AUTHOR=Schreiner Leonhard , Wipprecht Anouk , Olyanasab Ali , Sieghartsleitner Sebastian , Pretl Harald , Guger Christoph TITLE=Brain–computer-interface-driven artistic expression: real-time cognitive visualization in the pangolin scales animatronic dress and screen dress JOURNAL=Frontiers in Human Neuroscience VOLUME=Volume 19 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/human-neuroscience/articles/10.3389/fnhum.2025.1516776 DOI=10.3389/fnhum.2025.1516776 ISSN=1662-5161 ABSTRACT=This paper explores the intersection of brain–computer interfaces (BCIs) and artistic expression, showcasing two innovative projects that merge neuroscience with interactive wearable technology. BCIs, traditionally applied in clinical settings, have expanded into creative domains, enabling real-time monitoring and representation of cognitive states. The first project showcases a low-channel BCI Screen Dress, utilizing a 4-channel electroencephalography (EEG) headband to extract an engagement biomarker. The engagement is visualized through animated eyes on small screens embedded in a 3D-printed dress, which dynamically responds to the wearer’s cognitive state. This system offers an accessible approach to cognitive visualization, leveraging real-time engagement estimation and demonstrating the effectiveness of low-channel BCIs in artistic applications. In contrast, the second project involves an ultra-high-density EEG (uHD EEG) system integrated into an animatronic dress inspired by pangolin scales. The uHD EEG system drives physical movements and lighting, visually and kinetically expressing different EEG frequency bands. Results show that both projects have successfully transformed brain signals into interactive, wearable art, offering a multisensory experience for both wearers and audiences. These projects highlight the vast potential of BCIs beyond traditional clinical applications, extending into fields such as entertainment, fashion, and education. These innovative wearable systems underscore the ability of BCIs to expand the boundaries of creative expression, turning the wearer’s cognitive processes into art. The combination of neuroscience and fashion tech, from simplified EEG headsets to uHD EEG systems, demonstrates the scalability of BCI applications in artistic domains.