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Background: Studies have shown that inhibitory control is supported by frontal

cortex and small-world brain networks. However, it remains unclear how

regulating the topology changes the inhibitory control. We investigated the

effects of small-worldness upregulation training on resting-state networks via

fNIRS neurofeedback training, which will contribute to a deeper insight of

inhibitory control.

Methods: A five-day training session was used to regulate the small-worldness

of the frontal cortex, and the color-word Stroop task was tested before and

after training. Fifty healthy adults were recruited and randomly assigned to the

sham feedback group (sham group), or intermittent fNIRS-based brain network

feedback group (fNIRS-NF group). On the basis of the exclusion of incomplete

data, 45 valid data sets were retained and analyzed (sham: 21, fNIRS-NF: 24).

Results: Training increased resting-state small-worldness and improved Stroop

task performance, with a significant correlation between these changes (r

= −0.32, p = 0.032). The fNIRS-NF group exhibited reduced hemodynamic

activation (βvalue decreased, indicating lower cognitive load) during posttest

and follow-up. Notably, the right dorsolateral prefrontal cortex (dlPFC) showed

greater intra-regional connectivity increases than the left dlPFC, suggesting

asymmetric plasticity.

Conclusion: Intermittent fNIRS neurofeedback effectively modulates resting-

state small-world networks and enhances inhibitory control, with effects

sustained for at least one week. These findings highlight small-worldness as a

novel target for cognitive interventions.

KEYWORDS

functional near-infrared spectroscopy, neurofeedback training, emergent property,
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GRAPHICAL ABSTRACT

Based on the small-world network model, intermittent neurofeedback training can directly regulate resting-state brain network properties. This
intervention not only enhanced small-world characteristics but also coincided with reduced conflict effects in the Stroop task. Correlation analyses
revealed a causal relationship between small-world network properties and inhibitory control. Notably, participants receiving real feedback
demonstrated significantly lower brain activation during post-training Stroop task performance compared to the sham feedback group, indicating
reduced cognitive load. Although the feedback algorithm exhibited no regional selectivity, we observed preferential increases in right dorsolateral
prefrontal cortex Based on the small-world network model, intermittent neurofeedback training directly modulates resting-state brain network. This
intervention enhanced small-world properties while simultaneously reducing the conflict effect in the Stroop task. Correlational analyses further
revealed a causal link between small-world network property and inhibitory control. Additionally, we observed that participants in the fNIRS-NF
group exhibited reduced brain activation during the same Stroop task post-training, indicating lower cognitive load compared to the sham feedback
group. Although the feedback algorithm did not selectively target specific brain regions (nodes), the fNIRS-NF group showed a greater increase in
functional connections within the right dorsolateral prefrontal cortex (DLPFC) compared to the left DLPFC. This asymmetry may reflect inherent
differences in neuroplasticity across brain regions.

Introduction

Application of graph theory to noninvasive brain imaging in
humans has yielded critical insight into mechanisms of cognitive
control (Bassett and Khambhati, 2017). Could a subject be trained
to modulate the graph property of the global network? Previous
studies have shown that can be achieved by fNIRS neurofeedback
training in the training state (Zeng et al., 2023), but whether the
resting state network can be modulated is still unknown.

In neuroscience, there is a growing consensus that functions
form an emerging property of the interactions between brain
areas (Pessoa, 2022). Emergence refers to the unexpected collective
spatiotemporal patterns exhibited by large complex systems, which
are composed of many nonlinear interacting elements (Chialvo,
2010). For example, facial recognition and working memory are
emergent functions that combine many small pieces to create a
greater whole (de Haan et al., 2002; Hernandez et al., 2019; Miller
et al., 2024; Postle, 2006), whereas the linguistic form emerges from
the operation of self-organizing systems (D’Souza and D’Souza,
2019; Leary, 1999; Macwhinney, 1998). Anderson proposed that

higher cognitive functions can reuse brain regions that emerged
earlier in the evolutionary process and thus yield more scattered
activations. He also asserted that areas at the front of the brain
are evolutionarily newer, whereas those at the back of the brain
are older (Anderson, 2016; Anderson and Penner-Wilger, 2013).
Inhibitory control is an advanced cognitive function that is closely
related to the prefrontal cortex (PFC), but much of our current
knowledge of the role of the PFC in cognitive control has been
derived from the modular paradigm, in which specific functions are
ascribed to localized subdivisions of the PFC, with the underlying
assumption being that they act as independent processors for
specific cognitive functions (Menon and D’Esposito, 2022).

Response inhibition paradigms provide important markers for
clinical research and assessments. However, the inhibitory control
hypothesis is controversial. Several researchers have argued that
the attempt to map a discrete inhibitory ability onto a dedicated
brain region is misguided (Erika-Florence et al., 2014; Hampshire
and Sharp, 2015). Hampshire proposed the idea that inhibitory
control is an emergent property of biased local competition and that
behavioral inhibition is an emergent property of common neural
mechanisms that are ubiquitous throughout systems in the human
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brain (Erika-Florence et al., 2014; Hampshire and Sharp, 2015).
From a biological evolutionary perspective, these studies inferred
that higher cognitive functions may be more involved in networked
tendencies and tried to find evidence to support this.

In recent years, more graph theory methods have been used
for fNIRS research, (Li et al., 2024). Researchers have theorized
that the human brain has significant small-world properties, which
are the result of natural selection of the brain under a cost–
efficiency balance (Bassett and Bullmore, 2016; Meunier et al.,
2010). Humphries defined a precise measure of “small-worldness”
according to the trade-off between high clustering coefficient
(Gamma) and short characteristic path length (Lambda), and
small-worldness (Sigma = Gamma/Lambda) was derived from
these metrics to determine a quantitative, continuous grading of
network status (Humphries and Gurney, 2008). Several graph
theory-based studies have shown that small-world property in
the brain influence inhibitory control. For example, the core
deficit in attention-deficit hyperactivity disorder (ADHD) patients
is inhibitory control, and the brains of these patients exhibit
regularized changes in small-world networks (Wang et al., 2009),
whereas self-control behaviors related to inhibitory control show
increased randomness in brain networks (Zhang et al., 2016).
These studies attempted to support a network view of inhibitory
control through correlation analysis. However, correlation is not a
strong causal inference. To find conclusive evidence that inhibitory
control is supported by the underlying network, we can perturb
the brain network topology directionally through neurofeedback
training.

Neurofeedback training is a promising approach for perturbing
the brain network (Pamplona et al., 2020; Xia et al., 2021; Yu et al.,
2021; Zeng et al., 2023), and it is one of the few methods that
can directly modulate the brain network topology property. This
method can answer the question of whether a causal relationship
is present between the global topological properties of the network
and the emergence of inhibitory control.

Resting-state functional connectivity could pinpoint network
hubs, such as cognitive control areas (Cole et al., 2013), that
interact with many other brain areas and serve as a potential target
for modulating distributed brain dynamics with neurofeedback.
It is intuitively resting-state brain network regulation is difficult
because it lacks the effects of “stimulus-response automation”
(Beauchamp et al., 2016); and relies only on some form of “muscle
strength” exercise (Baumeister et al., 2007; Wang et al., 2023), but
it may be helpful to embed the transfer task in the training. For
the functional near-infrared spectroscopy (fNIRS) neurofeedback
training, several studies have proposed that intermittent feedback
is superior to continuous feedback (Emmert et al., 2017; Hellrung
et al., 2018; Johnson et al., 2012; Oblak et al., 2017). This is due
to (1) the inherent delays exhibited by hemodynamic responses
and the related feedback and (2) the limited cognitive resources
possessed by individuals (Hellrung et al., 2018); individuals
cannot effectively handle feedback information and self-regulation
tasks simultaneously, especially for the purpose of resting-state
perturbation. While the stimulation of continuous feedback
distracts the subject, no feedback trials are embedded as a transfer
task in intermittent feedback training, which is closer to the real
resting state.

In this study, small-worldness was selected for upregulation-
based brain network training, where intermittent fNIRS
neurofeedback was used to perturb resting-state brain networks,

a color-word Stroop task (CWST) was used to evaluate inhibitory
control performance, and a sham feedback group was recruited for
control purposes.

Materials and methods

Trial settings and sample size

The trial was conducted in Xi’an, China, from November 2023
to January 2024. The study was approved by the Ethics Review
Committee of the Fourth Military Medical University, and all
the subjects carefully read and signed the informed consent form
prior to the cognitive experiments. The experiment adopted a
randomized, double-blind design.

The study consisted of cognitive performance measurements at
three time points: before the training process (pretest), 1 day after
the training process (posttest), and 1 week after the end of training
(follow-up assessments).

The sample size was calculated via G∗Power version 3.1,
where the mixed-design repeated-measures analysis of variance
(ANOVA) model was adapted. We expected a medium inhibitory
control performance effect on the basis of a previous NF study that
reported a medium-to-large effect on executive functions (Da Silva
and De Souza, 2021). The effect size was set at 0.25, α = 0.05, 1-
β = 0.8, and the number of measurements was 2. The required
minimum sample size was 34 (17 participants in each group).

Participants

A total of 50 healthy adults were recruited to participate in
this study. The participants were all medical college students,
and patients with brain trauma or mental illness and those
who underwent recent cognitive experiments were excluded. The
participants were randomly assigned to the sham feedback group
(sham) or intermittent fNIRS neurofeedback group (fNIRS-NF).
Their gender, age, and educational background were balanced, but
the hormonal state of women of reproductive age was not taken into
account, which may be an important influencing factor (Bazanova
et al., 2017). The participants were not told what group they were
in, nor was the experimenter, and they were all asked if they knew
their experimental grouping after the experiment. All the subjects
completed the Edinburgh inventory (Oldfield, 1971), and all of
them were right-handed. The data from 4 subjects were excluded
because of incomplete data records. The data from 21 subjects in
the Sham group (14 females) and 24 subjects in the fNIRS-NF group
(11 females) were used in this study. We used the independent t-test
to compare the ages and education years of the groups, and no
significant differences were observed, as shown in Table 1.

TABLE 1 Demographic information for the participants in each group.

Number of
participants

Age (SD) in
years

Education
years (SD)

Sham 21 (14 female) 21.42 (2.13) 15.82 (2.11)

fNIRS-NF 24 (11 female) 20.68 (1.35) 15.25 (1.32)

p-value – 0.16 0.27
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FIGURE 1

Schematic of channel layout (red dots, sources; blue dots, detectors; yellow or white squares, measurement channels; numbers indicate channel
numbers).

TABLE 2 Mapping of Brodmann area to channels.

Brodmann area Right
hemisphere

Left
hemisphere

9(46)-Dorsolateral
prefrontal cortex

1, 10, 18, 19, 29 16, 24, 25, 30

6-Premotor and
supplementary motor cortex

3, 4, 12, 13 5, 6, 7, 8, 14

8- Includes frontal eye fields 2, 11, 20, 21, 26, 27 15, 22, 23, 28

45-Pars triangularis Broca’s
area

9 17

10-Frontopolar area 31, 32, 34 33, 35

Brain imaging tools and region of
interest definition

In this study, an optical brain function imaging device
(LABNIRS, Shimadzu Corp., Japan) was used to monitor the
concentration of hemoglobin in the frontal cortex via a three-
wavelength near-infrared semiconductor laser (780 nm, 805 nm,
and 830 nm). The sampling rate was set to 25.6 Hz. The PFC was
chosen as the ROI for feedback training because of its critical role
in the IC. We designed a “T” layout on the frontal lobe, and the
probe arrays allowed for 35 different measurement channels, with
3.0 cm of source-detector separation. Note that no short channel
was employed in our experiment, as shown in Figure 1.

The actual coordinates of the channels were obtained via the
3D locator (Fastrak3d, Polhemus Corp., USA) from standard head
mold, and then the mapping between the MNI coordinates and
the Brodmann area was calculated via probability registration. The
results showed that most channels are located in the traditionally
defined PFC (BA8 to 14 and BA44 to 47) (Carlen, 2017), as shown
in Table 2.

fNIRS-NF protocols

The neurofeedback training lasted for a total of 8 days,
including behavioral tests on Days 1, 7, 14 and 5 training sessions
from Days 2 to 6. There were 20 training blocks per day, with a 1-
min rest at the end of every fifth block. The entire training protocol
is shown in Figure 2A.

The participants sat in front of a computer with their eyes 60–
70 cm away from the screen and kept their bodies, especially their
heads, relaxed before starting the training process, as shown in
Figure 2B. Before the everyday training process, a 180-s resting-
state scan was performed by the subjects, who were asked to open
their eyes and relax, keep their bodies and heads still, and try
not to think about or recall anything, as shown in Figure 2C.
The experimental instructions were presented after the resting-
state scan, which required the participants to repeat two sequence
tasks. In Task 1, participants were asked to count backward from
a starting value using a specified increment for 12 s to limit their
cognitive state as the baseline (Macduffie et al., 2018). In Task 2, one
second after the black screen, the neurofeedback training regulation
lasted for 30 s. The single-block task is shown in Figure 2D.

In the regulation phase, a green thermometer indicator bar and
a yellow triangular slider were displayed on a black screen, where
the triangle slider represented the immediate small-worldness of
the brain network (for the calculation method, see the following
section: Online Calculation of the Feedback Scores), whereas
the thermometer indicator bar represented the cumulative small-
worldness value of the brain network in the block (with a refresh
rate of 3 Hz). The participants were instructed to increase the
thermometer value as much as possible; they could use any
psychological strategy other than breathing adjustments, physical
changes, or facial expression movements; and they were informed
that an additional monetary reward (up to CNY 900) would be paid
in proportion with their increased scores. They received this money
after all the experiments were completed.

Behavioral testing

Because no significant difference in Stroop effect no matter
whether Chinese or English orthographies were used (Lee and
Chan, 2000), the Chinese version of color–word Stroop task
(CWST, 4 colored Chinese characters) was used in this study as
the behavioral test during the pretest, posttest, and follow-up test
phases. During the experiment, one block consisted of 4 trials in
sequence. A fixation was presented for 0.5 s, and each color-word
trial was presented for 1.2 s. The participants rested for 17–21 s at
the end of each block. A total of 24 blocks were pseudorandomly
arranged in one task, and it took approximately 11 min, as shown
in Figure 3.
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FIGURE 2

Experimental protocols. (A) The entire training and testing process of the experiment. (B) The fNIRS-NF training scenario. (C) The resting-state scan
phase. “+” indicates fixation. (D) A single-block sequence of the training process. The sham feedback group was provided feedback signals recorded
from other participants before; the real-time feedback block was provided true signals; and the self-regulation block did not receive feedback
signals on days 3 and 5 but was provided their regulation scores after the daily session.

FIGURE 3

Behavioral test of the CWST. (A) One block of the CWST. (B) Block design and arrangement. Three conditions were included, and each condition
consisted of 8 blocks with a counterbalanced order. “+” indicates fixation.
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Online calculation of the
feedback scores

We used the in-house MATLAB software R2017a (MathWorks
Inc., Natick, Massachusetts, USA). This software runs on a
connected computer and accesses data files in the NIRS system.
The sampling rate of the employed fNIRS equipment was 25.6 Hz,
and the segment length was 256 points; a time window of 10 s was
provided to calculate the feedback score of the brain network. To
reduce the physiological noise caused by heartbeats, respiration,
and other physiological processes, the recorded fNIRS signals were
filtered with a Butterworth bandpass filter with cutoff frequencies of
0.01 and 0.2 Hz. Finally, feedback latency was shown to be a critical
parameter, and a shorter delayed latency is beneficial for imply
learning (Belinskaya et al., 2020). Thus, the refresh rate was set to
a maximum of 3 Hz (333 milliseconds feedback latency), which is
limited by the computational performance.

The oxyhemoglobin (OxyHb) values of all the channels were
recorded 10 s before, and the connection strength (r) between each
channel pair was calculated via Pearson correlation. Then, the r
values were converted into Z scores because they did not follow a
Gaussian distribution. The conversion function was as follows:

Z =
ln (1+ r)

2ln (1− r)

As a result, a functional connectivity matrix M with a size of 35× 35
was constructed, where the channels were nodes and the Z values
were edges. Then, 30% of the larger edges are set to 1, whereas
the other edges are set to 0 (an adjacency matrix with a sparsity
of 0.3 is constructed). The small-worldness was calculated via the
Humphries method via the Gretna v2.0.0 toolbox (Wang et al.,
2015), as is shown in Figure 4.

The same method was used to calculate the baseline small-
worldness sequence (the backward counting phase), and the
feedback scores were corrected via the following formula (Xia et al.,
2021):

Scorei =
50 (σi − σbase + 3SD)

3SD

Here, σi is the small-worldness of the ith trial, and σbase and
SD are the mean and standard deviation of the baseline small-
worldness values, respectively. Feedback index was normalize to
1–100 through this transformation, when σi = σbase, score = 50; the
scores were presented to the subjects and recorded in the hard disk,
which were proportional to the participant’s monetary reward.

Preprocessing and statistics of offline
data

We performed the following preprocessing steps to offline data
via NIRS_KIT v3.1 (Hou et al., 2021b) and Homer 2 (Huppert et al.,
2009) based on MATLAB 2017a.

(1) The intensity data (raw data) were converted to optical
density (OD) values.

(2) A bandpass filter (cutoff frequency: 0.01–1) is used to remove
linear trends and artifacts preliminarily.

(3) Motion artifacts were identified on the basis of amplitude and
standard deviation thresholds. If the signal for any channel
changes by more than 40 times of standard deviation or 4 times
of amplitude over 3 s interval, then this time point is marked
as a motion artifact.

(4) Cubic spline correction was performed on the motion artifacts
identified in step 3.

(5) A bandpass filter (cutoff frequency: 0.01–0.08) was applied to
the data to further reduce the noise level (Pinti et al., 2019).

(6) The OD data were converted to concentrations. As young
adult participants were included in our experiment, we chose
[6.0 6.0 6.0] as the differential path length factor (DPF), as
suggested in Chiarelli et al. (2019) study.

If it is task state (Stroop) data, two additional steps of processing
were required:

(7) The denoised concentrations were segmented into blocks and
averaged to the hemodynamic response function (HRF).

(8) HRFs were fitted by general linear model (GLM) to estimate
activation quantity, named β .

To investigate whether the fNIRS-NF training group presented
improved cognitive performance compared with the sham group,
we analyzed the all-change Stroop effect via mixed-design repeated-
measures ANOVA in SPSS 23. In addition, the relationships
between improvements in inhibitory control (Stroop effect) and
changes in the brain network (small-worldness) were investigated
via Pearson correlation analysis. Finally, we analyzed the changing
properties of node degrees, averaged and visualized the regulatory
patterns of the brain network. In these analyses, p < 0.05
was considered significant, and multiple comparisons using false
discovery rate (FDR) correction (Benjamini and Yekutieli, 2001).

Results

Changes in the feedback score

For the fNIRS-NF group, the feedback score showed a zigzag
rise over 5 training sessions. The scores of the 4th and 5th training
sessions significantly increased compared with those of the 1st
training session (Day 4: t = −2.57, p = 0.017; Day 5: t = −2.36,
p = 0.027), as shown in Figure 5.

HRFs and brain activation of CWST

We calculated the average HRF across all channels for the
CWST, and compared them before and after training. In general,
the grand average OxyHb concentration of the fNIRS-NF group
decreased more than that of sham group after training, especially
for congruent and incongruent conditions, as shown in Figure 6. To
further assess changes in brain activity of CWST, we estimated the
level of brain activation using GLM, where OxyHb HRFs were fitted
for β values. The β decrease during the test period was estimated
and independent sample t-tests were performed, which showed that
the fNIRS-NF group was significantly greater than the sham group
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FIGURE 4

Schematic illustration of the small-worldness calculation. Crand and Lrand were created by averaging the clustering-coefficient and path length of
the random graphs. Next, γ and λ were computed, defined as Cnet/Crand and Lnet/Lrand, as well as the σ as the ratio between γ and λ expressing the
small-worldness of Gnet.

FIGURE 5

The feedback score of the fNIRS-NF group over 5 training sessions. The error bars indicate the SEM. A paired t-test was used for within-group
analyses. *p < 0.05.

during the posttest when the neutral condition and incongruent
condition. The detailed statistical data were shown in Table 3.
In addition, deoxyhemoglobin (DxyHb) showed a similar trend,
which is not shown in this paper.

In addition, each channel was analyzed individually to identify
key brain regions, results were shown in Figure 7.

The results of two sample t-test showed that the
activation level decreased significantly in all task conditions
during the post test period. This includes channel 31 for

neutral condition (t = 3.76, p < 0.001), channel 15 for

congruent condition (t = 3.41, p < 0.001), and channel

7 for incongruent condition (t = 3.42, p < 0.001). We

further examined the long-term effect of training and

found that the reduction of brain activation level could

still be observed in the follow-up one week after the

training. The results of two sample t-test showed that

the activation level decreased significantly in congruent
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FIGURE 6

Changes in HRFs after training. (A–C) The grand average of all channels before (Day 1) and after (Day 7+Day 14) training for neutral congruent and
incongruent condition. (D) Brain activation level (β) were estimated by GLM.

condition during the follow-up test in channel 6 (t = 3.61,
p < 0.001).

Changes in inhibitory control and
small-worldness of resting state network

The Stroop effects were submitted to a mixed-design ANOVA.
There was a significant main effect of day [F(1, 44) = 17.81,
p = 0.000, η2 = 0.29], and group [F(1, 44) = 9.75, p = 0.003,
partial η2 = 0.19]. The interaction effect between group and
day was significant [F(1, 44) = 14.870, p = 0.000, partial
η2 = 0.26]. Therefore, simple main effects were run. Stroop
effect was not statistically significantly different in the fNIRS-NF

group (M = 91.99, SEM = 8.51) compared to the sham group
(M = 108.93, SEM = 9.09) at the beginning (pre-) of the training
[F(1, 44) = 1.85, p = 0.181, partial η2 = 0.041]. However, Stroop
effect resulted statistically significantly different in the fNIRS-NF
group (M = 47.27, SEM = 9.83) compared to the Sham (M = 106.91,
SEM = 10.51) at the end of the training (post-) [F(1, 44) = 17.19,
p = 0.000, partial η2 = 0.286], a mean difference of =59.64, 95%
CI [=88.65, =30.63]. Therefore, the pre–post comparison between
the fNIRS-NF group and the sham group recorded a significant
reduction in Stroop effect levels in the participants of the fNIRS-
NF group.

The small-worldness were submitted to a mixed-design
ANOVA. There was a significant main effect for group, but not for
time. The small-worldness of the fNIRS-NF group was significantly
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TABLE 3 Comparison between groups for the grand average of beta values.

Period Condition Group 1 β

(mean ± SDE, × 10−4)
t-value p-value

Posttest-pretest Neutral Sham −6.48± 2.64 2.27 0.028

fNIR-NF −15.07± 2.68

Congruent Sham −3.79± 2.02 1.65 0.106

fNIR-NF −10.24± 3.20

Incongruent Sham −10.30± 2.35 2.23 0.031

fNIR-NF −17.78± 2.38

Follow-up-pretest Neutral Sham −3.30± 1.97 0.16 0.874

fNIR-NF −3.82± 2.49

Congruent Sham −3.03± 2.44 1.81 0.077

fNIR-NF −8.95± 2.18

Incongruent Sham −7.01± 2.16 1.27 0.210

fNIR-NF −10.63± 1.87

FIGURE 7

Changes in brain activation after training. (A) 1β were calculated by subtracting the pretest from the posttest, and independent sample t-tests were
performed. (B) In the figure below, the activation difference statistics (T-value) for each test period and each task condition were labeled on the
channel layout. The level of significance was corrected by FDR (p < 0.05), *p < 0.05.
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greater than that of the sham group [F(1, 44) = 4.23, p = 0.046,
partial η2 = 0.089]. The interaction effect between group and day
was significant [F(1, 44) = 3.53, p = 0.034, partial η2 = 0.07]. Thus,
simple effects were run. Small-worldness resulted significantly
different in the fNIRS-NF group (M = 1.31, SEM = 0.03) compared
to the Sham (M = 1.20, SEM = 0.03) at posttest [F(1, 44) = 6.19,
p = 0.017, partial η2 = 0.13], 95% CI [−0.202, −0.021]. Therefore,
the pre–post comparison between the fNIRS-NF group and the
sham group recorded a significant reduction in small-worldness in
the participants of the fNIRS-NF group.

We then took the pretest data as the baseline and subtracted
them from the posttest (follow-up test) data to determine the lasting
effects. Independent-sample t-tests between groups revealed that
the decrease of Stroop effect at posttest in fNIRS-NF group was
significantly greater than that in sham group (t =−3.86, p = 0.000),
and the increase of small-worldness at posttest in fNIRS-NF group
was significantly greater than that in sham group (t = −2.67,
p = 0.011). And there was significant difference between groups
at the follow-up test of small-worldness (t = −2.10, p = 0.043).
We further extracted the clustering coefficient and characteristic
path length in different periods, and the results showed that the
characteristic path length of the fNIRS-NF group was significantly
larger than that of the sham group (t =−2.11, p = 0.041). The results
were shown in Figures 8A, B.

We then analyzed the correlation between the increment
of resting-state small-worldness (1Sigma) and cognitive
improvement (1Stroop) at posttest and follow-up tests. The
results showed that 1Stroop was significantly negatively correlated
with 1Sigma at posttest (r =−0.32, p = 0.032) and was significantly
positively correlated with 1Lambda at posttest (r = 0.36, p = 0.014),
as shown in Figures 8C, D.

Differences in cortical plasticity

Due to the global topological properties of all nodes as
modulation targets, the feedback algorithm has no selectivity for
brain regions. However, the inherent plasticity differences in the
cortex may lead to spatial imbalance in network evolution. We
then extracted the adjacency matrix of the real group before and
after training, obtained and visualized the differences in the brain
network through subtraction, as is shown in Figures 9A, B. For
cortical plasticity, BA9 and BA46 in the left hemisphere have a
greater probability of decreasing connections, whereas marginal
brain regions in the right hemisphere have a greater probability
of increasing connections, as shown in Figure 9B. However, this
pattern of spatial consistency was not present in the sham group.

To examine the differences between brain regions, the left
(right) dlPFC and frontal pole were assigned as regions of interest,
named ROI1, ROI2 and ROI3, as was shown in Figure 9C. The
changes in edge number were extracted separately from different
ROIs and periods, and submitted to repeated measurements
ANOVA for testing the differences in cortical plasticity. There was a
significant main effect for the follow-up [F(2, 46) = 4.36, p = 0.019],
but not for posttest period [F(2, 46) = 2.62, p = 0.084]. Further
testing showed that ROI1 was significantly greater than ROI2 in
posttest (t = 2.34, p = 0.028) and follow-up (t = 2.35, p = 0.028);
ROI3 is significantly greater than ROI2 (t = 2.81, p = 0.009), results
were shown in Figure 9D.

Discussion

At the end of the experiment, both the subjects and the
experimenter were asked by questionnaire whether they knew the
experimental grouping, and they all answered no. On the basis
of double blinding and excluding the placebo effect, we propose
that fNIRS-based intermittent neurofeedback training directly
perturbs the resting-state brain network and improves cognitive
performance. Intermittent feedback allows subjects sufficient time
to verify their assumptions in a scenario similar to the resting
state, and no-feedback self-regulation sessions interspersed in the
training protocol may serve as a reinforcement for the transfer from
the training state to the resting state.

Three aspects including task state activation, cognitive
performance and resting state brain network were analyzed to
examine the effectiveness of training. The results indicated that not
only can training have beneficial effects on all three aspects in the
short term (1 day after training), but the effects can still be observed
1 week after training. For example, the activation of the Stroop task
in fNIRS-NF group is still significantly reduced compared to the
sham group after 1 week, indicating that training can lead to a long-
term decrease in cognitive load. More importantly, suppressing
impulsive responses and Stroop conflict effects were believed to
be associated with IC (Diamond, 2020; Oldrati et al., 2016), which
provides causal inference evidence about inhibitory control and
small-world networks.

The brain is an interconnected whole, advanced cognitive
functions activate the brain in the form of networks (Erika-Florence
et al., 2014). Although fNIRS-NF training based on the average
signal a single brain region is an effective method (Hou et al., 2021a;
Nouchi et al., 2022), the regulation of global networks may be
more exciting because circuits create networks by stringing together
many brain regions to orchestrate a brain symphony (de Schotten
and Forkel, 2022). Understanding feedback signals is an important
process, but it may be covert (Ramot et al., 2016; Ramot and Martin,
2022). An obvious advantage of network-based feedback is that it
is more difficult for individuals to understand the meaning of the
feedback signal, thus avoiding conscious manipulation of scores but
still achieving good results. For example, latest research has used
fMRI neurofeedback to sculpt the brain without the participants’
explicit awareness (Iordan et al., 2024).

This also provided a new perspective on inhibitory control.
Previous study has demonstrated that enhancing prefrontal small-
worldness through feedback training could improve inhibitory
control, which is the result of regulating a brain network from
randomness to regularity (Zeng et al., 2023). Similarly, in this
study, cognitive improvement was accompanied by network
regularization, but it seems to contradict the brain network
regularization of ADHD patients (Cao et al., 2014; Cao et al., 2013;
Wang et al., 2009). Actually, they may be two sides of the same
coin. Like the “heart rate reserves” of professional athletes, long-
term exercise training results in a decrease in the resting heart
rate (Grace et al., 2018), which is not the same as the inherently
low resting heart rate shown by antisocial personalities (Portnoy
and Farrington, 2015); the former is a resource reserve, and the
latter is a clinical pathology. In this study, an increase in small-
worldness increased resting-state brain network regularity, which
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FIGURE 8

Changes in Inhibitory Control, Small-Worldness and their relationships. (A) Changes in the Stroop effect from the pretest data to the posttest
(follow-up test) in the CWST. All the data are presented as the means (bars) ± standard errors (error bars). An independent-sample t-test was applied
for between-group analyses. (B) Changes in small-worldness, clustering coefficient and characteristic path length during different periods after
training. (C,D) Relationships between cognitive improvements and brain network changes. Pearson’s correlation was applied to analyze the
cognitive-network correlations of all the subjects. *p < 0.05, ***p < 0.001.

reduces basal consumption while expanding the dynamic of the
brain network.

As is well known, right inferior frontal gyrus and dlPFC were
crucial brain region for inhibitory control (Hampshire et al., 2010;
Angius et al., 2019), but extended cortical regions included in
PFC were used for regulation in this study. Some reasons can
be used to explain this setting of this experiment: brain regions
involved in inhibitory control may be dedifferentiated (Rajah and
D’Esposito, 2005; Rieck et al., 2021) and compensatory (Cabeza,
2002; Goh, 2011; Hartwigsen, 2018; Rajah and D’Esposito, 2005;
Reuter-Lorenz et al., 2000; Reuter-Lorenz and Park, 2014). Owing
to the top-down regulatory role of the frontal cortex in the
posterior brain region, the wider recruitment of the PFC by the
regularized network makes this cognitive control scheme more
precise and efficient, enhancing the selective and specific responses
to stimuli (Gazzaley et al., 2008; Gazzaley et al., 2005). The idea
that inhibitory control is solely determined by the dorsolateral PFC
is not rigorous (Anderson, 2016; Anderson and Penner-Wilger,
2013). Higher brain functions in humans, such as perception,
learning and goal-directed behaviors, are often hypothesized to
depend on the collective dynamics of many interacting neurons
distributed throughout the cortex.

However, typical signs of cooperative phenomena are not
accessible through single-neuron investigations (Chialvo, 2010).
The entire PFC plays an important role in inhibitory control,
and individuals may recruit different brain regions and neurons
to perform the same task in a nonlinear, flexible self-organizing

manner; this can result in an unexpected collective spatiotemporal
pattern, which is a typical emergent phenomenon.

Brain network visualization shows that the brain is recruiting
resources from relatively isolated brain regions at the periphery
by establishing long-distance connections, which allow for broader
interactions between nodes, however, this is a self-organizing
behavior without central control. This is similar to the way
that ants in colonies are forced to follow their own pheromone
trails and explore every direction yet show collective intelligence
for foraging behaviors (Fromm, 2005). And the latest research
from Stanford University found that when ants work in groups,
their performances rise significantly, which is known as collective
cognition (Dreyer et al., 2024). The brain and ant colony have
similar characteristics: they consist of simple elements (ants or
neurons), each of which has simple behavior but exhibit complex
and unexpected spatiotemporal patterns when they form a whole
through nonlinear interactions.

In addition, visualization of brain network and comparison
between ROI cortices provided us with some preliminary insights
about cortical plasticity. We found some interesting patterns of
node behavior: the left region (e.g., left-dlPFC) is more likely to
reduce connections, whereas the marginal region on the right
(e.g., right-dlPFC) is more likely to increase connections. This
suggested that the connections change asymmetrically, and there
are differences in the plasticity of cortical areas. This may be related
to the intrinsic structure of the brain and provides targets for future
functional connectivity interventions.
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FIGURE 9

Differences in brain network rewiring and cortical plasticity. (A) The adjacency matrix of the brain network for the fNIRS-NF group. (B) Average
changes in the brain network during training in the fNIRS-NF group. Thirty-five nodes are localized to the brain template according to their MNI
coordinates, and their size indicates the nodal degree. The node color indicates the change in node degree from pretest to posttest (follow-up test).
The color lines indicate the increase (red) or decrease (blue) in the edge, where the color bar indicates an increase (red end) or decrease (blue end)
in the connections. (C) Definition of ROI1 (channel 8, 10, 19 and 29), ROI2 (channel 16, 24, 25 and 30) and ROI3 (channel 31, 33, 34 and 35).
(D) Statistics of the number of connections within ROI. Paired t-test, *p < 0.05, **p < 0.01.

Some limitations need to be noted. Firstly, the study did
not include patients with IC defects, such as ADHD and autism
spectrum disorder, and therefore cannot be directly applied to
clinical practice. In addition, the 5 training sessions did not
seem to have reached the maximum limit for improvement, and
the intervention time can be further extended. Finally, given
the diversity of brain network topology properties and cognitive
functions, we cannot guarantee that this method is optimal for
improving inhibitory control, and further study is needed to
elucidate the many-to-many relationship between brain network
topology and cognitive function.

Conclusion

Intermittent network-based fNIRS neurofeedback training is
an effective method for regulating resting state brain networks,
which is different from traditional neurofeedback based on
modular paradigms. Although the network signals are difficult to
understand, they are still effective. Using the small world brain
network as a feedback target can improve inhibitory control and
reduce cognitive load, and the training effect can be lasted for

more than one week. Although feedback algorithms do not target
specific nodes, cortical regions exhibit different responses: the
connections of the right dlPFC increase while those of the left
dlPFC decrease, indicating differences in brain plasticity between
these regions. Overall, this study provides potential targets for
future neurofeedback interventions and offers additional insights
into inhibitory control.
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