has been tokenized, the model should be able to predict the

dialect label. Dialect identification requires contextual information

captured by the transformer’s self-attention mechanism (Lin et al.,

2020). The labeled dataset is used to train the model employing

optimization techniques (Chapelle et al., 2008).

Deep Learning (DL) and Machine Learning models (ML) have

demonstrated promise in processing complicated linguistic data

and dialects of Arabic. For example, Elaraby and Abdul-Mageed

(2018) applied different ML models: SVM, RF, NB, and LR. Alzu’bi

and Duwairi (2021) applied Recurrent Neural Networks (RNN)

to support multiple classes of dialects. Alansari (2023) analyzed

characteristics of dialects using CNN and RNN. Other authors

proposed a hybrid model such as CNN-RNN (Abdelazim et al.,

2022). These studies used classical DL models, which cannot

capture the long-term dependencies over long sequences.

Therefore, the transformer model has attention features that

allow the model to focus on the most relevant parts of the

input sequence, capturing long-range dependencies and complex

relationships between words (Zhang et al., 2019; Hafiz et al., 2021).

For example, Alghamdi et al. (2022) applied two transformer

models, MARBERT and ARBERT, using two publicly available

Arabic Online Commentary (ADC) (Elaraby and Abdul-Mageed,

2018). In our work, we use recent IADD datasets that were

combined from datasets such as (ADC), Dialectal ARabic Tweets

dataset (DART) (Alsarsour et al., 2018), the authors in Alghamdi

et al. (2022) and Elaraby and Abdul-Mageed (2018) used AOC

dataset is published at 2018, and is a subset of IADD, and do not

apply stacking model. As a result, the novelty of this paper lies in

the combination of transformer models and a meta-learner in a

stacking framework designed for Arabic dialect classification. The

proposed hybridmodel greatly improves the state-of-the-art Arabic

dialect detection, outperforms conventional methods, and captures

a greater range of linguistic features.

1.1 Motivations and contributions

The motivation behind the paper is the increasing amount of

dialectal Arabic information produced by social networks and the

need to improve Natural language processing (NLP) functions such

as knowledge representation and machine translation. NLP faces

challenges due to the fast expansion of dialectal Arabic material

on social networks. Substantial language disparities between Arabic

dialects and Modern Standard Arabic (MSA) present serious

challenges for current NLP models, while this rise provides

a wealth of resources for linguistic and computational study.

Critical NLP applications like knowledge representation, sentiment

analysis, and machine translation are hampered by the models’

frequent difficulties with accurate classification and generalization

across languages. Classical DL models: CNN, GRU, and LSTM

have demonstrated promise in processing complicated linguistic

data. Still, these techniques cannot adequately capture the subtle

and nuanced differences across Arabic dialects. Furthermore, a

significant research vacuum restricts NLP models’ wider usability

and resilience in Arabic contexts due to the absence of customized

solutions to handle these dialectal variances.

To address this gap, we propose a novel stacking model that

combines a meta-learner with two transformer architectures: Bert-

Base-Arabertv02 and Dialectal-Arabic-XLM-R-Base. By collecting

a wider variety of linguistic variables, the proposed models

improve dialect categorization, performance, and generalization

across different Arabic dialects. Improved classification accuracy,

useful applications in machine translation, sentiment analysis,

conversational AI, and a strong framework that can be modified to

operate with additional low-resource or linguistically challenging

languages are some of the added values. The contributions

improve the usability and effectiveness of NLP systems for Arabic-

speaking regions. The proposed model delivers better performance

across different Arabic dialects, increased generalization, and

superior dialect classification by integrating various linguistic

characteristics. The main contributions of this paper are

summarized as follows:

• We introduce a novel stacking model that incorporates

two transformer architectures, Bert-Base-Arabertv02 and

Arabic-XLM-R-Base, as base models with combined Random

Forest (RF) as a meta-learner to enhance classification. The

proposed model performs more efficiently than the state-

of-the-art models, including LSTM, GRU, CNN, and two

transformer models.

• We evaluate the proposed model performance across two

datasets to demonstrate the performance in classifying four
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and five Arabic dialects. Stacking-Transformer has the highest

performance in all rates compared to other models.

• The combination of Transformer in stack modeling with

a meta-learner helps to capture more linguistic features,

enhance generalization, and accurate dialect detection

of Arabic.

1.2 Paper structure

The remainder of the paper is organized into sections. Section

2 presents related works on Arabic dialects. Section 3 outlines the

primary steps for classifying Arabic dialects and introduces the

proposed model. Section 4 presents the results and discussion,

followed by the conclusion in Section 5.

2 Related work

This section presents different researcher have been applied DL,

ML, and transformer models to classify Arabic dialects.

Lulu and Elnagar (2018) recognized dialects in Arabic

using Four DL models CNN, LSTM, Bidirectional LSTM (Bi-

LSTM), and Convolutional LSTM (CLSTM). The authors made

use of the Arabic Online Commentary (AOC) dataset, which

classifies Arabic into three main dialects: Gulf (including Iraqi),

Levantine (LEV), and Egyptian (EGP). LSTM produced the

most accurate results. Alsaleh and Larabi-Marie-Sainte (2021)

utilized Genetic Algorithms (GA) to optimize the parameters

of CNN for Arabic Text Classification. GA was employed to

tackle the challenge of randomly initialized weights in CNN.

The study utilized two extensive datasets that support text

classification. Various pre-processing steps were applied: cleaning,

normalization, tokenization, and stemming. The results were

improved by 4% using GA with CNN. Alzu’bi and Duwairi

(2021) applied RNN to support multiple classes of classification

models for dialects. They utilized 110000 sentences from the

MADAR corpus, including Maghreb, Levantine, Gulf, and Iraqi

dialects. Cotterell and Callison-Burch (2014) proposed Arabic

dialects dataset collected from newspaper websites and Twitter,

including five Arabic dialects: Levantine, Gulf, Egyptian, Iraqi, and

Maghrebi. They utilized unigram, bigram, and trigram models

and SVM and NB algorithms. NB with trigram achieved the best

accuracy. In addition, Kwaik et al. (2018) proposed the Shami

corpus for four Arabic dialects in Palestine, Jordan, Lebanon,

and Syria. They explored the effects of pre-processing dialectal

Arabic using n-gram and NB models. Various pre-processing

steps were applied: cleaning, normalization, tokenization, and

stemming. The results showed that NB recorded the highest

accuracy. Alansari (2023) captured the semantic and phonological

characteristics of dialects using CNN, and RNN. The proposed

model comprises six stages: preprocessing, feature engineering,

neural networks, optimization techniques, and evaluationmethods.

Shatnawi et al. (2023) applied different DL models: CNN-

BiLSTM, Pooling-BiGRU, and AraBERT with different pre-

trained word embedding FastText, AraVec, and AraBERT using

a mix of a Katherine dataset that covers the dialects of

eight nations and a NADI dataset acquired via Twitter that

includes the dialects of twenty-one countries. In addition, they

applied various data augmentation to handle unbalanced data.

The results showed that models with AraBERT achieved the

height performance.

Other researchers have suggested hybrid models, and attention

mechanisms and transformer models to classify Arabic dialects.

For example, Abdelazim et al. (2022) proposed a hybrid

model (CNN-RNN) to classify three dialects: Gulf, Egypt, and

Levantine. CNN-RNN, compared with NB, SVM, and CNN,

recorded the best accuracy. Alsuwaylimi (2024) proposed two

hybrid models that combined BiLSTM with CAMeLBERT and

the second model that combined the BiLSTM model with

AlBERT. In addition, the conducted dataset includes 121289

collected from comments from various social media platforms

and classified into four Arabic dialects (Egyptian, Jordanian,

Gulf, and Yemeni). Two models compared with different ML

and DL models. Experiment results showed that two hybrid

models recorded the best performance. Elaraby and Abdul-

Mageed (2018) applied various ML models: SVM, RF, NB,

LR, and different DL models: LSTM, GRU, Bi-LSTM, Bi-GRU,

and Attention-BiLSTM using various word embedding. Results

showed that attention-based BiLSTM work well compared to

other models. Alghamdi et al. (2022) applied two transformer

models, MARBERT and ARBERT, using two publicly available

Arabic-dialect classification datasets such as AOC. They explored

results for binary, three, and multi-class dialect classification.

The results showed that MARBERT achieved higher performance

than ARBERT.

Table 1 compares different models used in research. It outlines

the methods, advantages, limitations, and datasets referenced in

the studies.

3 Methodology

Figure 1 shows the main steps of classifying Arabic dialects:

Data collection, Data pre-processing, Classification models,

feature representation methods, classification models, and

evaluation models.

3.1 Datasets

Two benchmark Arabic dialect datasets are used for

the experiment.

• Shami is a corpus of Levantine Arabic dialects (Kwaik

et al., 2018) includes 66,245 rows with four dialect

classes: Jordinian, Lebanees, Palestinian, and Syrian.

The unbalanced dataset includes 37,758, 10,828, 10,642,

and 7,017 rows for Syrian, Lebanese, Palestinian, and

Jordanian, respectively.

• IADD is Arabic dialect identification (Zahir, 2022) is used

and includes five dialects: Maghrebi (MGH), Levantine (LEV),

Egypt (EGY), Iraq (IRQ), Gulf (GLF), and general. It was

collected from tweets and Facebook.
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TABLE 1 Comparison of existing work.

References Method Advantages Limitations Dataset

Lulu and Elnagar, 2018 LSTM Proposing benchmark dataset Applying the classical DL models

Accuracy was lowest

AOC

Alsaleh and

Larabi-Marie-Sainte,

2021

GA with CNN Applying GA to optimize parameters of CNN Applying the classical DL models

Supporting text classification

Text classification

Alzu’bi and Duwairi,

2021

RNN — Applying single DL

Using one dataset

Obtaining the lowest accuracy

MADAR corpus

Cotterell and

Callison-Burch, 2014

NB with Bi-gram Proposing benchmark dataset Applying ML models

Using one dataset

Obtaining the lowest accuracy

IADD

Kwaik et al., 2018 NB Proposing benchmark dataset Applying single model is NB

Obtaining the lowest accuracy

Shami

Alansari, 2023 CNN and RNN – The results of the models have not been

registered.

Applying classical DL models

–

Shatnawi et al., 2023 AraBERT Applying different wor-embedding

Applying AraBERT Model

Obtaining the lowest accuracy NADI

Abdelazim et al., 2022 RF Proposing hybrid model Applying classical DL models Own

Elaraby and

Abdul-Mageed, 2018

Attention BiLSTM Proposing model based attention Applying classical ML models.

Using one dataset.

ADO

Alsuwaylimi, 2024 CAMeLBERT with

BiLSTM

Proposing benchmark dataset

Applying transformer models

No applying stacking models ADO

Alghamdi et al., 2022 MARBERT Applying transformer models No applying stacking models Own

Our work Stacking-Transformer Applying transformer to learn complex

patterns in datasets.

– IADD

Stacking-Transformer Applying generalization using stacking

model based on two transformer models

– Shami

3.2 Data pre-processing

Pre-processing the input data before starting to implement

any model that processes text data is vital due to the various

problems inherent, particularly in text data (Chai, 2023). Therefore,

it is necessary to effectively rely on pre-processing the input text

data to achieve a clear and accurate exploration of Arabic dialects

based on stacked transformers. Data processing of the data aims to

prepare and improve the quality of the input data to enhance the

performance of the model. The four pillars of the pre-processing

steps include Tokenization, data cleaning, stop word removal,

and stemming (Kathuria et al., 2021). Carrying out these steps

carefully will ultimately ensure that we obtain input data useful

for accurately detecting the distinction between different Arabic

dialects and obtaining a successful model in natural language

processing tasks.

• Tokenization represents the first step in preparing

textual data specifically, where the text is divided into

smaller parts based on language-specific characteristics

such as grammar and morphology (Khallaf, 2023).

Tokenization comprises two types: word and sub-word

Tokenization. In word tokenization, the result of this

step is a set of separate words in addition to diacritics

and linking marks. While Sub-word Tokenization is

employed to handle out-of-vocabulary words and improve

model robustness.

• Data Cleaning: The importance of this step lies in obtaining

accurate data after removing irrelevant or confusing data that

may hinder the performance of themodel used. To accomplish

this step, a normalization process must first be performed

to convert different forms of the same word to its standard

form, then deal with punctuation marks and special characters

by removing or unifying them, especially those that do not

affect themeaning (Berrimi, 2024). Also, deal with incorrect or

incomplete data by neutralizing or removing them. After this

step, we will ensure obtaining data of acceptable quality and

consistency in its context, contributing to the model’s success.

• Removing Stop Words enables the model to focus more on

the main distinguishing features of dialects in the text. It

thus improves the accuracy of the model in identifying and

distinguishing them. Stop words represent a group of words

that do not carry a critical or influential meaning in the

context, and excluding them will positively reduce dimensions

such as prepositions and articles (Khurana et al., 2023). These

words are collected in a list to be excluded from the input

data list.

• Stemming is a vital necessary process that reduces the expected

complexity in the input data by converting words to their

root form, which will allow better generalization when using
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FIGURE 1

Arabic dialects classification framework.

the model to explore dialects (Farghaly and Shaalan, 2009).

Many algorithms can be used during this step, some of which

are designed specifically for the Arabic language due to its

richness in morphology, which helps in grouping different

morphological variants of a word. in this paper, stemming

applies using Arabic-specific stemming algorithms to handle

the morphological richness of Arabic. The algorithms are

chosen carefully to prevent mistakes like confusing words with

the same root but distinct meanings. In the context of Arabic

dialects, this guarantees the results’ validity and correctness.

3.3 Dataset splitting

Each dataset is split into a 75% training set and a 25% testing

set. The split preserves enough data for objective assessment

while guaranteeing reliable model training. Methods for feature

representation are customized for the datasets.

3.4 Feature representation methods

While conventional DL models employed CBOW for word

embeddings, transformer-based models like Bert-Base-Arabertv02

and Dialectal-Arabic-XLM-R-Base are utilized to generate high-

quality contextual embeddings.

• Word2Vec is a widely used technique for learning word

embeddings from large volumes of textual data (Karani, 2018).

This approach generates embeddings by considering the

context in which words appear, enabling the representation

of words in a continuous vector space that captures semantic
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relationships (Karani, 2018).Word2Vec effectively reduces the

dimensionality of the word space while preserving meaningful

relationships between words, offering a computationally

efficient solution for processing language data (Dwivedi

and Shrivastava, 2017). One variant of Word2Vec is the

Continuous Bag-of-Words (CBOW) model (Sivakumar et al.,

2020). CBOW predicts a target word based on its surrounding

context words within a fixed-size window. The model is

designed to maximize the probability of correctly predicting

the target word, leveraging contextual information to enhance

its learning capability (Melamud et al., 2016).

• Bidirectional Encoder Representations from Transformers

(BERT) is the open-source transformer-based model that is

renowned for its ability to model contextual relationships

among words within a sentence through self-attention

mechanisms (Vig, 2019). Thanks to this architecture,

BERT excels at capturing contextual information and long-

range dependencies (Wu et al., 2021). BERT profoundly

comprehends linguistic subtleties by being pre-trained on vast

volumes of unlabeled text data utilizing two unsupervised

tasks. Namely, masked language modeling (MLM) and next

sentence prediction (NSP) (Kryeziu and Shehu, 2022). In

MLM, words from the input text are randomly masked. BERT

is subsequently taught to predict these masked words through

analysis of the surrounding context (Devlin et al., 2018).

BERT can improve its skills on particular tasks by employing

relatively more minor labeled datasets, even when pre-trained

on massive quantities of data (Devlin et al., 2018). Bert-base-

Arabic refers to the BERT model specially trained on the

Arabic language, offering pre-trained representations that

encapsulate both syntactic and semantic nuances of Arabic

words (Chouikhi et al., 2021). This model accepts Arabic text

as input and outputs contextualized word representations,

which can be further refined using task-specific training data

or directly utilized in downstream NLP tasks (Peters et al.,

2019).

• Dialectal Arabic XLM-R Base represents a multilingual

transformer model customized to comprehend and interpret

several Arabic dialects (Khalifa et al., 2021). An expansion

of the BERT architecture called the Cross-lingual Language

Model (XLM-R) is intended to function with various

languages, including dialects and languages with limited

resources (Boudad et al., 2023). This transformer can cope

withmultiple Arabic dialects alongside other languages since it

has been taught on many datasets. Conversational agents can

be upgraded to more effectively comprehend and respond to

dialectal Arabic more Base using the dialectal Arabic XLM-R

Base (Joshi et al., 2024).

By refining the translations between dialects and standard

Arabic, it will be feasible to assess the thoughts and feelings

expressed across dialects on social media or in reviews. Built

on top of the XLM-R architecture, the Dialectal Arabic XLM-

R Base architecture preserves the transformer architecture’s

scalability and efficacy while being tailored for the complex

structure of dialectal Arabic. The model can figure out

the word order in a sentence by mapping input tokens

to dense vectors and then adding positional information

to token embeddings (Qwaider and Abu Kwaik, 2022).

Multi-head Self-Attention has been included to allow the

model to concentrate on various segments of the input

stream concurrently, thereby capturing contextual linkages. A

feedforward network processes each attention output before

applying it separately to each point. Improves training stability

and convergence via normalizing the inputs to each layer

(Berrimi, 2024).

3.5 Deep learning models

GRU, LSTM, and CNN are used for DL models.

• GRU is a recurrent architecture with update and reset gates

intended to handle sequential data. The update gate controls

how much past knowledge remains intact, whereas the Reset

gate governs whether earlier data is forgotten (Dey and

Salem, 2017). GRU has a hidden state that blends the current

input and the prior hidden state, permitting information

to flow through time. GRU is appropriate for tasks that

need time series data and sequential information, such as

language modeling and machine translation (Zargar, 2021). It

is beneficial for determining context in textual data.

• LSTM is a more complicated recurrent architecture having

forgotten, input, and output gates suitable for learning long-

term dependencies (Okut, 2021). The forget gate regulates

what information to exclude from the cell state, whereas

the input gate determines what latest data to store in the

cell state. The output gate determines which information

to output based on the cell state (Okut, 2021). The cell

state sustains long-term dependencies, allowing gradients to

propagate throughout multiple time steps. LSTM can be

utilized for text synthesis, machine translation, and speech

recognition (Van Houdt et al., 2020). Also, it is competent

at predicting potential outcomes using historical and time

series data.

• CNN is a type of neural network that comprises convolutional

and pooling layers, which help generate features from spatial

data. CNN leverages convolution processes to extract features

from input data, often images or sequences (Pinaya et al.,

2020). It mitigates the spatial dimensions via down-sampling

while maintaining the most significant features and then

connects the pooled information to the output layer for

classification or regression. CNN is frequently implemented

for object detection and image segmentation. It also works for

sentiment analysis and spam identification since it treats text

data as a series (Bhuvaneshwari et al., 2021).

3.6 Proposed model

By integrating the strengths of various models, the stacking

approach reflects a wide range of linguistic features, resulting

in improved dialect detection. Figure 2 shows the central

architecture’s two levels. Level 1 provides the base models with
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FIGURE 2

Proposed model.

TABLE 2 The number of rows in each dataset.

Datasets Labels Training set Testing set Total

Shami Syrian 28,318 9,440 37,758

Lebanees 8,121 2,707 10,828

Palestinian 7,981 2,661 10,642

Jordinian 5,263 1,754 7,017

Total 49,683 16,562 66,245

IADD LEV 65,605 21,864 87,469

MGH 21,037 7,076 28,113

GLF 5,011 1,671 6,682

EGY 3,626 1,209 4,835

general 1,873 625 2,498

Total 97,152 32,445 129,597

the two transformers that produce class probabilities for training

and testing datasets. The second level serves as a meta-learner,

which is trained using Level 1’s outputs, resulting in enhanced

classification performance.

In Level 1, class probabilities are generated by the two

transformer models for the training and testing sets and are stored

in the stacking training and stacking testing datasets, respectively.

In level 2, RF as a meta-learner is trained by stacking training and

evaluated by stacking testing to get the final classification decision.

RF is an ensemble technique that uses several decision trees during

training and combines their outputs for more accurate and stable

predictions (Feng et al., 2015).

TABLE 3 Setting of parameters.

Models Parameters Specifications

LSTM Number of nodes 200

Dropout 0.2

Activation function Relu

Optimizer Adam

Loss function CrossEntropyLoss

GRU Number of nodes 200

Dropout 0.2

Activation function Relu

Optimizer Adam

Loss function CrossEntropyLoss

CNN Filter size 3x3

Kernel size 4

Dropout 0.2

Optimizer Adam

Loss function CrossEntropyLoss

Bert-Base-

Arabertv02

Number of transformer layers 12

Hidden Size 768 dimensions

Attention Heads 12 per layer

Optimizer Adam

Loss function CrossEntropyLoss

Dropout rate 0.1

Dialectal-Arabic-

XLM-R-Base

Number of transformer layers 12

Hidden Size 768 dimensions

Attention Heads 12

Optimizer Adam

Loss function CrossEntropyLoss

3.7 Models evaluation

The F1-score, Accuracy, Precision, and Recall metrics are used

to assess the models. Where TN indicates the aggregate amount

of accurate negative predictions, FP is the total number of false

positive estimations, while FN stands for the overall number of false

negative predictions.

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

F1− score = 2 ·
precision · recall

precision+ recall
(4)
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TABLE 4 Proposed model performance in Shami dataset.

Approaches Models Classes Precision Recall F1-score

DL models GRU Jordinian 60.84 55.53 58.06

Lebanees 77.05 77.39 77.22

Palestinian 69.22 73.28 71.19

Syrian 91.28 91.13 91.21

LSTM Jordinian 62.25 50.40 55.70

Lebanees 73.45 75.03 74.23

Palestinian 72.37 65.54 68.78

Syrian 87.59 92.48 89.97

CNN Jordinian 62.25 50.40 55.70

Lebanees 73.45 75.03 74.23

Palestinian 72.37 65.54 68.78

Syrian 87.59 92.48 89.97

The transformer model Base-Arabert Jordinian 80.16 61.52 69.61

Lebanees 84.64 79.61 82.05

Palestinian 77.64 82.60 80.04

Syrian 92.07 95.96 93.98

Arabic-XLM-R-Base Jordinian 79.77 60.03 68.51

Lebanees 84.49 79.09 81.70

Palestinian 77.34 82.60 79.88

Syrian 91.82 95.96 93.85

The proposed model Stacking-Transformer Jordinian 80.16 61.52 69.61

Lebanees 84.64 79.61 82.05

Palestinian 77.64 82.60 80.04

Syrian 92.07 95.96 93.98

4 Results and discussion

We applied different experiments using variousmodels and two

datasets to prove that the Stacking-Transformermodel achieved the

best performance compared to other models.

4.1 Experimental setup

The experiment was conducted on a laptop with an Intel Core

i7 10750H and 16GB memory. The execution environment for

the training and validation of the networks was set to a single

GPU: Nvidia GeForce GTX 1650 with 4GB VRAM. The models

were evaluated by two datasets: Shami with four classes (Jordinian,

Lebanees, Palestinian, and Syrian) and IADDwith five classes (EGY,

GLF, LEV, MGH, and general). Base-Arabert and Dialectal-Arabic-

XLM-R-Base are used as feature representations for transformer

models, and CBOW is used for DL models. The datasets are split

into 75% training set and 25% testing set and the number of rows

in each dataset is shown in Table 2. The setting of parameters of

models are presented in Table 3.

4.2 Results

Two subsections present the results of Shami and IADD based

on precision, recall, F1-score in each class, and confusion matrices.

Furthermore, the average accuracy, precision, recall, and F1-score

of each dataset is presented.

4.2.1 Proposed model performance in Shami
dataset

The results of models based on precision, recall, and F1-

score for different classes: Jordinian, Lebanees, Palestinian, and

Syrian as shown in Table 4. We can see that GRU, LSTM, and

CNN score the lowest in performance compared to transformer

models because CNN models focus on local feature extraction but

fail to capture complex, long-term relationships. GRU and LSTM

handle sequential data, and they have limits to capturing long-

term dependencies, especially with large datasets. Transformer-

based models leverage self-attention mechanisms to learn both

local and global patterns in parallel dynamically, and capture

long-term dependencies.

Frontiers inHumanNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnhum.2025.1498297
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Saleh et al. 10.3389/fnhum.2025.1498297

FIGURE 3

Confusion matrices of models for Shami.

The following summarizes the results models with Jordinian

record the lowest rates compared to other classes. Models with

Syrian class record the highest rate. GRU with Syrian has

the highest precision, recall, and F1-score at 91.28, 91.13, and

91.21, respectively. LSTM with Syrian records 91.13 recall higher

than GRU. GRU with Lebanees class has the second-highest

performance compared to CNN and LSTM with 77.05 precision

and 77.22 with F1-score. CNN and LSTM with Lebanees and

Palestinian have the same approximate results. Base-Arabert and

Arabic-XLM-R-Base with Syrian class record the same recall at

95.96. Both record the same precision, recall, and F1-score at

84.49, 79.09, and 81.70, respectively with Lebanees class. Stacking-

Transformer records the highest performance in all classes

compared to other models. The best precision, recall, and F1-score

are achieved by Stacking-Transformer with Syrian, at 92.07, 95.96,

and 93.98, respectively.

Figure 3 comprises six confusion matrices, each of which shows

how various models performed in a classification exercise aimed

at classifying data into one of four groups: Syrian, Palestinian,

Lebanese, or Jordanian. Four groups are created from the models:

Syrian, Palestinian, Lebanese, and Jordanian. Darker colors indicate

higher counts. The color intensity in each confusion matrix reflects

the number of samples sorted into each class. Classifying the Syrian

category appears to be generally easier across all models, but the

Palestinian and Jordanian categories are more difficult.

4.2.2 Proposed model performance in IADD
dataset

Table 5 presents the precision, recall, and F1-score for different

classes: EGY, GLF, LEV, MGH, and general for each model. The

best precision, recall, and F1-score are achieved by GRU and LSTM

with LEV, at 93.19, 93.01, and 93.10, respectively. GRU and LSTM

general EGY record the same approximate results. In comparison

to CNN and LSTM, GRU with MGH class has the second-highest

precision (90.67) and F1-score (89.51). Of all the models based

on each class, CNN yields the lowest results. Base-Arabert with

GLF records precision, recall, and F1-score at 73.43, 62.18, and

67.34, respectively, compared to DL models. Arabic-XLM-R-Base

with LEV and MGH classes records the same precision at 94.

The stacking Transformer records the highest performance in all

classes compared to other models. The best precision, recall, and

F1-score are achieved by Stacking-Transformer with LEV, at 95.90,

95.6, and 95.76, respectively. Also, it has significant performance

in the general class compared to other models. Figure 4 comprises

six confusion matrices, each of which shows how various models

performed in a classification exercise aimed at classifying data into

one of five groups: EGY, GLF, LEV, MGH, and general. Darker

colors indicate higher counts. The color intensity in each confusion

matrix reflects the number of samples sorted into each class.

4.2.3 Discussion
Transformer models have achieved state-of-the-art

performance across various tasks compared to traditional DL

models for several key reasons the self-attention mechanism

in transformers allows them to consider all parts of the input

sequence simultaneously. This enables the model to capture

long-range dependencies more effectively than traditional

recurrent, which are typically limited by sequential processing or

fixed-size filters. Figure 5 shows the average accuracy, precision,

recall, and F1-score of DL models, transformer models, and the

proposed model (Stacking-Transformer) for classifying Syrian,

Lebanees, Palestinian, Jordinian. From the table, transformer
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TABLE 5 Performance of proposed model in Shami dataset.

Approches Models Precision Recall F1-score

DL models GRU EGY 67.16 56.82 61.56

GLF 63.49 59.01 61.17

LEV 93.19 93.01 93.10

MGH 88.37 90.67 89.51

general 17.89 22.56 19.96

LSTM EGY 66.60 55.42 60.50

GLF 60.16 58.29 59.21

LEV 93.16 93.01 93.08

MGH 87.93 89.36 88.64

general 17.25 22.08 19.37

CNN EGY 66.30 54.51 59.83

GLF 59.32 58.29 58.80

LEV 93.11 92.67 92.89

MGH 87.50 89.36 88.42

general 16.20 21.28 18.40

The transformer model Base-Arabert EGY 71.24 68.24 69.71

GLF 73.43 62.18 67.34

LEV 94.07 95.56 94.81

MGH 94.17 91.72 92.93

general 23.61 29.12 26.07

Arabic-XLM-R-Base EGY 74.71 78.91 76.75

GLF 75.80 66.37 70.77

LEV 94.64 95.62 95.13

MGH 94.44 91.72 93.06

general 27.59 32.80 29.97

The proposed model Stacking-Transformer EGY 80.41 91.65 85.66

GLF 81.75 80.67 81.20

LEV 95.90 95.62 95.76

MGH 94.87 91.72 93.27

general 43.94 54.56 48.68

models record the best performance compared to deep learning

models and improve results by improving results above 5%.

The transformer models have the attention that can capture

long-range dependencies more effectively than DL models.

Arabic-XLM-R-Base has the highest performance compared to

Base-Arabert, LSTM, GRU, and CNN with accuracy = 87.495,

precision = 87.278, recall = 87.495, and F1-score = 87.209.

CNN has the worst all measures with 80.842 of accuracy and

80.363 of F1-score. Stacking-Transformer has the highest

performance in all rates with 89.73 of accuracy and 89.574

of f1-score.

Figure 6 shows the average accuracy, precision, recall, and F1-

score of DL models, transformer models, and the proposed model

(Stacking-Transformer) for classifying EGY, GLF, LEV, MGH,

and general. From the table, transformer models record the best

performance compared to DL models and improve results by

improving results above 2%. Arabic-XLM-R-Base has the highest

performance compared to Base-Arabert, LSTM, GRU, and CNN

with accuracy = 91.432, precision = 91.595, recall = 91.432, and

f1-score = 91.485. CNN has the worst of all measures with 87.382

of accuracy and 87.492 of F1-score. Stacking-Transformer has

the highest performance in all rates with 93.062 of accuracy and

93.184 of f1-score, and improve performance by 2 compared to

Arabic-XLM-R-Base.

4.3 Comparison of the proposed model
with existing work

Table 6 compares our work with the state-of-the-art based on

dataset and results. The proposed model, Stacking-Transformer,
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FIGURE 4

Confusion matrices of models for IADD.

FIGURE 5

Average accuracy, precision, recall, and F1-score of models for Shami.

is based on two transformer models as the baseline and

an RF as the meta-learner. It achieves the highest accuracy

due to the advantages of the attention mechanism in the

transformer, which extracts long dependencies between text, and

the generalization capability of stacking models. For IADD,

Stacking-Transformer recorded the highest accuracy at 93.062

compared to NB with Bi-gram, which was recorded at 70 in

Cotterell and Callison-Burch (2014). For Shami, the Stacking-

Transformer recorded the highest accuracy at 89.73 compared

to NB in Kwaik et al. (2018). For ADO as a subset of Shami,

LSTM was used in Lulu and Elnagar (2018) and recorded 71.4

accuracy. In Elaraby and Abdul-Mageed (2018), Attention BiLSTM

recorded 87.81 of accuracy. CAMeLBERT with BiLSTM was

recorded at 87.
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FIGURE 6

Average accuracy, precision, recall, and F1-score of models for IADD.

TABLE 6 Comparison with existing work and the proposed models based

on models and performance.

References Methods Results Datasets

Lulu and Elnagar,

2018

LSTM 71.4 AOC

Cotterell and

Callison-Burch, 2014

NB with Bi-gram 87.00 IADD

Kwaik et al., 2018 NB 70 Shami

Elaraby and

Abdul-Mageed, 2018

Attention BiLSTM 87.81 ADO

Alsuwaylimi, 2024 CAMeLBERT with

BiLSTM

87 ADO

Our work Stacking-Transformer 93.062 IADD

Stacking-Transformer 89.73 Shami

4.4 Implication and challenges

The proposed investigation has important ramifications for

expanding NLP applications and improving Arabic dialect

identification. The paper shows improved accuracy, precision,

and recall in dialect classification via a hybrid stacking model

that incorporates the advantages of transformer designs such as

Dialectal-Arabic-XLM-R-Base and Bert-Base-Arabertv02. Given

the increasing amount of dialectal material on social media and

other platforms, the development fills a significant gap in NLP

for managing the linguistic variety of Arabic. The model’s cross-

dialect generalization establishes a new standard for datasets like

Shami and IADD, providing a solid basis for further study and

advancement. Additionally, the study has practical applications,

such as enhancing conversational AI, sentiment analysis, and

machine translation systems to better interpret a variety of complex

language inputs.

The paper points out several challenges, including substantial

differences in syntax, vocabulary, and semantics between regional

dialects and Modern Standard Arabic (MSA) pose a difficult

obstacle for models to overcome, especially when generalizing

across underrepresented dialects; data imbalance, as seen in

the Shami dataset, makes this problem worse and restricts

the performance of models on less represented classes, like

Jordanian dialects; and the computational demands of training

and fine-tuning stacked transformer models demand a significant

amount of resources, which may limit accessibility for researchers

with limited financial resources. Challenges with scalability

and practical implementation also exist, especially for real-

time applications that may encounter resource constraints and

latency, such as chatbots and virtual assistants. Tokenization,

stemming, and stop-word deletion are examples of preprocessing

processes that increase complexity since they might not

adequately capture the subtle differences present in dialectal

Arabic. Even if the model produces state-of-the-art results

on certain datasets, there is still a need for more research in

generalizing Arabic dialects or languages with equally complex

linguistic patterns.

5 Conclusion

In this paper, we introduced a unique stacking model that

combines two potent transformer models, Bert-Base-Arabertv02

and Dialectal-Arabic-XLM-R-Base, with a meta-learner to improve

the categorization of Arabic dialects. The model formed involved
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two levels: base models and meta-learners. Within level one, the

two transformer models yield class probabilities for the training

and testing sets, which are retained in stacking training and

stacking testing, respectively. Level 2 meta-learners with machine

learning models are trained and tested using stacking. The stacking

model has been contrasted against multiple models, including

LSTM, GRU, CNN, and two transfer models with distinct word

embedding. Models were assessed on two benchmark datasets

to classify four and five dialects of Arabic, featuring various

evaluation matrices, including accuracy, precision, recall, F1-score,

and confusion matrix. The results proved that the stacking model

outperformed single-model techniques. The proposed model

addressed a wider spectrum of linguistic traits, allowing for more

accurate generalization across different varieties of Arabic. Shami

dataset testing reveals that the Stacking-Transformer outperforms

all other models in accuracy, precision, recall, and f1-score,

with 89.73, 89.596, and 89.574, respectively. For IADD, Stacking-

Transformer outperforms other models in all rates, with 93.062

accuracy, 93.368 precision, 93.062 recall, and 93.184 F1-score. In

the future, we will concentrate on developing this method to handle

other dialects and investigating whether it can be used in other

low-resource languages with comparable linguistic complexity.
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