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This paper explores the intersection of brain–computer interfaces (BCIs) and artistic 
expression, showcasing two innovative projects that merge neuroscience with 
interactive wearable technology. BCIs, traditionally applied in clinical settings, have 
expanded into creative domains, enabling real-time monitoring and representation 
of cognitive states. The first project showcases a low-channel BCI Screen Dress, 
utilizing a 4-channel electroencephalography (EEG) headband to extract an 
engagement biomarker. The engagement is visualized through animated eyes 
on small screens embedded in a 3D-printed dress, which dynamically responds to 
the wearer’s cognitive state. This system offers an accessible approach to cognitive 
visualization, leveraging real-time engagement estimation and demonstrating 
the effectiveness of low-channel BCIs in artistic applications. In contrast, the 
second project involves an ultra-high-density EEG (uHD EEG) system integrated 
into an animatronic dress inspired by pangolin scales. The uHD EEG system drives 
physical movements and lighting, visually and kinetically expressing different EEG 
frequency bands. Results show that both projects have successfully transformed 
brain signals into interactive, wearable art, offering a multisensory experience for 
both wearers and audiences. These projects highlight the vast potential of BCIs 
beyond traditional clinical applications, extending into fields such as entertainment, 
fashion, and education. These innovative wearable systems underscore the ability 
of BCIs to expand the boundaries of creative expression, turning the wearer’s 
cognitive processes into art. The combination of neuroscience and fashion tech, 
from simplified EEG headsets to uHD EEG systems, demonstrates the scalability 
of BCI applications in artistic domains.

KEYWORDS

BCI, art, uHD EEG, engagement, 3D-print, animatronic, fashion-tech

1 Introduction

Brain-computer interfaces (BCIs) facilitate direct communication between the brain and 
external devices by translating neural activity into commands or signals, allowing users to 
control a wide range of functions (Wolpaw et  al., 2000). Traditionally, BCIs have been 
employed in clinical applications, particularly in assistive technologies aimed at restoring 
communication and mobility for individuals with motor impairments (Birbaumer et al., 2014). 
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These systems allow users to interact with their environment by 
translating brain signals into meaningful outputs.

Recently, BCIs have expanded beyond clinical settings into 
broader human-computer interaction (HCI) domains, including 
entertainment and multimodal interaction. These systems offer 
communication and control functionalities and enable real-time 
monitoring of a user’s cognitive and emotional states, allowing 
environments to adapt dynamically to individuals (Andujar et al., 
2015; Nijholt and Nam, 2015; Nijholt, 2019). This advancement 
illustrates BCIs’ potential to personalize HCI beyond traditional uses, 
particularly in non-clinical contexts.

One emerging area of BCI research is its integration with 
artistic expression. BCIs increasingly serve as tools to bridge 
neuroscience and creative processes. Converting neural signals 
into visual or physical outputs allows cognitive and emotional 
states to be  dynamically represented in art, enabling real-time 
interactions between brain activity and artistic expression. This 
opens novel pathways for exploring human cognition and emotion 
through art.

Early examples of BCIs in art include Alvin Lucier’s “Music for 
Solo Performer” (1965), where alpha brainwave rhythms controlled 
percussion instruments in real-time, pioneering the use of brain 
signals in live performances (Rosenboom, 1977). Since then, BCIs in 
art have been categorized into three areas: visualization, where brain 
signals generate visual or auditory representations of mental states; 
musification or animation, where neural activity controls artistic tools 
like animations or music; and instrument control, where brain 
rhythms manipulate instruments, allowing users to create music or art 
directly through brain activity (Gürkök and Nijholt, 2013).

BCIs have also redefined the roles of artists and audiences, 
enabling collaborative art creation. Alfano (2019) demonstrated how 
BCIs facilitate audience interaction during artistic production, 
allowing cognitive and emotional states to influence the creative 
outcome directly. Other artistic BCI systems include those for 
controlling animations and music (Matthias and Ryan, 2007) or 
interacting with instruments using brain signals (Muenssinger et al., 
2010; Todd et al., 2012).

Eduardo Miranda and colleagues introduced the term Brain-
Computer Music Interfaces (BCMIs) to describe BCIs designed 
explicitly for musical applications (Miranda et al., 2008; Wu et al., 
2013). In one example, a BCMI audio mixer allowed users to control 
the volume of different segments of a pre-composed musical piece by 
modulating their alpha and beta brainwaves. While users could 
manipulate the volume, they did not compose the music themselves, 
making it a selective control system based on brainwave modulation.

Building on this, Chew and Caspary (2011) developed a BCI 
system for real-time music composition. Utilizing a modified P300-
speller interface with an 8×8 matrix, the system provided 64 different 
note options for users. This allowed users to listen to each note and 
make subsequent choices, giving them complete control over the 
composition process.

Yuksel et al. (2015) took this one step further. They introduced a 
novel advancement in this domain by integrating a BCI with a musical 
instrument that adapts in real-time to the user’s cognitive workload 
during improvisation. Unlike previous BCIs, which either map 
brainwaves to sound or require explicit control, this system implicitly 
adjusts to cognitive states, using functional near-infrared spectroscopy 
(fNIRS) to classify workload and modify musical output accordingly. 

Users reported feeling more creative with this adaptive system 
compared to traditional approaches.

Furthermore, hyperscanning, a neuroimaging technique that 
records brain activity from multiple individuals during collaborative 
tasks, has opened new avenues for exploring neural synchronization 
and shared cognitive processes in artistic settings (Hasson et al., 2012; 
Babiloni and Astolfi, 2014; Dikker et al., 2017; Kinreich et al., 2017). 
This method reveals how multiple brains align during cooperative 
tasks, providing insights into collective artistic creation.

With the development of more accessible and affordable BCI 
technologies, artists create interactive installations involving multiple 
users. These systems often provide real-time feedback, allowing 
participants to modulate their brain activity to influence the artistic 
outcomes. This growing trend toward brain-driven, interactive art 
highlights the potential of BCIs to expand the boundaries of creative 
expression, offering artists and audiences new and innovative ways to 
engage with art.

This paper explores two innovative and complementary 
approaches to merging BCI technology with artistic expression, 
positioning them within the overarching theme: the artistic 
representation of brain activity through wearable technology. The 
dresses were built together with Dutch fashion tech Designer Anouk 
Wipprecht. While distinct in their technological frameworks, both 
projects demonstrate the powerful connection between neuroscience 
and interactive art.

In both projects, we employed Electroencephalography (EEG) for 
control purposes. EEG acquires brain activity from the scalp’s surface, 
is easy to use, and has been extensively studied. The outstanding 
temporal resolution, low price, and convenient usability make EEG 
the most common method used in BCI research (Mason et al., 2007). 
Invasive methods such as electrocorticography (ECoG) provide better 
signal quality. Still, they are impractical for many people due to the 
need for controlled operating room environments with associated 
costs and risks and because neurosurgery may not be safe or necessary. 
Regarding spatial resolution, brain imaging using functional magnetic 
resonance imaging (fMRI) delivers the best results. However, the 
comparably lower temporal sampling resolution and the needed space 
and cost make fMRI unfeasible for many BCI applications. EEG and 
ECoG systems deliver excellent temporal resolution. In addition, 
high-frequency oscillations (HFO) or evoked potentials, such as the 
brainstem auditory evoked potentials (BAEP), that are amongst the 
fastest evoked potentials, can be  acquired using those methods 
(Chiappa, 1997; Gotman, 2010; Sharifshazileh et al., 2021). However, 
standard EEG systems provide a comparably low spatial resolution 
with around 20–60 mm sensor distances. High-density EEG 
approaches entail more sensors than typical EEG systems and thus can 
improve spatial resolution.

The first project in this paper centers on the low-channel BCI 
screen dress, a wearable system designed to visualize EEG-based 
engagement in real-time. Utilizing a 4-channel EEG headband. This 
system captures the wearer’s engagement and translates it into visual 
cues. The biomarker applied was based on the study by Natalizio et al. 
(2024), which focused on real-time estimation of EEG-based 
engagement across different tasks. In this study, the authors describe 
the extraction of specific EEG biomarkers to control systems, enabling 
real-time evaluation of cognitive engagement in various tasks. In our 
project, digital eyes embedded in the dress screens react to the wearer’s 
cognitive workload, visually intuitively representing their internal 
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mental processes (see Figure  1A). This low-channel BCI system 
emphasizes cognitive visualization and accessibility, demonstrating 
the potential of simplified EEG systems for real-time interaction in 
artistic and practical applications.

The second project employs an ultra-high-density EEG (uHD 
EEG) system called g.Pangolin (g.tec medical engineering GmbH), 
integrated into an animatronic dress inspired by the scales of a 
pangolin. With 1,024 EEG channels, this system captures high-
resolution brain data, which drives the physical movement and 
lighting of the dress’s animatronic components. The system was 
applied in research on several topics, including individual finger 
movement decoding (Lee et  al., 2022), hand gesture decoding 
(Schreiner et  al., 2023), and non-invasive mapping of the central 
sulcus (Schreiner et al., 2024a). The uHD EEG system offers a novel 
view of non-invasive brain activity. It controls the scales’ movements 
and lights in response to neural signals, making it a powerful tool for 
detailed, real-time brain representation. Various EEG frequency bands 
were visually and kinetically represented in the animatronic dress. 
Elevated theta power, associated with calm and meditative states, 
activated slow, steady movements of the scales accompanied by a soft 
purple glow. Increased alpha power, linked to relaxation and focus, 
produced a wave-like motion in blue across the dress. Meanwhile, 
heightened beta power, reflecting alertness and concentration, 
triggered rapid, mirrored flickering white lights and synchronized 
scale movements, symbolizing intense cognitive activity (Abhang 
et al., 2016).

The two brain-computer interfaces build upon and extend 
previous studies by applying established BCI principles to novel 
artistic and wearable contexts. The Screen Dress leverages low-channel 
EEG systems for real-time cognitive visualization, drawing on prior 
research into EEG-based engagement estimation (e.g., Natalizio et al., 
2024) and simplifying the technology for accessibility. The Pangolin 
Scales Dress integrates ultra-high-density EEG (uHD EEG) 
technology, building on advancements in high-resolution neural 
decoding (Lee et  al., 2022; Schreiner et  al., 2024a, 2024c, 2024d; 
Schreiner et al., 2024b).

Both projects expand on earlier artistic BCI applications, like 
music composition and instrument control (e.g., Miranda et al., 2008; 
Chew and Caspary, 2011), by incorporating real-time visual and 

kinetic feedback into wearable art. By doing so, these BCIs 
demonstrate new artistic applications and push the boundaries of 
interactive BCI technology, connecting neuroscience and art in 
innovative ways.

The relationship between the two BCI systems in this study is 
parallel rather than sequential. Both projects— the Screen Dress and 
the Pangolin Scales Dress—were developed independently to explore 
distinct yet complementary aspects of BCI-driven wearable art. 
Together, these two projects explore the potential of BCI technology 
to create interactive, brain-driven art. One uses cognitive visualization 
using a low-channel system, and the other uses animatronic responses 
driven by high-density EEG data. Positioned within the same artistic 
theme, they reflect different levels of complexity and interaction, 
demonstrating the broad range of possibilities for artistic 
representation of brain activity.

The motivation behind these projects stems from the desire to 
bridge neuroscience, technology, and creative expression, addressing 
technical and experiential gaps. Traditional approaches in 
neuroscience and art often fail to engage audiences in an interactive 
and personalized manner (Nijholt, 2019). These projects utilize BCI 
technology to translate neural signals into dynamic artistic outputs, 
enabling real-time visualization of brain activity. By making abstract 
neural processes tangible, they aim to foster public engagement and 
explore new paradigms of interaction and creativity. Furthermore, the 
two projects introduce a new paradigm for interactive and 
participatory art, allowing users to engage with artistic creations 
uniquely by dynamically integrating their cognitive states.

2 Materials and methods

2.1 Project 1: screen dress

2.1.1 BCI technology—screen dress
A novel 4-channel EEG device was developed as part of this 

project, offering a significant advantage in terms of usability compared 
to conventional EEG systems. The headband (Figure 2), designed with 
dry electrodes, is user-friendly and easy to apply, making it accessible 
to many users. It records four EEG channels from the occipital region, 

FIGURE 1

(A) Project 1: screen dress (©Anouk Wipprecht), (B) Project 2: pangolin scales dress (©Yanni de Melo).
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with an additional electrode placed just above the right ear as the 
reference and ground. The device captures EEG with 24-bit resolution 
at a sampling rate of 250 Hz. It transmits the data wirelessly via 
Bluetooth Low Energy (BLE), ensuring efficient and reliable data 
transmission with minimal latency.

2.1.2 Screen dress
The dress components were designed using PTC’s Onshape cloud-

native product development platform (PTC Inc., Boston, MA, USA) 
and 3D-printed by HP Inc. (HP Inc., Palo Alto, CA, USA) using their 
Jet Fusion 3D Printing Solution. The dress was fabricated with HP’s 
HPMulti Jet Fusion 5,420 W printer and HR 3D PA12 W material. 
Interactive elements of the dress include Hyperpixel 2.1 round displays 
(Pimoroni Ltd., Sheffield, UK), controlled by a Raspberry Pi Zero 2 W 
(Raspberry Pi Foundation, Cambridge, UK), featuring a 1GHz quad-
core 64-bit Arm Cortex-A53 CPU, 512 MB SDRAM, and 2.4GHz 
wireless LAN, meeting the system’s visualization requirements. The 
3D eyes, designed in Unity (Unity Technologies, San Francisco, CA, 
USA), were connected to a UDP receiver socket, enabling real-time 
control of eye dilation and movement based on data received via the 
network path.

2.1.3 Screen dress—interface
Connecting BCI and the dress allows the dress to react to the 

wearer’s brain activity in real-time. First, a machine learning algorithm 
was trained by acquiring data from the specific user in different 
mental states. Afterward, new data was fed through the BCI. This 
information was then used in real-time to calculate the level of 
engagement and visualize it by adapting eye movements on the 
screens, such as dilation, speed, etc. Data from one representative 
participant was analyzed and presented in this paper to demonstrate 
the system’s functionality and performance. The analysis was based on 
data collected from a 37-year-old healthy female participant during 
the exhibition settings.

As detailed in Natalizio et al. (2024), a specialized application was 
developed to present stimuli, acquire EEG, and process real-time data. 
This application processes EEG data to estimate user engagement 
levels and provides real-time feedback, such as current engagement 
estimates. For example, in the study by Natalizio et al. (2024), the 

application involved estimating engagement during gameplay by 
monitoring participants’ interaction with Tetris at varying speed levels 
and assessing engagement while watching different video content. 
Before initiating measurements, the system assesses signal quality, 
continuously monitoring and reporting noisy channels. Users can also 
select from various interaction paradigms. Specifically, the d2 test 
paradigm (Figure 3) was employed to train the classification model, 
including the d2 test and a fixation cross. The application calculates 
reliable performance scores based on the d2 test paradigm. After the 
initial test, the system evaluates the model’s accuracy in distinguishing 
between engagement (d2 test) and rest (fixation cross) states. The 
model can be retrained by the user as needed. The calibration phase, 
including electrode preparation, d2 test execution, and model training, 
is completed within approximately 5 min. Once trained, the model 
enables real-time tracking of user engagement in any external task, 
which, in this project, controls the movement and dilation of 
3D-rendered eyes on six hyperpixel screens integrated into the 
Screen Dress.

The proposed classification model is optimized for low 
computational cost to support real-time BCI experiments. A filter 
bank common spatial patterns (CSP) approach was applied to estimate 
engagement, with models trained individually for each user. Raw EEG 
signals were notch-filtered at 50 Hz and further processed with 
bandpass filters (4–8 Hz, 6–10 Hz, and 8–12 Hz) to exclude higher 
frequency components that could be affected by muscle artifacts from 
task-related tension. EEG data were segmented into 1-s windows, and 
CSP was used to extract features that maximize the variance between 
engagement and resting states. These features were then used to train 
a linear discriminant analysis (LDA) model, which outputs a binary 
classification label and a continuous score to estimate user engagement 
(Natalizio et al., 2024).

Figure 4 provides a schematic overview of the BCI control system. 
The process begins with extracting raw EEG data from the four sensors 
transmitted via Bluetooth Low Energy (BLE) to the control PC. The 
PC performs signal processing as described earlier and trains the 
classifier. After the classifier is trained, the system calculates the scores 
in real-time and transmits them via Wi-Fi to the Hyperpixel unit. The 
RPi at the Hyperpixel unit hosts a Unity application that reacts to the 
values received via UDP and employs them to control eye movements. 

FIGURE 2

Unicorn BCI Core-4: 4-channel EEG headband device utilizing dry electrode technology.
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The scores are divided into two groups: positive and negative. Positive 
scores, indicating a greater likelihood of class 1 (d2 test), cause the eyes 
to perform rapid horizontal movements and increase pupil diameter. 
Negative scores, corresponding to class 2 (resting state), reduce eye 
movement and pupil constriction. The left and right eye displays 
mirror each other, following the same movement and dilation patterns.

2.2 Project 2: pangolin scales

2.2.1 BCI technology—pangolin scales

2.2.1.1 High-density EEG
Despite a general interest in higher spatial resolution, only a 

few EEG systems with more than 256 electrode positions covering 

the whole scalp exist. Since all current systems measuring high-
density surface-EEG rely on a cap or a similar stretchable structure 
to mount the electrodes, the attachment mechanism and the cap 
limit this approach from becoming spatially denser. Current EEG 
systems that provide 256 channels often place many electrodes on 
the cheeks and the neck, which is irrelevant for BCI control 
(Mammone et al., 2019). The electrode center-to-center distance 
ranges in such systems between 1 and 2  cm (Luu and Ferree, 
2000). Limiting factors for higher densities and wet electrode 
technologies are bridges between the electrodes and, thus, 
crosstalk between the channels. Further, poorly defined electrode 
contact areas can result from using conductive gel or saline 
electrolyte solutions, limiting the reproducibility of EEG 
recordings and source localization efforts. Therefore, proper 
channel differentiation and a consistently low impedance are vital 
for high-density EEG studies.

2.2.1.2 Ultra-high density EEG
Considering the abovementioned factors, we introduce a novel 

high-density EEG system, classified as ultra-high-density due to its 
exceptionally high spatial resolution. The system is called g.Pangolin, 
inspired by the geometries of the diamond-shaped scales of the 
pangolin. The electrodes are produced as flexible printed circuit 
boards (PCB) with gold-plated electrode areas. The diamond-shaped 
geometry has the excellent property of enveloping the surface of the 
human skin. For improved deformability on the skull and other body 
parts, the electrode grid has slits on the sides (see Figure 5A1). The 
inter-electrode distance is 8.6 mm, with an electrode diameter of 
5.9 mm. The adhesive layer is moisture-resistant and insulating 
medical materials that prevent shortcuts and crosstalk. The holes of 
the adhesive layer are filled with conductive adhesive paste (Elefix) to 
ensure optimal skin contact and low impedance at the electrode-skin 
junction (see Figure 5A3). A pre-amplifier improves the signal quality 
and has a higher signal-to-noise ratio (SNR). The pre-amplifier is 
connected to the slim socket connector of the electrode grid (see 
Figure 5A2). The circuit board amplifies the signals with a fixed gain 
of 10. A connector box interfaces the high-resolution electrode grids 
with the pre-amplifier and the biosignal amplifier (see Figure 5B).

FIGURE 3

Example of the d2 test performed during the training session [adapted from Natalizio et al., 2024].

FIGURE 4

Schematic overview of the system setup: featuring the 4-channel 
EEG headband for data acquisition, signal processing on PC, and the 
Hyperpixel for visualization embedded in the Screen Dress.
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Introduced by Jasper in 1958, the 10–20 system has become 
state-of-the-art for clinical EEG (Klem et al., 1999). Figure 6 has a 
general overview of standardized electrode positioning systems, 
with dark grey circles indicating the 21 standard positions from the 
10–20 system. Denser systems, such as the 10–10 system (marked 
in light grey) and the extended 10–10 system (marked with empty 
grey circles), can also be  seen in Figure  6 (Oostenveld and 
Praamstra, 2001). The uHD approach has even more positions, 
indicated by the small empty black circles in Figure 6. Covering the 
whole scalp using the uHD EEG system results in 1024 
electrode positions.

2.2.2 Pangolin scales dress
Figure 1B depicts the Pangolin Dress worn by a model. All the 

dress parts are 3D printed via selective laser sintering (SLS) from 
PA-11 and PA-12 (nylon) at Shapeways (Shapeways Inc., New York, 
NY, USA). This approach led to a very lightweight dress with custom 
housings for actuators and LEDs mounted on the scales. It also made 
it possible to design the dress to form something akin to an 
exoskeleton around the body. With the pangolin as an inspiration, the 
designer created diamond-shaped scales covering the model’s body. 
Similar to the ones of the animal that protect the pangolin animal 
against predators. The housings of the servomotors that move the 
scales are shaped like eggs. The drive axis led out of the housing so the 
scales could be mounted. On top of the scales, multicolor LEDs were 
fixed in a recess.

We used an Arduino nano microcontroller to move the scales 
and interact with the multicolor LEDs (see Figure 7A1). We chose 
this board due to its small size, output pin structure, and easy 
programming interface. Digital metal gear servomotors (Corona 
DS-939MG) were employed for moving the scales. A total of 32 
servomotors were installed into the 3D-printed dress. The motors 
were placed inside the 3D-printed structure and closed via a cover 
to look like eggs (see Figure  7B). Two (PCA9685) motor driver 
boards (Adafruit Industries LLC, USA), one of which can drive 16 
motors, were adopted for control purposes (see Figure 7A2). Pulse 
width modulation (PWM) was chosen for interaction with the 
motors and positioning of the axle. The scale was mounted onto the 
axle using a distance part for optimal freedom of movement. The 
entire device was powered by a single battery pack (see Figure 7A3), 
with data transmitted via USB serial communication (see 
Figure 7A4).

2.2.3 Pangolin scales—interface
Data from one representative participant was analyzed and 

presented in this paper to demonstrate the system’s functionality and 
performance. For this project, the analysis focused on data collected 
from a 31-year-old healthy female participant during the 
exhibition settings.

The BCI user in this project was designated as being in an idle 
state or one of three other states:

 1 Theta (Θ) – meditation, creativity (dress color purple)

Theta waves (Θ), which range from 4 to 8 Hz, are the slowest 
frequencies used for control in this BCI system. These waves are 
commonly associated with states of deep relaxation and inward focus, 
as well as early sleep stages (Vyazovskiy and Tobler, 2005). 
Additionally, theta activity in the prefrontal cortex has been connected 
to the “flow state,” which is characterized by enhanced creativity and 
cognitive engagement (Katahira et al., 2018). In the system context, 
the dress color purple represents the presence of theta waves, 
symbolizing creativity and meditation.

 2 Alpha (α) – relaxed awake (dress color blue)

Alpha waves (α), ranging between 8 and 12 Hz, are typically 
observed when users are awake but relaxed, especially with closed 
eyes. In motor imagery-based BCI research, the alpha band is also 
called the mu band (Pfurtscheller et al., 2006). Alpha rhythms are 
most prominent over the occipital cortex at the back of the head and 
have been linked to various aspects of human life, including 
sensorimotor functions (Neuper and Pfurtscheller, 2001; Hanslmayr 
et al., 2005), psycho-emotional markers (Cacioppo, 2004; Allen et al., 
2018), and physiological research (Cooray et al., 2011; Halgren et al., 
2019). In this system, the dress color blue represents alpha waves, 
reflecting a state of relaxed wakefulness.

 3 Beta (β) – alertness, stress (dress color white)

Beta waves (β), which occupy the frequency range of 12–35 Hz, 
are associated with alertness, attention, and stress. These waves are 
most prominent when individuals are focused or experiencing 
stress, making them a key marker of heightened cognitive 
engagement (Schreiner et  al., 2021). Due to the wide range of 

FIGURE 5

uHD EEG system g.Pangolin. (A) electrode grids, pre-amplifier, and medical adhesives, (B) connectorbox.
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FIGURE 6

Electrode distribution of the uHD EEG system (small black empty circles) compared to the standard 10-20-system (dark gray filled circles), 10–10 
system (light gray filled circles), and the extended 10–10 system (light gray empty circles).

FIGURE 7

(A) Hardware board, including the Arduino nano μC (1) and 2x motor driver boards (2), powered via battery pack (3) and connected via USB to the 
control PC (4); (B) Servo motor and the LED pixel mounted on the dress components.
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frequencies, the beta band is often divided into subbands, although 
precise definitions of these subbands vary in the literature. 
Frequencies above 35 Hz are classified as gamma waves. They are 
often discussed in EEG research related to human emotions (Yang 
et al., 2020) and motor-related functions, mainly through invasive 
methods such as ECoG (Kapeller et  al., 2014; Gruenwald et  al., 
2017). In the BCI system, white represents beta waves, which signal 
alertness or stress.

This framework of brainwave frequencies forms the basis of the 
BCI control system, where changes in cognitive states are mapped to 
specific visual feedback, as seen through the dynamic color changes 
of the dress.

The BCI system must classify features calculated from the 
measured EEG to enter one of the above states. Data acquisition and 
online signal processing were performed using g.HIsys Professional 
(g.tec medical engineering GmbH, Austria) running under 
MATLAB/Simulink (The MathWorks, Inc., USA). Figure 8 depicts 
the BCI system’s preprocessing, feature extraction, and class 
decision steps.

The data were notch-filtered at 50 Hz using a 4th-order 
Butterworth filter. Next, bad channels were detected using the signal 
quality scope from the g.HIsys online processing platform. A common 
average reference (CAR) was used to reference all channels, excluding 
those classified as having bad signal quality. Finally, a 0.5–40 Hz 
bandpass filter was selected to pre-filter the frequency band of interest.

For feature extraction, the band powers for the specified frequency 
ranges were estimated continuously and used for further processing. 
First, the EEG data were bandpass filtered for the respective frequency 
band (Θ, α, β). For power estimation, a moving average with a buffer 
of 256 samples ( bufferN ) and an overlap of 128 samples ( overlapN ) was 
selected. The sampling rate of the EEG amplifier was 256 Hz ( systemf ), 
which then resulted in an update rate of 2 Hz for the band power 
features ( bandf ) (see Equation 1) To improve Gaussianity, band power 
features were log-transformed since they are commonly Chi-squared 
distributed otherwise. The power from each channel of the uHD EEG 
systems was calculated online in real-time.

 

system
band

buffer overlap

f
f

N N
=

−  
(1)

For each channel, the respective frequency band features were 
calculated (Θ, α, β). This information was then used in real-time to 
calculate the dress states’ class decisions.

To enhance the sensitivity of the BCI system to cognitive states, 
additional weighting was assigned to the features extracted from 
electrode grids based on their neuroanatomical locations. These 
locations were grouped into three key brain regions, as illustrated in 
Figure  9. Electrode grids positioned over the frontal lobe (green, 
Figure  9B) were weighted higher for theta wave (Θ) detection, 
reflecting the region’s role in creative processes and the flow state. The 
frontal electrodes were specifically assigned a weight of 2 for the theta 
band, while the weights for the alpha and beta bands remained at 1. 
The occipital cortex, crucial for visual processing, strongly influences 
alpha activity. Therefore, electrodes placed over the occipital region 
(dark blue, Figure 9B) were given a higher weight for alpha waves (α). 
The occipital region’s weighting for the alpha band was 2, while the 
beta band remained weighted at 1. Electrodes placed over the pre-and 
postcentral motor cortices (blue and red, Figure  9B), which are 
associated with motor control and alertness, were weighted more 
heavily for beta wave (β) detection. These regions were specifically 
assigned a weight of 2 for the beta band, while the weights for the theta 
and alpha bands remained at 1.

This weighting strategy ensures that the brain regions most 
relevant to each state have a stronger influence on the BCI 
system’s performance.

To assess the system’s performance, we designed specific tasks for 
each cognitive state (Theta, Alpha, Beta). Each task was performed for 
20 trials for 1 min each, providing sufficient data for analysis. The 
tasks were chosen to elicit targeted brainwave activity associated with 
the respective cognitive states:

 • Theta (Θ): Meditation and creativity

FIGURE 8

Signal Processing pipeline from the BCI system used for controlling the dress, from preprocessing the raw EEG through feature extraction to the final 
class decision.
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Participants engaged in a guided visualization exercise for 1 min, 
imagining a calming scenario (e.g., walking on a beach or 
exploring a forest) while maintaining a meditative state.

 • Alpha (α): Relaxed wakefulness

Participants were instructed to sit comfortably, close their eyes, 
and relax for 1 min without engaging in active thought processes. 
This condition was selected to encourage alpha activity, which is 
prominent during relaxed, eyes-closed states.

 • Beta (β): Alertness and stress

Participants performed mental arithmetic tasks, such as 
calculating a series of additions, subtractions, and multiplications 
(e.g., “573–48 × 2”). This task was designed to induce beta activity 
associated with cognitive engagement and focus.

3 Results

3.1 Results project 1: screen dress

3.1.1 BCI interaction screen dress
The BCI system requires calibration for each user. To achieve this, 

the participant undergoes a training procedure in front of a computer 
screen. The training protocol consists of two rounds of the d2 test and 
two resting periods, each lasting 1 min, during which a fixation cross 
is displayed on the screen. This results in a total training time of 4 min. 
Following the acquisition of training data, the classifier is trained. A 

within-subject classification model was developed for the 
representative subject to distinguish between engaging and resting 
states using EEG data recorded during a d2 test-based paradigm. The 
EEG was captured from four electrodes, and the model was trained 
utilizing filter-bank common spatial patterns and linear 
discriminant analysis.

After training, an evaluation run is conducted to assess the 
classifier’s performance. The calculated scores over time from the 
evaluation run for the representative subject are shown in 
Figure 10A. The d2 test, marked in red, is assigned a label of +1, 
while the resting condition, marked in red, is assigned a label of −1. 
It is evident that the score values consistently align with the 
corresponding class for the task being performed. Based on the 
correct and incorrect estimates during the evaluation run, the 
classification accuracy reached 97.1%. In contrast, the chance level 
would be  50% as this is a two-class problem. Furthermore, a 
significance test using permutation statistics was performed to 
estimate the probability that the observed performance of 97.1% 
was obtained by chance (Ojala and Garriga, 2009). Labels and 
corresponding score values are available in non-overlapping 1-s 
segments, resulting in 240 segments in total (Figure 10A, 120 s of 
engaging and 120 s of resting state). The following procedure was 
performed for B = 10,000 times: Randomly permuting (i.e., 
shuffling) the labels breaks the relationship between the state and 
the estimates scores and a permutation accuracy can be calculated, 
which is based on the assumption that there is no relationship 
between the labels and the scores. As this procedure was performed 
10,000 times, one obtains 10,000 permutation accuracies and then 
an empirical p-value can be computed based on:

 
( )perm obs# Acc Acc 1

1
P
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FIGURE 9

(A) Brain model with the uHD grids and functional areas; (B) functional brain areas marked according to the Desikan-Killiany atlas as described by 
Desikan et al. (2006).
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With permAcc  being the 10,000 permutation accuracies, obsAcc  
being the observed accuracy of 97.1% and B being 10,000 (see 
Equation 2). In other words, one calculates how often the 
permutation accuracy was greater or equal to the observed accuracy. 
Here, we  obtained a p-value of 9.99E-5 indicating a highly 
significant model performance.

Figure 10B shows the Score distribution reflects the probability 
density estimated for the scores during the Rest and Engaging 
condition, respectively. A non-parametric kernel with a width of 1 was 
used to fit the distribution.

The trained classifier was applied to new incoming data after 
calibrating the system and confirming its satisfactory performance. 
EEG features were extracted in real-time, and corresponding score 
values were continuously computed and output in real-time. This 
allowed for constant monitoring and control of the score values. The 
real-time score was then used to modulate the dilation and movement 
of the pupil in the animated 3D eye model (see Figure 10C).

To represent the pupil dilation and movement as a function of the 
score value (ranging from −10 to +10), we can define a linear equation 
that maps this range to the desired changes in dilation and movement. 
Let us assume: s is the score value (ranging from −10 to +10), P_
dilation(s) represents the pupil dilation, where a positive score 
increases dilation, and a negative score decreases it, and P_
movement(s) represents the pupil movement, which could 
be proportional to the score value.

We can define the dilation and movement equations as follows:

 ( ) 0dilationP s P sα= + ∗  (3)

 ( ) 0movementP s M s= + β∗
 (4)

Where P_0 is the baseline pupil dilation (when the score is 0) (see 
Equation 3), M_0 is the baseline position of the pupil (when the score 
is 0) (see Equation 4), α  and â scaling factors determine how much 
pupil dilation and movement change in response to the score. This 

model assumes a linear relationship for simplicity, but nonlinear 
models could also be used depending on the desired dynamic behavior.

3.1.2 Exhibition screen dress
The Screen Dress project was showcased at the ARS Electronica 

Festival 20231. The Ars Electronica Center is a major public science 
museum in Linz, Austria. Multiple wearers were selected to interact 
with the Screen Dress during the exhibition using the BCI system. For 
each wearer, a new classifier was trained and applied to the incoming 
EEG data streams in real-time. We conversed and interacted with 
other art exhibits throughout the festival to observe the Screen Dress’s 
responses. Attendees were notably impressed by the rapid reactions of 
the digital eyes, which provided subconscious, real-time feedback 
about the wearer’s engagement. This added an interaction layer, 
creating a unique experience for bystanders. Videos of the dress, the 
exhibition, and testing can be  found online2 (see Supplementary  
material for corresponding links).

3.2 Results project 2: pangolin scales

3.2.1 BCI interaction pangolin scales dress
For each of the 64 electrode grids, the respective frequency band 

features were calculated in real-time, focusing on theta (Θ), alpha (α), 
and beta (β) bands. These frequency features were subsequently 
utilized to determine the state of the animatronic dress. Additional 
weights were applied to the features based on their corresponding 
neuroanatomical locations, as shown in Figure 9. The electrode grids 
were grouped into three distinct neuroanatomical regions for analysis.

Once the frequency features were weighted according to their 
region, the system performed online classification to decide the dress’s 
state. The dress could distinguish between three mental states and an 

1 https://ars.electronica.art/who-owns-the-truth/en/screen-dress/

2 Video of the dress: https://www.youtube.com/watch?v=FP7SNdYF3Y0.

FIGURE 10

Results of the evaluation run (A) Score values over time for engagement condition (red) and rest condition (blue), (B) score values for each class, 
(C) 3D-eye animation reaction according to score values and the corresponding condition.
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idle state. During the idle state, the dress’s motors returned to their 
default positions, and all LEDs were deactivated.

The system’s performance in detecting cognitive states during 
task-specific evaluation is summarized in the confusion matrix below. 
Each cell represents the percentage of trials classified as the predicted 
state for a given true state. Labels and corresponding accuracy values 
are computed for non-overlapping 1-s segments. The proportion of 
total seconds during which power values from specific frequency 
bands correctly corresponded to the intended cognitive state provides 
further insight into the system’s accuracy (see Table 1).

For each state, the observed accuracy (proportion of trials 
correctly associated with the intended state: Θ: 64%, α: 91%, β: 78%) 
was compared against a null distribution generated through 10,000 
random permutations of the labels (see Equation 1 in BCI Interaction 
Screen Dress). This approach breaks the relationship between the task 
and the frequency band power, creating a distribution of accuracies 
under the assumption of no association. The mean permutation 
accuracy was 33% confirming the expected chance level under 
random guessing for a three-state system. The observed accuracies for 
all three states were significantly higher than the permutation accuracy 
distribution (p < 0.001p).

A minimum interaction time was implemented to ensure a 
smooth transition between states. The dress was maintained in each 
state for at least 6 s to avoid rapid changes. Additionally, a threshold 
for minimum band power was defined to ensure that the BCI system 
only reacted when the power values in at least one of the frequency 
bands exceeded this threshold. Once this condition was met, the dress 
executed the pattern corresponding to the state with the highest power.

After performing the pattern, the system reassessed the frequency 
power values and, if applicable, updated the dress’s state and 
corresponding movement and lighting animations. This process 
allowed the dress to operate autonomously, driven entirely by real-
time BCI decisions. However, manual control was also available for 
demonstration purposes.

The dress looks angelic when it is turned off (idle). In action, it 
becomes a flowing canvas of color, express and admirable in form and 
movement. The dress scales move up and light up with animated color 
patterns depending on the wearer’s brain state. The dress remained in 
one of the four states until it changed to a new state or was turned off. 
The following patterns were programmed:

3.2.1.1 Theta (purple)
The theta state should represent calm and meditative behavior. 

The LEDs glowed slowly in purple, and the scales moved steadily and 
slowly (see Figure 11A). The movement pattern started at the bottom 
of the dress and spread through it. When the movement reached the 
servos at the shoulders, the pattern repeated in the opposite direction.

3.2.1.2 Alpha (blue)
Since the alpha state is supposed to represent a relaxed and 

focused attitude, the dress should act accordingly. To achieve this 
effect, an imitation of a wave was designed to pass through the dress 
by activating the scales sequentially, beginning from one lower end of 
the dress. The movement spread throughout the dress and ended at 
the opposite lower end. The LEDs were activated simultaneously to a 
moving scale to increase the intensity of the movement (see 
Figure 11B).

3.2.1.3 Beta (flickering white)
We chose a hectic movement pattern for the Beta state to reflect 

focus and alertness. Hence, the scales quickly moved up and down. 
Specifically, the scales moved up promptly from their starting 
positions to around 60 degrees, then returned to the starting position 
at the same speed after around 0.5 s. The left and right dress sides were 
mirrored to establish the desired effect (see Figure 11C).

3.2.1.4 Idle (off)
The dress returned to its starting position. All LEDs turned off.

3.2.2 Exhibition pangolin scales dress
We presented the pangolin scales project at the ARS Electronica 

Festival 20203. A model wore both the BCI and the dress for this 
presentation. The live presentation included preparing the BCI system 
(electrode preparation, mounting, data acquisition procedure) and the 
actuation of the dress. Finally, both components were linked, and the 
dress performed its animations according to the model’s brain state 
determined by the BCI. The positioning of all 64 electrode grids 
(preparing them and attaching them to the scalp) took about 2 h (see 
Figure 12). We asked the model wearing the Pangolin dress to actively 
engage and interact with the venue, allowing the dress to respond in 
real-time to the model’s cognitive states. This dynamic feedback 
provided an additional interactive layer, offering bystanders a unique 
and immersive experience. Videos documenting the dress in action 
and footage from the exhibition and testing are available online4 (see 
Supplementary material for corresponding links).

4 Discussion

Integrating Brain-Computer Interfaces into wearable artistic 
projects, such as the Screen Dress and the Pangolin Scales Dress, 
demonstrates the evolving intersection of neuroscience and creative 
expression. These projects highlight how real-time neural data can 
enhance interactivity and audience engagement in novel and 
meaningful ways.

In the Screen Dress project, a low-channel EEG system (4 
channels) monitors cognitive engagement. Visual cues, such as 
dynamic digital eyes, reflect the wearer’s neural activity in real-time. 
This approach emphasizes accessibility, utilizing simplified EEG to 
provide direct feedback on the wearer’s mental state. By using digital 
eyes to display engagement, this wearable tech makes an individual’s 

3 https://ars.electronica.art/keplersgardens/de/the-pangolin-scales/

4 Video of the dress: https://www.youtube.com/watch?v=KSiF5seJnbc&t=15s.

TABLE 1 The confusion matrix summarizes the system’s performance in 
determining cognitive states during task-specific evaluation.

True | 
Predicted

Theta (Θ) Alpha (α) Beta (β)

Theta (Θ) 64% 21% 15%

Alpha (α) 6% 91% 3%

Beta (β) 14% 8% 78%

Rows correspond to the true labels, while columns indicate the predicted labels.
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cognitive processes visible, blending fashion with a functional, brain-
driven interface. The simplicity and biomarker extraction capabilities 
of the BCI can be  applied across various fields, such as gaming, 

education, and training. For example, in gaming, the paper by 
Natalizio et al. (2024) showcased the application of these biomarkers 
in playing Tetris. This technology could be used in education to assess 

FIGURE 11

The three dress states with the dress mounted on a mannequin. (A) Theta–meditation, creativity (purple), (B) Alpha–relaxed, awake (blue), (C) Beta–
alertness, stress (white).

FIGURE 12

Pangolin Scales EEG electrode grids and interactive dress worn by the model (©Florian Voggeneder).
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classroom engagement, similar to the hyper-scanning approach 
mentioned by Dikker et  al. (2017). Another potential application 
could be in workplace environments, where BCI technology could 
be used to monitor employee engagement and optimize work planning 
and break schedules, as demonstrated by the work of Lu et al. (2020) 
and Wang et al. (2023), as well as in virtual reality (VR) environments 
to enhance user experience and interaction (Souza and Naves, 2021).

Conversely, the Pangolin Scales Animatronic Dress employs a 
more complex uHD EEG system with 1,024 channels. This allows for 
precisely capturing neural signals that drive physical movements and 
lighting changes in response to cognitive states. Each frequency band 
(Theta, Alpha, Beta) triggers different visual and mechanical outputs, 
creating a rich, kinetic representation of the wearer’s brain activity. 
This high-resolution system showcases the potential of BCIs in 
generating detailed, real-time artistic representations of brain 
functions aside from ongoing research (Lee et al., 2022; Schreiner 
et  al., 2023, 2024a) in a creative manner. The new uHD EEG 
technology is an advanced way to understand the brain and its 
functions. The uHD EEG described in this chapter may improve 
several application fields relative to standard EEG systems. The system 
has already shown its capabilities in the medical area, especially for 
pre-operative localization purposes. Another field of interest is to have 
a more precise picture of the seizure onset zones in patients with 
epilepsy. Further, detecting individual finger movements, which is not 
yet possible with standard EEG, would be a significant step in BCI 
research that can be  achieved with this system. Experiments on 
decoding single-finger movements using the uHD system were 
performed by Lee et al. (2022).

The guided visualization task elicited Theta (Θ) activity with a 
classification accuracy of 64%. Misclassifications occurred primarily 
as Alpha (α) (21%) due to overlap with relaxation states and as Beta 
(β) (15%) during moments of increased mental focus or distraction. 
The eyes-closed relaxation task demonstrated the highest classification 
accuracy at 91% for Alpha (α), with minimal misclassifications (6% as 
Theta and 3% as Beta). The mental arithmetic task achieved 78% 
accuracy for Beta (β) classification. Misclassifications included 14% as 
Theta. The results indicate that the system reliably detected the 
targeted cognitive states for the designed tasks, with performance well 
above chance levels. This highlights the robustness of the system in 
identifying brainwave activity associated with specific mental states 
during task-specific evaluation. However, the impact of the weighting 
approach should be  carefully considered when interpreting 
these outcomes.

The projects also have broader implications for the fields of art, 
fashion, and human-computer interaction. By incorporating BCIs into 
wearable art, these projects open new avenues for exploring the 
relationship between technology, the brain, and artistic expression. 
They demonstrate that BCIs are not limited to clinical or research 
applications but can also be  powerful tools for personal and 
creative expression.

In fashion, these projects challenge traditional notions of clothing 
as purely aesthetic or functional objects. Instead, the dresses become 
extensions of the self, reflecting the brain’s inner workings in real-time. 
This approach could revolutionize the fashion industry by introducing 
a new category of brain-driven wearables, allowing individuals to 
express their mental and emotional states through clothing.

In the broader field of human-computer interaction, these projects 
highlight the potential of BCIs to create more personalized and adaptive 
systems. By using real-time brain data to control external devices, BCIs 

could be used to create interactive environments that respond to the 
user’s cognitive and emotional states. This could have applications in 
art and fashion and entertainment, education, and therapy, where 
adaptive environments could enhance user experiences and outcomes.

The Screen Dress and Pangolin Scales Animatronic Dress represent 
pioneering steps in integrating BCIs with wearable technology for 
artistic expression. The Screen Dress offers an accessible, real-time 
cognitive visualization platform using low-channel EEG. At the same 
time, the Pangolin Scales Dress showcases the potential of uHD EEG 
to create intricate, kinetic representations of brain activity. Both projects 
blur the lines between neuroscience, technology, and art, offering new 
ways to engage with and represent the brain’s inner workings.

Both projects have limitations, including the analysis of data from 
only one representative participant, which limits the generalizability 
of the findings. The uHD EEG system requires extensive preparation 
time and shaved hair for optimal signal quality, making it less practical 
for broader applications. In contrast, the four-channel EEG headband 
offers ease of use but suffers from limited spatial resolution, reducing 
its sensitivity to specific brain regions. Expanding participant diversity 
and improving system practicality are key areas for future work.

However, these projects not only push the boundaries of what is 
possible with wearable technology but also redefine the role of the artist 
and audience in the creative process. By allowing the brain to drive 
real-time artistic expression, these wearables offer a deeply personal and 
interactive form of self-expression, opening up new possibilities for the 
future of brain-driven art and fashion. As BCIs evolve, their potential 
to revolutionize artistic expression and human-computer interaction 
will only grow, offering exciting opportunities for future innovations.
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