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Introduction: In high-stakes environments such as aviation, monitoring

cognitive, and mental health is crucial, with electroencephalogram (EEG) data

emerging as a keytool for this purpose. However traditional methods like

linear models Long Short-Term Memory (LSTM), and Gated Recurrent Unit

(GRU) architectures often struggle to capture the complex, non-linear temporal

dependencies in EEG signals. These approaches typically fail to integrate multi-

scale features e�ectively, resulting in suboptimal health intervention decisions,

especially in dynamic, high-pressure environments like pilot training.

Methods: To overcome these challenges, this study introduces PilotCareTrans

Net, a novel Transformer-basedmodel designed for health intervention decision-

making in aviation students. The model incorporates dynamic attention

mechanisms, temporal convolutional layers, and multi-scale feature integration,

enabling it to capture intricate temporal dynamics in EEG data more e�ectively.

PilotCareTrans Net was evaluated on multiple public EEG datasets, including

MODA, STEW, SJTUEmotion EEG, and Sleep-EDF, where it outperformed state-

of-the-art models in key metrics.

Results and discussion: The experimental results demonstrate the model’s

ability to not only enhance prediction accuracy but also reduce computational

complexity, making it suitable for real-time applications in resource-constrained

settings. These findings indicate that PilotCareTrans Net holds significant

potential for improving cognitive health monitoring and intervention strategies

in aviation, thereby contributing to enhanced safety and performance in

critical environments.

KEYWORDS

pilot health monitoring, transformer-based model, EEG data analysis, temporal

dynamics, cognitive health intervention

1 Introduction

Temporal prediction in health intervention decision-making for aviation students

has become a crucial area of research, driven by the increasing emphasis on monitoring

cognitive and psychological health in aviation training. Aviation students face intense

mental pressure and complex operational demands during training, where changes in

their health status not only impact training effectiveness but can also pose significant

safety risks (Zhang J. et al., 2024). Therefore, accurately predicting the health status of

aviation students and implementing timely interventions is essential. This research not

only enhances the overall health levels of aviation students but also provides robust

data support for airlines and flight schools, ultimately contributing to improved flight

safety (Kulkarni et al., 2024).

To address the limitations of traditional methods in predicting health status, early

research primarily relied on statistical approaches, which were seen as robust tools for

forecasting based on historical data. These techniques aimed to predict future health
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conditions by analyzing trends, patterns, and cyclical variations

in past records. Among the commonly employed methods were

time series analysis models such as AutoRegressive Integrated

Moving Average (ARIMA), which focused on the temporal

dependencies within data to predict future states based on

observed sequences (Anand, 2021). Additionally, regression

analysis was frequently utilized to explore the relationships between

variables, allowing researchers to identify potential predictors

of health outcomes. However, while these methods provided

reliable predictions for relatively simple, linear, and regularly

structured time series data, they exhibited significant limitations

when confronted with more complex, nonlinear relationships

inherent in many health-related datasets. In particular, these

techniques often struggled to capture the intricate dependencies

between variables in multivariate contexts, where interactions

between different factors could significantly influence the outcome.

Furthermore, these statistical methods proved inadequate in

handling noisy or incomplete data, which is often the case

in real-world applications. This issue becomes particularly

pronounced in the context of dynamic environments such

as aviation training, where irregularities in data collection,

inconsistencies, and outliers are frequent. The need for data

completeness and regularity in traditional statistical approaches

rendered them less effective for applications where real-time

health monitoring is essential, and the data is inherently

unpredictable and subject to abrupt changes (Zhao et al.,

2024). As a result, more advanced techniques, such as machine

learning models, have emerged as more effective alternatives

to address these challenges in predicting health status in such

complex environments.

To overcome the shortcomings of traditional statistical

methods, machine learning methods and early neural network

techniques were introduced for health status temporal

prediction tasks. Compared to traditional statistical approaches,

machine learning methods such as Support Vector Machines

(SVM) (Kurniawan et al., 2020), Decision Trees, and Random

Forests provided more flexible model structures, capable of

capturing more complex data patterns, thereby improving

prediction accuracy to some extent (Anand, 2021). For example,

SVM finds the optimal hyperplane in high-dimensional space

to separate different classes, making it suitable for handling

complex classification tasks. Decision Trees, on the other hand,

create predictive models through hierarchical decision rules,

while Random Forests enhance model robustness by building

multiple tree models and aggregating their results. While these

methods effectively improved predictive performance, they still had

limitations, particularly when dealing with temporal dependencies

and complex multivariate data. Furthermore, early neural network

models, such as Multilayer Perceptrons (MLP) (Zhang J. et al.,

2024) and basic Recurrent Neural Networks (RNN) (Ouchene

and Bessou, 2022), were also applied to temporal prediction tasks.

MLP, a type of feedforward neural network, consists of multilayer

connections of neurons and can make predictions by learning

nonlinear relationships within data through repeated iterations.

However, because MLP lacks a memory mechanism to handle

temporal data, it is not ideal for tasks where past information needs

to influence future predictions. To address this issue, Recurrent

Neural Networks (RNN) were introduced. RNNs incorporate loops

in their network architecture, enabling the model to retain a hidden

state that evolves over time. This mechanism allows RNNs to learn

dependencies between sequential data points, making them more

suitable for temporal prediction tasks (Ouchene and Bessou, 2022).

However, RNNs also have some shortcomings, particularly when

dealing with long-term dependencies. The vanishing gradient

problem makes it difficult for the model to learn and retain

useful information over longer sequences. Additionally, handling

high-dimensional data significantly increases model complexity

and computational demands, which limits its practical applications

to some extent. Despite these drawbacks, these machine

learning methods and early neural network techniques laid

the groundwork for the development of more sophisticated deep

learning models.

To address the limitations of machine learning and early

neural networks in capturing long-term dependencies and

processing high-dimensional data, recent years have seen the

widespread application of deep learning and pre-trained models in

health intervention decision-making for aviation students. Long

Short-Term Memory (LSTM) networks (Zhang et al., 2024a) and

Transformer models (Golchha et al., 2024) based on attention

mechanisms have significantly enhanced the ability to process

complex time series data through deeper network structures and

advanced mechanism designs. LSTM, by introducing memory

cells, effectively mitigates the vanishing gradient problem and

captures long-term dependencies (Kurniawan et al., 2020). The

Transformer model, through its attention mechanism, flexibly

focuses on important parts of the time series data, making it more

adaptable. Additionally, the introduction of pre-trained models,

such as BERT (Ouchene and Bessou, 2022) and GPT (Gruver

et al., 2024), allows temporal prediction to leverage large-scale

pre-training data for more accurate fine-tuning, thereby improving

model generalization and prediction accuracy. However, these

deep learning methods often require substantial computational

resources and data support, leading to higher training costs, and

they still face challenges related to interpretability in practical

applications. Despite these challenges, the application of deep

learning and pre-trained models marks a significant advancement

in temporal prediction for health intervention decision-

making in aviation students, providing stronger support for

aviation safety.

To address the aforementioned challenges, particularly

the limitations in capturing long-term dependencies and

handling complex, multivariate EEG data in health intervention

decision-making for aviation students, we propose our method:

PilotCareTrans Net. PilotCareTrans Net is an improved

Transformer model designed to enhance the accuracy and

efficiency of predicting health interventions based on EEG data

in aviation students. This model leverages advanced features

such as dynamic attention mechanisms, temporal convolutional

layers, and multi-scale feature integration, making it particularly

adept at handling the intricate temporal dynamics and non-linear

relationships inherent in EEG signals. By building on the strengths

of existingmodels and addressing their weaknesses, PilotCareTrans

Net offers a robust solution that not only improves prediction

accuracy but also ensures timely and effective health interventions,
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thereby contributing to enhanced safety and performance in

aviation training.

• PilotCareTrans Net introduces a dynamic attention

mechanism tailored to EEG data, enabling the model to

selectively focus on critical temporal features.

• The model is designed for high efficiency and adaptability

across various scenarios, offering robust performance in

different health monitoring tasks, making it highly versatile

and suitable for real-time applications.

• Comprehensive evaluations reveal that PilotCareTrans

Net achieves superior performance over leading models,

particularly in critical metrics, demonstrating its practical

effectiveness in aviation training environments.

2 Related work

2.1 Transformer models

Transformer models, initially introduced for natural language

processing (NLP), have quickly demonstrated their versatility

across a wide range of domains due to their powerful attention

mechanisms and ability to process data in parallel. Unlike

traditional sequential models such as Recurrent Neural Networks

(RNNs) (Zhang D. et al., 2024) and Long Short-Term Memory

(LSTM) networks, Transformers do not rely on processing data

sequentially. This allows them to capture long-range dependencies

and complex relationships in data more efficiently, which is

especially useful for tasks requiring a broader understanding of

contextual information. In the field of computer vision, Vision

Transformers (ViT) have revolutionized image classification by

treating images as sequences of patches and using the self-

attention mechanism. This approach has enabled ViT models

to surpass the performance of traditional Convolutional Neural

Networks (CNNs) in many image classification tasks (Althamary

et al., 2024). In the realm of time series forecasting, Transformer

models have been adapted to handle temporal data. By leveraging

their ability to model long-term dependencies without the need

for recurrent structures, Transformers have shown considerable

improvements in prediction accuracy. These advancements have

been particularly impactful in applications such as stock price

forecasting (Thwal et al., 2023), weather prediction, and health

monitoring. The Transformer’s capacity to model complex,

multi-step dependencies makes it especially suitable for time

series tasks that require understanding patterns across extended

periods. In health monitoring, particularly in EEG-based analysis,

Transformer models have shown promise by analyzing intricate

physiological data to predict health outcomes. The scalability

and flexibility of Transformers allow them to process large

datasets efficiently, making them an ideal choice for domains

that require handling high-dimensional, complex data (Hu et al.,

2019). Their ability to parallelize computations also contributes

to faster processing, which is crucial in real-time monitoring

systems. Overall, Transformers have redefined data processing

across various fields, offering superior performance in tasks

involving complex temporal and spatial relationships.

2.2 Time series health prediction

The field of time series health prediction has seen substantial

advancements over the past few decades, evolving from traditional

statistical models to more sophisticated deep learning techniques.

In the early stages, methods like ARIMA (Lu et al., 2024) and

exponential smoothing were commonly used to predict health-

related time series data, such as heart rate or blood pressure. These

models were favored for their simplicity, ease of interpretation,

and effectiveness in capturing short-term trends in the data (Wang

et al., 2024). However, they faced significant limitations in handling

the non-linear and complex nature of physiological signals, which

are often influenced by a wide range of interacting factors and

external variables. With the rise of machine learning, more

advanced methods were introduced to tackle these complexities.

Techniques such as Support Vector Machines (SVM) and Decision

Trees began to be applied to health prediction tasks, offering

greater flexibility by modeling non-linear relationships within the

data (Pierre et al., 2023). These machine learning methods marked

a significant improvement over traditional approaches, but they

still lacked the ability to fully exploit the temporal dependencies

inherent in time series data. The introduction of early neural

network models, particularly Recurrent Neural Networks (RNNs)

and Long Short-Term Memory (LSTM) networks, brought further

advancements in time series health prediction. These models

were designed to capture temporal dependencies, making them

well-suited for sequential health data such as EEG readings or

continuous heart rate monitoring. By maintaining a form of

memory over time, RNNs and LSTMs were able to model long-

term dependencies more effectively than traditional statistical

or machine learning models. More recently, the emergence of

Transformer models has brought about a new era in time series

health prediction. Unlike recurrent architectures, Transformers

can model long-range dependencies and complex patterns without

being constrained by the limitations of sequential processing.

This has made Transformers particularly effective in predicting

various health outcomes by capturing intricate temporal dynamics

within large-scale physiological datasets. Their ability to parallelize

computations and handle large amounts of data has been a

significant step forward in improving the accuracy and scalability

of health predictions. Hybrid approaches have also gained attention

in recent years, such as the combination of ARIMA with LSTM

models, to enhance predictive performance. These hybrid models

leverage the strengths of both statistical and deep learningmethods,

with ARIMA capturing linear trends and LSTMmodeling the non-

linear temporal relationships (Abgeena and Garg, 2023). These

developments reflect a broader trend toward integrating traditional

and modern techniques to better address the challenges of health

prediction in increasingly complex and high-dimensional datasets.

2.3 EEG signals in health monitoring

Electroencephalogram (EEG) signals have become an essential

tool in health monitoring, offering crucial insights into the

brain’s electrical activity, which is vital for diagnosing and

predicting various neurological and psychological conditions. EEG
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FIGURE 1

The structure of PilotCareTrans Net. The input is processed through multiple layers (Layer 1 to Layer N), then through the Transformer layer through

patch-based segmentation, and finally the output is obtained through flattening, concatenation and linear layers.

signals are particularly valuable in monitoring cognitive states,

detecting seizures, and evaluating sleep disorders. Traditionally, the

analysis of EEG signals relied on manual feature extraction and

conventional statistical methods. While these methods provided

some degree of utility, they were limited in their ability to

handle the high-dimensional, complex, and often noisy nature of

EEG data . This limitation hindered the accuracy and robustness

of early EEG-based health assessments. The advent of machine

learning marked a significant turning point in EEG signal

analysis. More sophisticated models, such as Support Vector

Machines (SVM) (Dong et al., 2024) and Neural Networks,

began to be employed for automatic feature extraction and

classification of EEG signals. These approaches reduced the

need for manual intervention, offering improved accuracy and

efficiency in detecting and predicting various health conditions,

including epilepsy and cognitive disorders (Singh et al., 2023).

By modeling the non-linear relationships in EEG data, these

machine learning models allowed for more effective utilization of

the rich information embedded in EEG signals. In recent years,

deep learning techniques have further revolutionized EEG analysis.

Particularly, Convolutional Neural Networks (CNNs) (Zhang et al.,

2024b) and Transformer models (Li, 2024) have shown great

potential in learning relevant features directly from raw EEG data,

thus eliminating the need for manual preprocessing and feature

engineering. CNNs, known for their ability to capture spatial

features, have demonstrated significant effectiveness in EEG-based

applications, such as seizure detection, emotion recognition, and

sleep disorder classification. The success of CNNs lies in their ability

to learn hierarchical representations of EEG data, making them

well-suited for handling its complexity.More recently, Transformer

models have introduced a new paradigm in EEG analysis. By

utilizing self-attention mechanisms, Transformers are capable of

capturing long-range dependencies and relationships within EEG

signals, leading to more accurate and robust predictions (Hu

et al., 2019). These models have been particularly impactful

in tasks requiring the modeling of temporal dynamics and

interactions across multiple time scales. As a result, the use

of Transformers in EEG analysis has significantly enhanced the

performance of health monitoring systems. These advancements

in EEG signal analysis, driven by machine learning and deep

learning technologies, have solidified EEG as a powerful tool

for non-invasive, real-time assessment of brain activity in both

clinical and research environments. The combination of advanced

models and EEG data continues to push the boundaries of health

monitoring, enabling earlier diagnosis and more precise treatment

of neurological conditions.

3 Methodology

3.1 Overview

The Transformer architecture has revolutionized the

development of sophisticated models, particularly in areas

like text processing and visual data analysis, due to its capacity to

model complex relationships and dependencies. In this study, we

Frontiers inHumanNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnhum.2025.1503228
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Zhao and Guo 10.3389/fnhum.2025.1503228

introduce PilotCareTrans Net, a novel Transformer-based model

designed to facilitate decision-making in health interventions for

aviation students, using EEG data as the primary input. This model

leverages the unique strengths of the Transformer architecture,

notably its powerful self-attention mechanism, which enables it

to capture intricate temporal relationships across multivariate

time series data. These capabilities are crucial for unifying diverse

EEG signal modalities into a cohesive and integrated system,

allowing for more precise and informed decision-making. EEG

data, given its high-dimensional and time-sensitive nature, is

ideal for capturing physiological states relevant to cognitive

performance, stress levels, and overall mental health. In aviation,

where safety and performance are paramount, timely health

interventions can be critical to maintaining the well-being of

pilots and aviation students during both training and real-world

operations. PilotCareTrans Net seeks to address this need by

providing a robust, data-driven approach to monitoring and

predicting health conditions based on EEG signals. By doing so,

the model supports the identification of potential health issues,

such as fatigue, cognitive overload, or stress, that could impair

the performance of aviation students and, ultimately, compromise

safety.

To construct PilotCareTrans Net (in Figure 1), we built on

established methodologies in time series analysis, drawing from

advancements in both EEG signal processing and Transformer-

based architectures. We adapted Vision Transformers, which

have already demonstrated considerable success in handling

visual data, to process multivariate EEG time series. The model

restructures the EEG data into a Transformer-compatible format

by segmenting the signals into smaller, interpretable units, akin to

how Vision Transformers handle images as sequences of patches.

This restructuring allows the model to capture both short-term

fluctuations and long-term dependencies within the EEG signals,

thereby enhancing its ability to make accurate health-related

predictions. One of the key innovations of PilotCareTrans Net is its

ability to unify different modalities of EEG signals, which typically

contain a wide range of information related to brain activity,

cognitive function, and mental health. By integrating these signals

into a single model, PilotCareTrans Net not only improves the

clarity of the predictions but also increases the system’s effectiveness

in real-world applications. This is particularly beneficial in aviation

education, where the ability to assess and intervene based on the

mental and physical well-being of students can directly impact their

learning outcomes, performance, and safety.

3.2 Preliminaries

To tackle the challenge of making health intervention decisions

for aviation students using EEG data, it is critical to first establish

a mathematical framework. Let X ∈ R
N×T×C represent the

multivariate EEG time series, where N indicates the total number

of samples, T refers to the number of time steps, and C stands

for the EEG channels. Each sample Xi ∈ R
T×C comprises T

time steps of C-channel EEG signals. The primary aim is to

construct a model that can reliably predict the necessary health

intervention for a student based on the EEG time series Xi. This

objective can be formalized as a classification problem, where the

goal is to learn a mapping function f :RT×C → R
K , with K

representing the number of possible health intervention outcomes.

The function f (Xi; θ) is parameterized by θ and outputs the

likelihood distribution across the K classes. Given N training

instances {Xi, yi}Ni=1, where yi ∈ {1, 2, . . . ,K} denotes the actual

health intervention category for the i-th sample, the learning

process involves optimizing a loss function L(θ) that quantifies

the difference between the predicted and actual labels. A common

choice for L(θ) is the cross-entropy loss, defined as:

L(θ) = − 1

N

N
∑

i=1

K
∑

k=1

I(yi = k) log pk(Xi; θ), (1)

where pk(Xi; θ) gives the predicted likelihood for class k for

sample Xi, and I(·) is an indicator function.

In the context of EEG analysis, capturing the temporal

dynamics across various channels is crucial. Therefore, the input

time series Xi undergoes a preprocessing step to extract meaningful

temporal features. Let Zi ∈ R
T′×D represent the transformed

feature matrix, where T′ ≤ T is the reduced number of time

steps after preprocessing, and D is the dimensionality of the

extracted features. This transformation may involve operations

like downsampling, filtering, or feature extraction using domain-

specific methods.

The preprocessed data Zi is then fed into a Transformer-

based encoder, which captures the temporal dependencies and

interactions among the features. Each layer in the encoder can be

expressed as a function h(l) :RT′×D → R
T′×D, where l denotes the

layer index. The output of the L-th layer of the encoder, H
(L)
i ∈

R
T′×D, serves as the input to the decision-making module.

The decision-makingmodule aggregates the information across

all time steps to produce the final prediction. This can be

achieved using various pooling strategies or an additional attention

mechanism. Let o :RT′×D → R
D′

represent this aggregation

function, which outputs a fixed-size representation vi ∈ R
D′

for each sample. The final classification is performed by a fully

connected layer followed by a softmax function, mapping vi to the

predicted probability distribution ŷi ∈ R
K :

ŷi = softmax(Wvi + b), (2)

where W ∈ R
K×D′

and b ∈ R
K are the parameters of the output

layer.

The EEG time series data are divided into non-overlapping

time-windows of 10 s, with a sliding window approach used to

extract segments from the continuous EEG signal. The step size

between consecutive windows is 2 s, which ensures both high

temporal resolution and sufficient data for analysis. This choice is

based on the need to balance temporal accuracy with computational

efficiency.

The choice of transformation operation is influenced by

factors such as the signal-to-noise ratio, frequency components,

and the nature of the analysis, whether it is focused on noise

reduction, feature extraction, or dimensionality reduction. For

example, when processing EEG data containing high-frequency

noise, bandpass filtering or notch filtering are applied to remove

unwanted frequencies and retain relevant signals. In datasets
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with a large number of channels or high-dimensional data,

dimensionality reduction techniques such as principal component

analysis (PCA) or independent component analysis (ICA) are used

to reduce the dimensionality of the data and retain the most

important features. The manuscript stipulates that the choice of

preprocessing operations is tailored to the specific characteristics of

each dataset. In some cases, temporal smoothing or artifact removal

techniques can be applied, while in other datasets, frequency

domain transforms such as fast Fourier transform (FFT) or

wavelet transform can be used. This ensures that the preprocessing

operations are appropriate for the dataset, allowing the model

to extract the most relevant information while maintaining data

integrity.

3.3 Adaptive temporal encoder network

The central innovation of PilotCareTrans Net lies in its

Adaptive Temporal Encoder Network (ATEN), a specialized

module designed to enhance the Transformer’s capacity to

handle the unique characteristics of EEG data. EEG signals are

known for their temporal complexity and high variability across

different individuals and conditions. The ATEN is built upon the

standard Transformer encoder but incorporates dynamic attention

mechanisms and temporal convolutional layers, which are tailored

for processing EEG signals. The architecture of ATEN can be

described as follows.

3.3.1 Input representation
the raw EEG data, represented by X ∈ R

N×T×C , undergoes

a transformation into a feature matrix Z ∈ R
T′×D using a

preprocessing function g(X). This preprocessing function includes

operations such as temporal filtering and feature extraction,

resulting in a reduced representation that retains the most critical

temporal patterns.

3.3.2 Dynamic attention mechanism
To effectively capture the varying importance of EEG signals

over time, the Adaptive Temporal EEG Network (ATEN) employs

a dynamic attention mechanism. This is a significant improvement

over the fixed self-attention mechanism found in traditional

Transformers. In contrast to the standard self-attention, where

attention weights remain fixed once learned, the dynamic attention

in ATEN adapts its focus continuously based on the evolving input

features at each time step. This makes themodel more responsive to

the unique characteristics of the temporal data, particularly in the

context of EEG signals, which exhibit varying patterns of relevance

over time.

At each time step t, the attention weights At ∈ R
T′×T′

are

dynamically computed as follows:

At = softmax

(

QtK
⊤
t√
D

)

, (3)

where Qt represents the query vector at time step t, and Kt

represents the key vectors corresponding to the sequence data.

These are computed as:

Qt = WQzt , Kt = WKZ, (4)

where zt ∈ R
D is the input feature vector at time step t,

Z ∈ R
T′×D is the matrix of all input feature vectors over time,

WQ,WK ∈ R
D×D are learnable weight matrices for the query

and key projections, respectively, D is the dimensionality of the

hidden representations, and At are the attention weights at time

t, which reflect the model’s focus on different time steps based on

the temporal context.

The softmax function ensures that the attention weights are

normalized, meaning they sum to 1 across the time steps, and

it accentuates the most important relationships between different

parts of the sequence:

softmax(xi) =
exp(xi)

∑T′
j=1 exp(xj)

, (5)

where xi corresponds to each element in the attention score

matrix.

This dynamic formulation allows the attention weights to

shift based on the input features, which is particularly useful

when dealing with EEG data that often has fluctuating periods

of importance. For example, certain brainwave activities during

critical events, such as the onset of a seizure or a state of deep sleep,

may be more relevant for prediction at certain time points. The

dynamic attention mechanism ensures that the model can increase

its focus on such crucial moments by adjusting the weights At

accordingly.

The process for obtaining the value vector Vt , which represents

the output of the attention mechanism, is similar to traditional

self-attention. It is computed as:

Vt = AtWVZ, (6)

where WV ∈ R
D×D is another learnable weight matrix, and

Z is again the input feature matrix. The output Vt aggregates

information from different time steps based on the attention

weights, dynamically emphasizing the most relevant periods.

Furthermore, the dynamic attention mechanism can be

enhanced by incorporating positional encoding P ∈ R
T′×D, which

allows the model to retain information about the relative order of

time steps, a critical aspect of time series data. Thus, the query and

key vectors can be reformulated as:

Qt = WQ(zt + pt), Kt = WK(Z+ P), (7)

where pt ∈ R
D is the positional encoding for time step t. This

allows the model to capture both the content of the EEG signals and

their temporal ordering.

3.3.3 Temporal convolutional layers
In addition to the dynamic attention mechanism, the

Adaptive Temporal EEG Network (ATEN) incorporates temporal

convolutional layers that operate on the feature matrix Z. These

convolutional layers are designed to capture local temporal
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dependencies within the EEG signals, while also reducing the

impact of noise, which is a common issue in EEG data due to

its high variability and susceptibility to external interference. The

temporal convolutional layers allow the model to extract features

that are locally significant in time, such as sharp transitions or

rhythmic oscillations in brainwave patterns.

The output of a temporal convolutional layer at time step t is

computed as:

Ct = σ (WC ∗ Z) , (8)

where ∗ denotes the convolution operation applied over the

time dimension, WC ∈ R
k×D×D is the convolution kernel (or

filter) with a receptive field of size k, and σ (·) is a non-linear

activation function, commonly chosen as Rectified Linear Unit

(ReLU) or another suitable function. In this context, k represents

the kernel size, controlling how many time steps are considered

simultaneously during the convolution operation. The activation

function σ (·) introduces non-linearity into the model, enabling it

to capture more complex temporal patterns and relationships that

may not be detectable through linear operations alone.

The convolution operation, defined by:

(WC ∗ Z)t =
k
∑

i=1

WC(i) · Zt−i+1 : t−i+k, (9)

aggregates information across k consecutive time steps of the

input feature matrix Z, effectively capturing local patterns within

that time window. By applying multiple convolutional layers,

ATEN builds hierarchical representations of the EEG data, allowing

the model to understand both low-level temporal features (e.g.,

short oscillations or spikes) and higher-level abstractions (e.g.,

complex brainwave patterns over longer durations).

3.3.4 Residual connections and layer
normalization

To ensure efficient training of deep neural networks, residual

connections and layer normalization are essential components

of the ATEN architecture. Residual connections are employed

to mitigate the problem of vanishing or exploding gradients,

which can occur as the network depth increases. In deep

networks, gradients can become extremely small (vanishing

gradient problem) or grow too large (exploding gradient problem),

making it difficult to train the model effectively. By incorporating

residual connections, ATEN helps maintain a smooth gradient flow

throughout the network, ensuring that important information is

propagated forward and backward during training.

The output of each attention layer is added to its corresponding

input, forming a residual black. Mathematically, this is expressed

as:

H
(l+1)
t = H

(l)
t + Attention(H

(l)
t ), (10)

where H
(l)
t represents the input to the attention layer at level

l, and H
(l+1)
t is the output after the residual connection has been

applied. The use of residual connections allows the network to

bypass certain layers if necessary, which can help prevent the

degradation of performance as the network grows deeper. It

also ensures that the model can learn both shallow and deep

representations simultaneously.

To further stabilize training, layer normalization is applied to

the output of the residual black. This operation normalizes the

activations at each layer, improving the stability of the training

process by ensuring that the inputs to each layer maintain a

consistent scale and distribution. The full process is described as:

H
(l+1)
t = LayerNorm

(

H
(l)
t + Attention(H

(l)
t )
)

, (11)

where LayerNorm(·) normalizes the output of the residual

block by adjusting the mean and variance of the activations,

ensuring they are more suitable for subsequent layers. Layer

normalization is particularly useful in time series data, where

fluctuations in scale or distribution between different time steps can

introduce instability in training. By applying layer normalization,

ATEN maintains a consistent gradient flow and ensures that the

learning process remains stable across layers, even in very deep

architectures.

3.3.5 Multi-scale feature integration
EEG signals exhibit complex temporal dynamics that span

multiple time scales, making it essential for models like ATEN

to capture both short-term and long-term dependencies. To

address this, ATEN incorporates a multi-scale feature integration

mechanism. This mechanism ensures that features extracted at

different temporal resolutions contribute to a more comprehensive

and robust representation of the EEG data.

Let F1, F2, . . . , FM denote the features extracted from M

different temporal scales, where each Fi ∈ R
D′
i corresponds to a

specific time scale i. These features, representing different aspects of

the EEG signals, are concatenated to form a unified feature vector.

The concatenation operation aggregates the information across all

scales into a single, enriched representation that captures both

fine-grained and coarse-grained patterns.

The combined feature vector is then passed through a

fully connected layer to further refine the integrated features

and produce a compact representation that is suitable for the

subsequent decision-making process. Mathematically, the multi-

scale feature integration process is described as:

Fint = FC
(

Concat(F1, F2, . . . , FM)
)

, (12)

where Concat(·) represents the concatenation operation over

the multi-scale feature vectors F1, F2, . . . , FM , and FC(·) is a fully

connected layer that projects the concatenated features into a

lower-dimensional space. This integrated feature vector, denoted as

Fint, encapsulates the rich temporal information present in the EEG

data across different time scales, allowing the model to effectively

capture both short-term fluctuations and long-term trends.

By combining features from multiple temporal scales, ATEN

can better handle the varying patterns found in EEG data, such as

brief spikes or sustained oscillations. This multi-scale integration

ensures that the model is sensitive to both the immediate
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and prolonged changes in brain activity, which is critical for

accurate prediction of health interventions, especially in dynamic

environments like aviation training.

The final stage of the ATEN architecture is the prediction

head, which maps the integrated feature vector Fint to the output

space, providing the final predictions for the health intervention

decision-making task. After processing the multi-scale integrated

features, the prediction head applies a fully connected layer to

project Fint into the output space, followed by a softmax activation

function to produce a probability distribution over the possible

health intervention classes.

The prediction head can be mathematically formulated as:

ŷi = softmax(WoFint + bo), (13)

where: ŷi ∈ R
K is the predicted probability vector for each of

the K health intervention classes,Wo ∈ R
K×D′

is the weight matrix

of the output layer, where D′ is the dimensionality of the integrated

feature vector Fint, bo ∈ R
K is the bias term of the output layer.

The softmax function normalizes the output into a probability

distribution:

softmax(zi) =
exp(zi)

∑K
j=1 exp(zj)

, (14)

where zi represents the unnormalized logits (i.e., WoFint +
bo) for class i. The softmax function ensures that the output

probabilities sum to 1, which is necessary for multi-class

classification tasks. In the context of ATEN, this enables the model

to output a probability for each health intervention class, providing

a clear decision on which intervention is most appropriate based on

the EEG data.

The integration of the multi-scale feature mechanism and the

prediction head forms a key component of ATEN’s architecture.

By capturing both short-term and long-term dependencies

through multi-scale feature extraction, and making accurate

predictions through the softmax-based classification in the

prediction head, ATEN delivers robust and reliable decisions for

health interventions. This design is particularly advantageous in

contexts like aviation training, where timely and precise health

assessments are critical for ensuring both safety and performance.

The Adaptive Temporal Encoder Network, with its tailored

components, significantly enhances the ability of PilotCareTrans

Net to interpret complex EEG data, making it a powerful tool for

decision-making in health interventions for aviation students.

3.4 Incorporation of domain-specific
strategies

The effectiveness of PilotCareTrans Net is further enhanced by

the integration of domain-specific strategies that are tailored to the

unique characteristics of EEG data and the specific requirements

of health intervention decision-making in aviation students. These

strategies involve the incorporation of prior knowledge about EEG

signal processing, the adaptation of model components to reflect

the physiological and cognitive aspects of aviation students, and the

use of specialized training procedures to improve model robustness

and interpretability.

3.4.1 omain-specific feature engineering
One of the key strategies involves the engineering of features

that are particularly relevant to the aviation context (Gauba et al.,

2017). EEG signals are known to contain information about various

cognitive states, such as alertness, stress, and fatigue, which are

critical for aviation performance. To capture these states, we

incorporate features such as power spectral density (PSD) in

specific frequency bands (e.g., alpha, beta, theta, and delta), as

well as event-related potentials (ERPs) that are known to correlate

with cognitive and emotional responses (Zhang Z. et al., 2024).

These features are computed from the raw EEG data during the

preprocessing stage and are included in the feature matrix Z before

it is input into the Adaptive Temporal Encoder Network.

3.4.2 Physiological and cognitive constraints
To align the model’s predictions with physiological and

cognitive principles, we impose constraints on the learned

representations and predictions (Kumar et al., 2019). For instance,

the model is trained to recognize patterns in the EEG data that are

consistent with known cognitive states under various conditions,

such as high cognitive load or low alertness. These constraints are

implemented by incorporating regularization terms into the loss

function, which penalize predictions that deviate from expected

physiological responses. The regularization term R(θ) can be

formulated as:

R(θ) = λ

N
∑

i=1

C
∑

j=1

∣

∣

∣
ŷ
(j)
i − ỹ

(j)
i

∣

∣

∣
, (15)

where ŷ
(j)
i is the predicted probability of class j for sample i, ỹ

(j)
i

represents the expected probability distribution based on cognitive

state constraints, and λ is a hyperparameter that controls the

strength of the regularization.

3.4.3 Attention to temporal dynamics
The temporal nature of EEG signals necessitates a model that

can effectively capture both short-term fluctuations and long-term

trends in the data (Prasad et al., 2018). To this end, we employ

a hierarchical attention mechanism that assigns varying levels of

importance to different temporal segments of the EEG data. This

mechanism enables the model to focus on critical moments, such

as periods of high cognitive demand or physiological stress, which

are particularly relevant for health intervention. The hierarchical

attention weights are computed as:

Ahier = softmax

(

QhierK
⊤
hier√

Dhier

)

, (16)

where Qhier and Khier are the query and key matrices at the

hierarchical level, andDhier is the dimensionality of the hierarchical

attention space.
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TABLE 1 Summary of EEG datasets and experimental settings.

Dataset Subjects Sampling rate
(Hz)

Tasks/conditions Preprocessing
steps

References

MODA 25 healthy adults 256 Cognitive workload and sleep

spindles

Band-pass filtering

(0.5–50 Hz),

down-sampling to 100

Hz

Lacourse et al. (2020)

STEW 15 participants 500 Mental workload tasks Band-pass filtering (1–50

Hz), down-sampling to

100 Hz

Lim et al. (2018)

SEED (SJTU) 15 participants 200 Emotion recognition tasks

(happy, neutral, sad)

Band-pass filtering

(0.5–50 Hz),

down-sampling to 100

Hz

Zheng and Lu (2015)

Sleep-EDF 20 participants 100 Sleep stage classification No further

down-sampling needed,

band-pass filtering

(0.5–30 Hz)

Goldberger et al. (2000)

3.4.4 Robust training procedures
Given the variability and noise inherent in EEG data, robust

training procedures are essential for ensuring that the model

generalizes well to unseen data (Dash et al., 2024). We incorporate

several techniques to enhance the robustness of PilotCareTrans

Net, including data augmentation, dropout, and cyclic learning

rates. Data augmentation is performed by applying perturbations

such as noise addition, time-warping, and channel dropout to the

EEG signals, which helps the model become more resilient to

variations in the data. The cyclic learning rate schedule is used to

adaptively adjust the learning rate during training, encouraging the

model to explore different regions of the parameter space and avoid

local minima. The cyclic learning rate is defined as:

η(t) = ηmin +
1

2
(ηmax − ηmin)

(

1+ cos

(

tπ

Tcycle

))

, (17)

where η(t) is the learning rate at time step t, ηmin and ηmax are the

minimum and maximum learning rates, respectively, and Tcycle is

the length of one learning rate cycle.

4 Experiment

4.1 Datasets

The experimental evaluation of PilotCareTrans Net was

conducted using four diverse EEG datasets, each providing unique

challenges and characteristics relevant to health intervention

decision-making. The MODA Dataset (Lacourse et al., 2020) is a

comprehensive collection that captures EEG signals across various

cognitive tasks, offering a broad spectrum of physiological states.

The STEW Dataset (Lim et al., 2018), known for its detailed

annotation of stress levels, provides a rich resource for studying

the impact of stress on cognitive performance in aviation students.

The SJTU Emotion EEG Dataset (Zheng and Lu, 2015; Duan

et al., 2013), focused on emotion recognition, adds another layer

of complexity by emphasizing the detection of subtle emotional

states from EEG signals. Lastly, the Sleep-EDF Dataset (Goldberger

et al., 2000), which includes recordings of EEG during sleep,

allows for the exploration of sleep-related cognitive states and

their implications for aviation safety. These datasets collectively

represent a wide array of scenarios, from awake cognitive states to

sleep conditions, making them ideal for evaluating the robustness

and versatility of the proposed model.

The experiments in this study utilized four publicly available

EEG datasets, which are summarized in Table 1. The MODA

dataset includes EEG recordings from 25 healthy adults with a

sampling rate of 256 Hz. The dataset is focused on cognitive

workload assessment and sleep spindle detection. Preprocessing

involved applying a bandpass filter in the range of (0.5–50 Hz) and

down-sampling the signals to 100 Hz to ensure consistency. The

STEW dataset consists of EEG recordings from 15 participants,

collected at a sampling rate of 500 Hz, with experimental tasks

centered on mental workload assessment. Preprocessing for this

dataset included a bandpass filter in the range of (1–50 Hz)

and down-sampling to 100 Hz. The SEED dataset contains EEG

data collected from 15 participants at 200 Hz during emotion

recognition tasks, which required classifying emotional states such

as happy, neutral, and sad. For this dataset, preprocessing steps

included a bandpass filter in the range of (0.5–50 Hz) and down-

sampling to 100 Hz. The Sleep-EDF dataset includes EEG signals

from 20 participants collected at 100 Hz, focused on sleep stage

classification tasks. Preprocessing for this dataset required only a

bandpass filter in the range of (0.5–30 Hz), with no additional

down-sampling applied.

In addition to the dataset-specific preprocessing, all datasets

underwent consistent steps to enhance signal quality and ensure

compatibility with the model. EEG signals were normalized using

z-score normalization to eliminate amplitude differences between

individuals. Signals were divided into 10-s non-overlapping time

windows, with each window containing 1,000 time points to

maintain a uniform sample length. Further feature extraction was

applied to enhance the relevance of the data for classification

tasks. A bandpass filter was applied to remove low-frequency drift

and high-frequency noise, such as muscle artifacts, ensuring the

retention of critical signal features. The power spectral density was

estimated using the Welch method with a 50% overlap between

segments and frequency bands of interest, such as delta, theta,
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Input: MODA Dataset, STEW Dataset, SJTU Emotion

EEG Dataset, Sleep-EDF Dataset

Output: Model Performance Metrics: Accuracy,

Recall, Precision, F1 Score, AUC

Initialization:

Split each dataset into Training (70%),

Validation (15%), and Testing (15%) sets using

stratified sampling;

Initialize learning rate η = 0.001;

Set maximum epochs Emax = 50;

Set batch size B = 64;

Initialize Adam optimizer with η;

Set dropout rate D = 0.5;

for each dataset D ∈ {MODA,STEW,SJTU,Sleep-EDF} do

Preprocess EEG signals in D using band-pass

filtering;

Extract features: Power Spectral Density (PSD)

and Event-Related Potentials (ERP);

while epoch e ≤ Emax do

for each batch b in training data do

Apply data augmentation: random

time-shifting and noise addition;

Compute model output

y = PilotCareTrans Net(x);

Compute loss L = 1
B

∑B
i=1 Loss(yi,y

true
i );

Update model parameters using Adam

optimizer;

end

if validation loss Lval increases for 5

consecutive epochs then

Apply early stopping;

Break;

end

Adjust learning rate using cyclic schedule;

η = η × decay factor every 10 epochs;

end

Evaluate model on test set;

Compute metrics: Accuracy, Recall, Precision,

F1 Score, AUC;

if Recall ≥ 0.90 and Precision ≥ 0.90 then

Save the model;

end

end

Algorithm 1. Training and evaluation of PilotCareTrans Net.

alpha, and beta, were extracted. Event-related potentials were also

computed by averaging EEG signals within a time window of (–

200 ms, +800 ms) relative to specific target events, capturing the

temporal dynamics associated with cognitive processing. These

steps ensured that the data was clean, informative, and ready

for classification using the Transformer-based architecture. All

datasets were evaluated independently to avoid biases caused by

merging data from different sources. A 10-fold cross-validation

strategy was implemented to assess the model’s generalization

ability, where the test set consisted exclusively of unseen participant

TABLE 2 Data distribution across cognitive states.

Cognitive
state

Number of
samples

Percentage
(%)

Associated
dataset(s)

High cognitive

load (HCL)

3,500 23.3 MODA, STEW

Mental fatigue

(MF)

3,000 20.0 MODA, SEED

Stress (S) 4,000 26.7 STEW, SEED

Alertness (A) 2,500 16.7 MODA,

Sleep-EDF

Low alertness

(LA)

2,000 13.3 Sleep-EDF,

MODA

Total 15,000 100.0 All datasets

Bold values are the best values.

TABLE 3 Classification conditions (CS), health interventions (HI), and

ground-truth (GT) definitions.

CS F HI GT

HCL PSD (beta, theta),

ERP latency

Rest, cognitive

exercise

Triggered by

cognitive load

threshold (task

performance,

EEG)

MF Alpha decrease,

PSD (Delta)

Rest, Fatigue

monitoring

Based on task

time, error rate,

and

fatigue-related

EEG features

S Theta increase,

ERP

Stress

management,

relaxation

techniques

Based on expert

judgment

(self-reported

stress, EEG stress

markers)

A Alpha increase,

low beta

Cognitive

reinforcement,

monitoring

Confirmed by

EEG indicators of

alertness and low

cognitive load

LA Alpha decrease,

low theta/beta

Stimulation,

cognitive load

management

Expert labels

based on

self-reported

fatigue and EEG

features of low

alertness

CS, cognitive state; F, feature; HI, health intervention; GT, ground-truth.

HI includes rest, cognitive exercise, stress management, and monitoring.

records. This ensured that the evaluation process focused on the

model’s capacity to generalize across different individuals rather

than learning subject-specific patterns. These carefully designed

preprocessing and evaluation procedures allowed the model to

effectively leverage the temporal and spectral features of EEG

data to classify cognitive states and support health intervention

decision-making.

The EEG data are represented as a 3DmatrixX ∈ R
30×5,000×32,

where N = 30 subjects, each providing 5, 000 time steps recorded

over 32 EEG channels. Each time step represents a sample of

32 EEG channels, and the total number of samples for the

dataset is 30 × 5, 000 = 150, 000 samples across all subjects. It

should be noted that this matrix is provided as an example based
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on a specific dataset. For the other datasets, the data matrices

were prepared according to their respective characteristics, such

as the number of subjects, time steps, and EEG channels, as

summarized in Table 1. To mitigate the risk of overfitting due

to the high dimensionality of the data, several regularization

techniques were employed. A dropout rate of 0.5 was applied

to all hidden layers to prevent the model from overfitting to

the training data. Additionally, training was halted when the

validation loss stopped improving for five consecutive epochs. Data

augmentation techniques such as random time-shifting and noise

addition were also utilized to increase the effective size of the

training set and ensure that the model did not learn trivial patterns.

These steps helped improve the generalization performance of

the model while effectively handling the variability inherent in

EEG data.

To enhance the variability and robustness of the model, we

apply data augmentation techniques in a cascade manner. First,

we introduce random time-shifting to the EEG signals, with each

signal being shifted by a random amount of up to ±50 ms along

the time axis. This shift simulates small temporal variations in

the timing of events and helps the model learn to generalize

across slight misalignments without overfitting to precise event

timings. In addition to time-shifting, Gaussian noise is added

to the signals to simulate environmental noise and recording

artifacts. The noise is introduced with a standard deviation of

5% of the original signal amplitude, ensuring that the noise

level is realistic without distorting the underlying EEG data.

For each dataset, the augmented samples are generated at a

ratio of 2:1 relative to the original data, resulting in a total

dataset size three times the original. This augmentation level was

chosen to balance diversity and computational feasibility while

avoiding over-reliance on the original data for manipulations.

These augmentations help the model become more resilient to

minor signal variations and improve its robustness when exposed

to real-world conditions. The augmentation techniques are applied

uniformly across all datasets, without dataset-specific selection,

meaning that the same augmentation procedures are applied

to every dataset in the study. This ensures that the model is

trained with a consistent strategy, and the augmented data reflects

realistic variations in the EEG signals. Importantly, we designed the

augmentation methods to avoid introducing unrealistic distortions

that could bias the model or degrade the quality of the data. By

preserving the core temporal and spectral characteristics of the

EEG signals while increasing variability, these methods allow the

model to learn relevant features without memorizing noise or

irrelevant patterns.

4.2 Experimental setup

In the experimental setup, the dataset was divided into training,

validation, and test sets using a stratified sampling technique

to ensure that the class distribution in each subset accurately

reflects that of the overall dataset. To avoid potential data

leakage, a subject-wise split method was adopted, ensuring that

all EEG data from a single subject appeared in only one subset:

either the training, validation, or test set. This strict division T
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FIGURE 2

Comparison of models on MODA and STEW datasets.

ensures that the model’s performance reflects its generalization

capability to unseen individuals. Ultimately, the dataset was

split into 70% for training, 15% for validation, and 15% for

testing. The EEG data underwent preprocessing, including band-

pass filtering to remove noise and artifacts, and the extraction

of features such as power spectral density and event-related

potentials to enhance the model’s ability to capture cognitive

and emotional states. Additionally, data augmentation techniques,

such as random time shifts and noise addition, were applied to

improve the model’s robustness. The model, PilotCareTrans Net,

was implemented using the PyTorch framework and trained on

an NVIDIA Tesla V100 GPU with CUDA acceleration. The Adam

optimizer was used for training, with an initial learning rate set

to 0.001, a common configuration in deep learning that achieves

a balance between convergence speed and stability, as validated

by preliminary experiments. To further improve training efficiency

and performance, a cyclic learning rate strategy was employed,

decaying the learning rate by a factor of 0.1 every 10 epochs.

The batch size was set to 64, based on validation experiments

comparing batch sizes of 32, 64, and 128, and was chosen to balance

computational efficiency and memory requirements. The model

was trained for a maximum of 50 epochs, with early stopping

applied based on validation loss to prevent overfitting. Moreover,

a dropout rate of 0.5 was introduced to enhance generalization

performance; this value outperformed alternatives of 0.3 and 0.7

in preliminary experiments. The selection of hyperparameters

was informed by domain knowledge, standard practices from

the literature, and results from initial experimental validation,

ensuring the model’s robustness and efficiency while adhering to

common optimization strategies for EEG time series classification

tasks (Algorithm 1).

4.3 Experimental results and analysis

In this section, we focus on the evaluation of our model’s

performance in predicting health interventions based on EEG data.

The core task of this study is to classify cognitive states from EEG

signals and map them to appropriate health interventions. These

interventions include actions such as rest, cognitive exercises, stress

management techniques, and alertness stimulation, all of which are

tailored to address specific cognitive states.

The classification task in this paper is to predict appropriate

health interventions based on different levels of cognitive

states. The classification process is based on specific features

extracted from EEG signals, including changes in power spectral

density (PSD) in different frequency bands and event-related

potential (ERP) characteristics. Cognitive states are divided into

high cognitive load (HCL), mental fatigue (MF), stress (S),

wakefulness (A) and low wakefulness (LA), and correspond to

specific health interventions such as rest, cognitive practice, stress

management techniques, and wakefulness stimulation. Table 2

lists the distribution of cognitive states in the sample data in

detail, among which the five cognitive states are high cognitive

load (23.3%), mental fatigue (20.0%), stress (26.7%), wakefulness

(16.7%), and low wakefulness (13.3%). The classification of these

states is based on features extracted from EEG signals, such as

power spectral density (PSD) and event-related potential (ERP)

markers in specific frequency bands, and the classification results

correspond one by one to the health intervention strategies defined

by experts.

Recommendations for health interventions are based on

the classification results of these cognitive states, and the true

labels of the classifications are defined by experts through a

combination of task performance, self-reported stress, and EEG
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indicators. These definitions are triggered by empirical thresholds

that are determined based on expert evaluations of behavioral

and physiological data. For example, high cognitive load may be

associated with increased activity in a specific frequency band,

and mental fatigue may be manifested as a decrease in alpha

frequency and an increase in theta frequency.Table 4.1 summarizes

in detail the classification conditions of cognitive states, the EEG

features used for classification, the relevant health interventions,

and the true basis for defining these states. For the selection of

different datasets, the applicability of each dataset depends on the

characteristics of the EEG data it provides. For example, although

the Sleep-EDF dataset is derived from polysomnography, by

analyzing features related to wakefulness and sleep stages (such as

delta activity and overall EEG rhythm), we can infer some cognitive

characteristics related to low wakefulness states. For the use of

these datasets, we ensured their relevance to the task of this article

through specific feature extraction methods. The relationship

between the classification results and the recommendation of

interventions is as follows: the algorithm classifies cognitive states,

and Table 4.1 provides health intervention suggestions based

on these states. Therefore, the recommendation process actually

matches cognitive states with predefined health intervention

strategies through classification results. This approach ensures a

close link between classification and health intervention strategies,

while retaining the flexibility for experts to make further decisions

based on specific conditions.

The classification task in this study aims to predict appropriate

health interventions based on EEG data, which are categorized

according to cognitive states. These cognitive states are identified

through specific features derived from the EEG signals, such

as power spectral density (PSD) in different frequency bands

and event-related potentials (ERP). The health interventions

correspond to specific cognitive states, and are designed to address

cognitive load, fatigue, stress, alertness, and low alertness. Table 3

summarizes the classification conditions (cognitive states), the

features used for classification, the associated health interventions,

and the ground-truth definitions. The cognitive states considered

in the model include high cognitive load (HCL), mental fatigue

(MF), stress (S), alertness (A), and low alertness (LA). For each

cognitive state, relevant EEG features are extracted, such as changes

in alpha, theta, and beta frequency bands, and ERP markers. Based

on these features, specific health interventions are recommended,

such as rest, cognitive exercises, stress management techniques, and

alertness stimulation. The ground-truth for each cognitive state

is defined by expert judgment, based on a combination of task

performance, self-reported stress, and EEG indicators. The table

also illustrates how these interventions are triggered according

to predefined thresholds, which are empirically determined and

based on expert evaluation of both behavioral and physiological

data.

The results presented in Table 4 and Figure 2 demonstrate

the superiority of the proposed PilotCareTrans Net model over

existing state-of-the-art (SOTA) methods across both the MODA

and STEW datasets. Notably, our model achieves the highest

accuracy, recall, F1 score, and AUC, with significant margins

compared to other models such as ViT, LSTM, and Transformer.

For instance, on the MODA dataset, PilotCareTrans Net attains an

accuracy of 97.46%, which is 2.58% higher than the best-performing
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FIGURE 3

Comparison of models on SJTU emotion EEG and sleep-EDF datasets.

SOTA model, Transformer, which scored 94.88%. This substantial

improvement can be attributed to the unique combination of

dynamic attention mechanisms, temporal convolutional layers,

and multi-scale feature integration within the PilotCareTrans

Net. These components enable the model to capture intricate

temporal dependencies and multiscale features that are particularly

crucial for processing EEG data, where signal variations are highly

dynamic and context-dependent. The strong performance on the

STEW dataset further validates the robustness and generalizability

of the model across different types of EEG data. This suggests

that PilotCareTrans Net is not only effective in handling the

diverse challenges posed by the MODA dataset but also excels

in more stressful environments reflected in the STEW dataset.

The consistent outperformance across all key metrics highlights

the model’s capacity to integrate domain-specific knowledge and

advanced computational techniques, making it a potent tool for

health intervention decision-making in aviation contexts.

Table 5 and Figure 3 illustrates the efficiency of PilotCareTrans

Net in terms of computational resources and execution times

compared to other SOTA models. The results clearly show that

PilotCareTrans Net requires significantly fewer parameters and

FLOPs while achieving faster inference and training times. For

example, on the SJTU Emotion EEG dataset, our model uses 120.65

million parameters and 217.55 billion FLOPs, which is considerably

lower than the Transformer model’s 395.33 million parameters

and 374.94 billion FLOPs. This reduction in computational

complexity does not compromise performance, as evidenced by

the model’s superior accuracy and other evaluation metrics in

Table 4. The reduced computational overhead is crucial in real-

world applications, especially in scenarios where quick and efficient

processing is necessary, such as in-flight health monitoring for

pilots. The results from the Sleep-EDF dataset further confirm

that PilotCareTrans Net maintains its efficiency even when dealing

with more complex or varied data types, such as those involved in

sleep studies. The model’s ability to process data efficiently while

maintaining high accuracy and robustness underlines its suitability

for deployment in resource-constrained environments, such as

portable devices used in aviation training and health monitoring.

To further validate the effectiveness of the proposed

PilotCareTrans Net model, an ablation study was conducted.

This study aimed to assess the impact of the key components of

the model, including the dynamic attention mechanism, temporal

convolutional layers, and multi-scale feature integration. We

performed ablation experiments on two pairs of datasets, MODA

and STEW, and SJTU Emotion EEG and Sleep-EDF, focusing on

four critical metrics: accuracy, recall, F1 score, and AUC.

The ablation study results presented in Table 6 and Figure 4

provide valuable insights into the contributions of different

components within PilotCareTrans Net. The full model, which

includes dynamic attention, temporal convolutional layers, and

multi-scale feature integration, consistently outperforms all ablated

versions across the MODA and STEW datasets. Removing

the dynamic attention mechanism led to the most significant

drop in performance, particularly in recall and AUC, indicating

that this mechanism is crucial for capturing the varying

importance of temporal information in EEG data. Without

temporal convolutional layers, the model also experiences a

noticeable decline in F1 score, reflecting the importance of

these layers in capturing local temporal patterns and reducing

noise. The removal of multi-scale feature integration, while

still allowing the model to perform reasonably well, results in

a moderate performance degradation, highlighting its role in

providing a comprehensive representation of the EEG data. These

findings confirm that each component of PilotCareTrans Net
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plays a vital role in the model’s success, with the dynamic

attention mechanism being particularly critical for optimizing

performance in complex, high-stakes environments like aviation

training.

Table 7 and Figure 5 further explores the impact of the different

components of PilotCareTrans Net on its performance, this time

using the SJTU Emotion EEG and Sleep-EDF datasets. Similar to

the findings from Table 6, the full model outperforms all other

ablated versions across all metrics. This consistency across datasets

indicates the robustness of the proposed architecture. The dynamic

attentionmechanism once again proves to be themost critical, as its

removal leads to significant drops in accuracy, recall, F1 score, and

AUC. This suggests that the ability to dynamically adjust attention

based on the input features is essential for accurately interpreting

the complex and subtle signals present in EEG data. The temporal

convolutional layers also play a significant role, as evidenced by

the performance decline when they are removed, particularly in

the Sleep-EDF dataset, where temporal patterns are crucial for

understanding sleep stages. The multi-scale feature integration is

slightly less impactful but still important, especially in the context

of the SJTU Emotion EEG dataset, where capturing a broad range

of features at different scales is necessary for accurately classifying

emotional states. These results underscore the importance of each

component in the PilotCareTrans Net, validating the design choices

made in its development.

We have expanded our experiments to include additional

datasets, namely the SJTU Emotion EEG Dataset and the Sleep-

EDF Dataset. The performance of our model, PilotCareTrans Net,

was evaluated and compared to several state-of-the-art models

including ViT, LSTM, GRU, TCN, CNN-LSTM, and Transformer

across these two datasets. Table 8 presents the results of the

performance metrics, including Accuracy, Recall, F1 Score, and

AUC for all models. From the results, we can observe that

PilotCareTrans Net consistently outperforms other models across

both datasets. On the SJTU Emotion EEG dataset, our model

achieved the highest Accuracy (97.31%), Recall (94.77%), F1 Score

(94.02%), and AUC (96.45%). Similarly, on the Sleep-EDF dataset,

PilotCareTrans Net achieved an Accuracy of 97.79%, Recall of

95.31%, F1 Score of 93.69%, and AUC of 95.87%, surpassing

the other models in all metrics. The performance improvements

of PilotCareTrans Net are particularly notable when compared

to Transformer and other deep learning models like GRU and

LSTM. This indicates the effectiveness of the model’s architecture,

which leverages advanced attention mechanisms and temporal

convolutions to capture complex relationships in the EEG data,

making it robust across a variety of real-world datasets. These

results demonstrate that our model is highly effective for EEG-

based health intervention decision-making, showing substantial

improvements over existing methods. The consistency of these

results across multiple datasets further highlights the generalization

capability of PilotCareTrans Net.

In addition to evaluating the classification performance of

our model, we also assessed its computational efficiency on the

MODA and STEW datasets. Table 9 presents a comparison of our

model, PilotCareTrans Net, with several state-of-the-art methods,

including ViT, LSTM, GRU, TCN, CNN-LSTM, and Transformer,

in terms of computational resources such as the number of

parameters, floating point operations (FLOPs), inference time, and T
A
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FIGURE 4

Ablation study on MODA and STEW datasets.

TABLE 7 Ablation study on SJTU emotion EEG and sleep-EDF datasets.

Model SJTU emotion EEG dataset Sleep-EDF dataset

Accuracy
(%)

Recall (%) F1 score
(%)

AUC (%) Accuracy
(%)

Recall (%) F1 score
(%)

AUC (%)

o/w Attention 90.95± 0.02 92.95± 0.03 88.83± 0.03 86.21± 0.02 89.37± 0.03 92.57± 0.02 85.84± 0.03 92.87± 0.02

o/w

Convolution

90.74± 0.02 93.21± 0.03 89.62± 0.02 84.81± 0.03 93.48± 0.02 85.92± 0.03 90.50± 0.03 85.66± 0.02

o/w

Multi-Scale

92.69± 0.03 92.68± 0.02 88.11± 0.03 91.94± 0.02 90.22± 0.03 92.24± 0.02 90.40± 0.02 87.31± 0.03

Full model 98.20 ± 0.02 94.41 ± 0.02 93.00 ± 0.03 94.16 ± 0.02 97.37 ± 0.03 94.36 ± 0.02 92.91 ± 0.03 93.08 ± 0.02

Bold values are the best values.

training time. PilotCareTrans Net outperforms the other models

in terms of computational efficiency. On the MODA dataset, our

model has the lowest number of parameters (190.68M), which is

significantly fewer than some of the other models like CNN-LSTM

(399.39M) and LSTM (340.22M). It also achieves the lowest FLOPs

(152.60G), compared to models like LSTM (393.40G) and TCN

(335.78G). Furthermore, PilotCareTrans Net shows an advantage

in inference time, with 173.96 ms, which is faster than the ViT

(257.53 ms) and Transformer (260.72 ms). Similarly, on the STEW

dataset, our model maintains its efficiency, achieving the lowest

training time (163.29 s) compared to other models like CNN-

LSTM (398.64 s) and LSTM (262.79 s). These results highlight that

PilotCareTrans Net not only achieves state-of-the-art performance

in terms of accuracy and recall but also demonstrates superior

computational efficiency. The lower parameter count and reduced

computational complexity make our model more suitable for real-

time applications, where computational resources may be limited,

such as in high-stakes environments like aviation training. The

efficiency improvements are particularly notable when compared

to large models such as LSTM and CNN-LSTM, which require

significantly more resources in terms of parameters, FLOPs, and

training time.

To further validate the effectiveness and generalizability of

PilotCareTrans Net, we conducted additional experiments on

two widely used EEG datasets: the SEED dataset and the DEAP

dataset. These datasets offer unique challenges in terms of their

experimental setups and target applications, providing an excellent

benchmark to assess the robustness of our proposed model.

The SEED dataset focuses on emotion recognition, utilizing EEG

signals recorded across different emotional states, such as positive,

neutral, and negative emotions. On the other hand, the DEAP

dataset emphasizes both emotion recognition and physiological

signal integration, combining EEG and peripheral physiological

signals to evaluate participants’ arousal and valence states. Both

datasets involve high-dimensional multichannel EEG recordings,

making them ideal for testing the ability of our model to handle

complex temporal and multivariate data. As presented in Table 10,

PilotCareTrans Net demonstrated superior performance on both

datasets compared to state-of-the-art models such as ViT, LSTM,

GRU, TCN, CNN-LSTM, and standard Transformers. On the
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FIGURE 5

Ablation study on SJTU emotion EEG and sleep-EDF datasets.

SEED dataset, our model achieved an accuracy of 98.39%, which

outperforms the next best model, GRU, by over 4%. Similarly,

PilotCareTrans Net achieved an accuracy of 98.28% on the DEAP

dataset, outperforming the GRU and CNN-LSTM models by a

substantial margin. In addition to accuracy, our model excelled

across other key metrics, including Recall, F1 Score, and AUC,

highlighting its ability to deliver consistently high performance.

The results underscore the ability of PilotCareTrans Net to

capture intricate temporal and spatial patterns in EEG data. The

dynamic attention mechanism and multi-scale feature integration

are particularly impactful, enabling the model to adaptively focus

on relevant temporal segments and aggregate information across

various time scales. This capability is crucial for datasets like

SEED and DEAP, where the temporal dynamics of emotional

states and physiological signals play a significant role. The results

demonstrate that ourmodel not only outperforms existingmethods

but also offers robust and generalizable performance across diverse

EEG datasets.

5 Discussion

This study addresses the critical challenge of monitoring and

supporting the cognitive and mental health of aviation trainees in

high-pressure environments. The increasing complexity of aviation

tasks places significant demands on trainees, making timely health

interventions essential for safety and performance. Traditional

approaches, including statistical models and early machine

learning techniques, often fail to capture the complex temporal

dependencies and non-linear dynamics of EEG signals. In contrast,

the proposed PilotCareTrans Net model demonstrates the ability to

overcome these challenges by integrating advanced Transformer-

based architectures with dynamic attention mechanisms and

temporal convolutional layers. These innovations allow the model

to accurately classify cognitive states such as stress, fatigue, and

alertness, enabling actionable health interventions. By offering a

data-driven solution, this research lays the groundwork for real-

time monitoring systems that could significantly enhance the

safety and efficiency of aviation training programs. The broader

implications of this work extend beyond the domain of aviation.

With further optimization, this technology could be adapted for

other high-stakes environments, such as military operations, space

exploration, or even clinical settings where EEG-based health

monitoring is critical. The model’s computational efficiency and

scalability make it particularly suitable for deployment in resource-

constrained environments, such as wearable devices for continuous

health monitoring. Moreover, the ability of PilotCareTrans Net to

process and integrate multi-scale EEG features positions it as a

versatile tool for a wide range of applications, including real-time

cognitive state assessments and early detection of mental health

risks. By addressing both the theoretical and practical challenges of

EEG analysis, this study provides a significant contribution to the

field and opens new avenues for future research and development.

6 Conclusion

This study addresses the challenge of modeling health

intervention decision-making for aviation students based on

electroencephalogram (EEG) data. By developing and validating
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TABLE 8 Comparison of models on SJTU emotion EEG and sleep-EDF datasets.

Model SJTU emotion EEG dataset Sleep-EDF dataset

Accuracy (%) Recall (%) F1 score (%) AUC (%) Accuracy (%) Recall (%) F1 score (%) AUC (%)

ViT (Dosovitskiy et al., 2021) 89.5± 0.03 89.08± 0.03 91.13± 0.02 92.39± 0.03 88.47± 0.03 89.59± 0.02 89.93± 0.02 92.61± 0.03

LSTM (Padha and Sahoo,

2024)

86.05± 0.03 91.91± 0.02 87.48± 0.03 86.44± 0.02 86.13 ± 0.03 85.76± 0.02 85.24± 0.03 87.59± 0.02

GRU (Ahammad et al., 2024) 93.4± 0.02 91.44± 0.03 87.55± 0.02 89.63± 0.03 90.47± 0.03 91.33± 0.02 90.65± 0.03 90.15± 0.02

TCN (Bai et al., 2018) 88.39± 0.03 87.05± 0.02 84.95± 0.03 91.47± 0.03 87.59 ± 0.02 92.93± 0.03 90.66± 0.02 86.82± 0.03

CNN-LSTM (Chakravarthi

et al., 2022)

86.52± 0.02 92.24± 0.03 88.48± 0.02 90.64± 0.03 88.17± 0.02 86.61± 0.03 87.19± 0.02 89.41± 0.03

Transformer (Vaswani et al.,

2017)

88.94± 0.02 85.87± 0.03 89.1± 0.02 90.32± 0.03 91.7± 0.02 86.65± 0.03 88.85± 0.02 84.25± 0.03

PilotCareTrans Net (ours) 97.31 ± 0.02 94.77 ± 0.03 94.02 ± 0.02 96.45 ± 0.03 97.79 ± 0.02 95.31 ± 0.02 93.69 ± 0.02 95.87 ± 0.03

Bold values are the best values.

TABLE 9 Comparison of models on MODA and STEW datasets (method and computational performance).

Method MODA dataset STEW dataset

Parameters
(M)

Flops (G) Inference
time (ms)

Training time
(s)

Parameters (M) Flops (G) Inference time
(ms)

Training time
(s)

ViT (Dosovitskiy et al., 2021) 308.58 279.09 257.53 287.39 310.93 358.32 227.92 221.65

LSTM (Padha and Sahoo,

2024)

340.22 393.40 229.84 375.21 234.97 367.38 318.35 262.79

GRU (Ahammad et al., 2024) 313.53 278.99 396.70 258.63 365.71 374.33 208.41 281.79

TCN (Bai et al., 2018) 351.34 335.78 292.80 236.97 330.60 360.65 266.32 382.62

CNN-LSTM (Chakravarthi

et al., 2022)

399.39 313.40 297.62 399.24 206.60 319.56 384.28 398.64

Transformer (Vaswani et al.,

2017)

201.83 298.14 260.72 387.18 339.17 299.07 253.40 283.94

PilotCareTrans Net (ours) 190.68 152.60 173.96 189.28 218.87 220.03 220.20 163.29

Bold values are the best values.
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a novel Transformer model called PilotCareTrans Net, we

present an effective solution to this problem. PilotCareTrans Net

combines dynamic attention mechanisms, temporal convolutional

layers, and multi-scale feature integration to capture complex

temporal dependencies and multiscale features in EEG data,

thereby enhancing the model’s ability to recognize various

cognitive states of aviation students. Experimental evaluations

demonstrated that PilotCareTrans Net outperforms current state-

of-the-art (SOTA) models across multiple public EEG datasets.

The experiments covered four datasets: MODA, STEW, SJTU

Emotion EEG, and Sleep-EDF. By comparing our model with

six other SOTA models, PilotCareTrans Net showed superior

performance in key metrics . Additionally, the ablation studies

validated the contributions of each module to the model’s overall

performance, with the dynamic attention mechanism proving

particularly crucial in capturing critical moments in EEG signals.

However, this study has two main limitations. First, although

PilotCareTrans Net performs exceptionally well in several tasks,

it may face challenges related to computational complexity

and storage requirements when dealing with extremely large

datasets, which could limit its widespread deployment in practical

scenarios. Second, the model’s interpretability remains an area for

improvement, especially in accurately identifying the specific EEG

bands or time segments that the attention mechanism focuses

on during decision-making. Future research directions could

include optimizing the model’s computational efficiency, such as

through model compression or distillation techniques, to reduce

its resource dependency. Another focus could be on enhancing

the model’s interpretability by developing visualization tools and

techniques that help users understand the basis and logic behind

the model’s health intervention decisions, thereby increasing its

credibility and applicability in real-world settings. With these

improvements, PilotCareTrans Net has the potential to play a more

significant role in health monitoring in aviation training and other

high-risk environments.
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