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Introduction: Phase-amplitude coupling (PAC), the modulation of high-

frequency neural oscillations by the phase of slower oscillations, is increasingly

recognized as a marker of goal-directed motor behavior. Despite this interest,

its specific role and potential value in decoding attempted motor movements

remain unclear.

Methods: This study investigates whether PAC-derived features can be leveraged

to classify di�erent motor behaviors from ECoG signals within Brain-Computer

Interface (BCI) systems. ECoG data were collected using the WIMAGINE implant

during BCI experiments with a tetraplegic patient performing mental motor

tasks. The data underwent preprocessing to extract complex neural oscillation

features (amplitude, phase) through spectral decomposition techniques. These

features were then used to quantify PAC by calculating di�erent coupling indices.

PAC metrics served as input features in a machine learning pipeline to evaluate

their e�ectiveness in predicting mental tasks (idle state, right-hand movement,

left-hand movement) in both o	ine and pseudo-online modes.

Results: The PAC features demonstrated high accuracy in distinguishing among

motor tasks, with key classification features highlighting the coupling of

theta/low-gamma and beta/high-gamma frequency bands.

Discussion: These preliminary findings hold significant potential for advancing

our understanding of motor behavior and for developing optimized BCI systems.

KEYWORDS

brain-computer interface, electrocorticography, motor decoding, neural features,

phase-amplitude coupling

1 Introduction

Brain-computer interfaces (BCIs) devices are quickly transforming the field of motor

rehabilitation. By establishing a direct communication pathway between the brain and

external devices, BCIs enable individuals with motor impairments to control prosthetic

limbs, digital assistants, and other assistive effectors using their brain activity. BCIs show

potential to enhance the quality of life of people affected by strokes (Biasiucci et al., 2018),

spinal cord injuries (Lorach et al., 2023), neurodegenerative diseases (Vansteensel et al.,

2016), but can also open up new avenues for research on neuroscience and brain dynamics.

Implanted BCIs based on electrocorticography (ECoG) or microelectrode arrays have
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achieved major advancements in recent years, both in their

decoding capabilities (Benabid et al., 2019; Metzger et al., 2023; Deo

et al., 2024) and their usability in home environments (Lorach et al.,

2023; Vansteensel et al., 2024).

Decoding different motor states from neural signals remains

one of the main challenges of BCIs to enable the control of external

effectors. As of today, most of current motor BCI systems rely

on signal amplitude modulations, in different frequency bands

[generally mu/beta (Abiri et al., 2019) and gamma (Krusienski

et al., 2011)], as decoding features. Research on the brain motor-

related behavior has indeed been generally focusing on the

study of amplitude variations (Cheyne et al., 2008; Cheyne and

Ferrari, 2013; Jurkiewicz et al., 2006; Muthukumaraswamy, 2010;

Saleh et al., 2010). In ECoG, multiple studies showed that high-

gamma amplitude oscillations (> 70Hz) correlate closely with

specific aspects of motor functions (Tam et al., 2019; Wang

et al., 2012; Branco et al., 2017; Spüler et al., 2014). While

amplitude modulation based decoding is effective, it overlooks

some dimensions of the neural signals. For example, the signal

phase modulations, in particular in the very low frequency band

(< 2Hz), also seem to contain information about motor behaviors

(Combrisson et al., 2017). Currently only few—if any—BCIs use

phase information as decoding features, which has however been

shown to be informative for continuous movement decoding

(Hammer et al., 2013).

To address these limitations, recent research has explored

dynamic interactions between neural oscillations in different

frequency bands, a phenomenon known as cross-frequency

coupling (CFC). Among these, theta/gamma coupling is the

most frequently reported and is thought to support different

cognitive operations such as short-term memory, long-distance

communication, and sensory stimulus integration (Lisman and

Jensen, 2013; Hyafil et al., 2015). A particular type of CFC, phase-

amplitude coupling (PAC) where the phase of a slow oscillation

modulates the amplitude of a faster oscillation has also been studied

in motor processes. PAC measurements have shown promise in

highlighting critical neural patterns during movement execution

and resting phase in ECoG data (Miller et al., 2012), and even

during different phases of movement namely preparation and

execution in EEG recordings (Combrisson et al., 2017). These

studies suggest that PAC features could be used for motor states

decoding in the context of BCI. Unlike most decoding methods

that focus solely on signal amplitude across frequency bands,

PAC-based decoding provides a more nuanced perspective by

examining how the phase of low-frequency oscillations interacts

with the amplitude of high-frequency oscillations. This interplay

could provide insights on richer neural codes, which may contain

information beneficial to BCI decoding (Canolty and Knight,

2010).

In this study, we investigate whether PAC-derived features

(1) provide relevant information to differentiate various motor

behaviors from the resting state in sensorimotor ECoG recordings

and (2) could be used to in the context of asynchronous BCIs

systems. We computed PAC from ECoG data acquired with

WIMAGINE implant (Mestais et al., 2015) on a single tetraplegic

individual performing attempted motor tasks to control a virtual

avatar. To test their predictive power and gain understanding on

how PAC is modulated across different attempted movements,

these features were employed to train supervised classifiers to

categorize hand movements from idle, as well as right from left

hand movements. PAC features were then implemented in a

pseudo-online manner for a 3-states classification, to assess if they

could be used in real-time asynchronous ECoG-BCIs. The primary

objectives of this study are to investigate the potential contribution

of PAC features in decoding motor attempts from brain signals

and better characterize PAC within the sensorimotor cortex during

lateralized motor tasks. We show that PAC features achieve a high-

accuracy classification between a motor attempt and rest, as well as

between two distinct motor attempts. Additionally, we demonstrate

that a PAC-based BCI can be implemented in a pseudo-online

setup, although the decoding accuracy does not show significant

improvement when compared to amplitude-based decoding.

2 Materials and methods

2.1 Data and participant

The dataset analyzed in this study was recorded as a part of

the “BCI and Tetraplegia” clinical trial (ClinicalTrials.gov identifier:

NCT02550522). The participant is a 28-years-old right-handed

man with traumatic sensorimotor tetraplegia after a C4-C5 spinal

cord injury (Benabid et al., 2019). He was implanted bilaterally

above the left and right primary motor and sensory cortices with

two WIMAGINE implants (Mestais et al., 2015), recording ECoG

signal at a sampling rate of 586 Hz. Each implant consists of

an 8 × 8 electrode grid, however due to the data transfer limit,

only 32 electrodes organized on a checkerboard-like pattern were

recorded on each implant, for a total of 64 electrodes. At the time of

experiment, the subject was already experienced in BCI setup. Since

his implantation, he gradually learned to use the BCI to control

effectors with up to 8 degrees of freedom (Moly et al., 2022).

In this study, 32 experimental sessions recorded over more

than 200 days were considered. In the experiments, the tetraplegic

patient performed attempted movements in order to move a 3D

virtual avatar. In particular, the patient used a strategy in which

he repeatedly attempted fingers, hands, and arms movements

to control an avatar in a virtual environment. Each session

was composed of a series of successive tasks decided by the

experimenter. Each task corresponded to one of the four possible

movements (left or right hand 3D translation or left or right wrist

1D rotation) or an idle state. During idle state, no target was

presented to the subject who had to remain in a non-active state

until the next instruction. During active tasks, the patient attempted

to switch into the correct state in a self-paced manner and then

reach the target locations that were presented one after another.

A new target was displayed by the experimenter when the subject

had reached the previous one leading to unequal movement time

for each target (average movement time for left and right hand

translation trials : 22.2 ± 4.1s). Organization of the experiment is

depicted in Figure 1.

During online experiments, a Recursive Exponentially

Weighted Markov-Switching Multi-Linear model (REW-MLSM)

decoder was used. This decoder was previously described in Moly

et al. (2022). In a nutshell, it consists of a hierarchical decoding,

where several predictions from different regression models are
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FIGURE 1

Experimental design. (A) Example of a session sequence of tasks. One session is composed of successive tasks of left hand, right hand or idle (wrist

states that were not considered in this study are not represented). (B) Each active task (left or right hand) is composed of several trials in which the

patient must reach the proposed targets in 3D. The cursor position is not reset between tasks, during task and during idle state. (C) Example of the

timing of a task and organization of temporal windows for o	ine and online analysis. For o	ine analysis, non overlapping windows (1, 3, 5, 8, or 10 s)

were used, and there was no window that overlapped between trials and/or tasks. In pseudo-online setup, 1 s windows with 90% of overlap were

used allowing a 10 Hz prediction rate for the model. Windows were defined regardless of tasks or trials. (D) Shape of PAC and amplitude features

tensors used in the o	ine and pseudo-online classifications. PAC tensor XPAC ∈ IR6×12×64, corresponding to the number of phase and amplitude bins

in the PAC computation, and the number of electrodes. Ampltiude tensor XAmp ∈ IR10×15×64, corresponding to the number of time and frequency bins

in the amplitude features extraction process, and the number of electrodes. One tensor is computed per time-window. (E) Before the classification

process, tensors are flattened in row-major order into a one-dimensional vector. For classification based on combined features, flattened tensors of

PAC and amplitude are concatenated.

computed in parallel to provide a trajectory of hand movement or

a wrist rotation angle. Regression outputs are then weighted by the

output of a classifier based on a Hidden Markov Model (HMM)

approach. The decoding model was trained online in closed-loop

on the first four sessions, then the weights of the model were

fixed and used to evaluate the performances on the remaining

sessions. For the purpose of this study, calibration and test sessions

were concatenated and only classification between 3 states was

considered, idle (ID), left and right hand translations (respectively

LH and RH). The final dataset was globally well balanced between

tasks and consisted of around 18 h of experiment, comprising 11.3

min, 11.0 min, and 11.2 min per session on average for ID, LH and

RH states, respectively.

2.2 Phase-amplitude coupling features
extraction

The ECoG signal was mapped in the time-frequency domain

by convolution with Morlet waveforms (Complex Continuous

Wavelet Transform - CCWT). Central frequencies of the

waveforms ranged from 5 to 30 Hz with a 2.5 Hz step (11 steps), as

a range of interest for phase modulating frequencies (fp), and from

30 to 150 Hz with a 10 Hz step (13 steps), as a range of interest for

amplitude modulated frequencies (fA), for all the electrodes (64 in

total, 32 from left implant and 32 from right implant). The range

of frequencies considered has been chosen to represent the theta,

alpha, beta bands for the phase, and gamma for the amplitude

to study all the possible couplings. The modulus (respectively,

the argument) of the CCWT outputs represents the instantaneous

amplitude (respectively, phase) information required to compute

the PAC.

Several methods have been proposed in the literature

to quantify PAC. These methods differ in their theoretical

foundations, and it was shown that the modulation index (MI)

(Tort et al., 2008) and the mean vector length (MVL) (Canolty

et al., 2006; Okurt and Schnitzler, 2011) are the most suitable in

terms of accuracy while keeping a good computational efficiency

(Hlsemann et al., 2019; Tort et al., 2010). Here, we used both MI

and MVL measurements to combine their respective strengths and

weaknesses and compare their qualitative estimation of PAC in

ECoG recordings.
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MI quantifies the deviation of a phase-amplitude distribution

from the uniform one using an adapted Kullback-Leibler (KL)

distance (Tort et al., 2008, 2010). The phase-amplitude distribution

P is calculated by binning phases from the modulating frequency

range fp into a chosen number of bins (18 in Tort et al. (2008), kept

in our study), and computing the normalizedmean amplitude from

the modulated frequency range fA for each bin:

P(j) =
< AfA >φfp

(j)
∑N

k=1 < AfA >φfp
(k)

,

whereAfA (t) and φfp (t) are the time series of the amplitudes and

phases of the frequency ranges of interest, N the number of bins

and <> denotes the mean over time. Then MI, ranging from 0 (no

coupling) to 1 (strong coupling), is calculated as follows:

MI =
DKL(P)

log(N)
,

where:

DKL(P) = log(N)−H(P),

H(P) = −

N
∑

j=1

P(j)log[P(j)]

with H(p) being the Shannon entropy of the distribution P.

MVL is a more straightforward way of estimating PAC (Canolty

et al., 2006) as it is not based on distributions, but is directly

calculated from amplitude and phase time series AfA (t) and φfp (t).

Given the time series of amplitudes and phases, MVL estimates

the length of the mean vector of all the vectors in the polar plane

represented by each complex number. If the magnitude of some of

the vectors (amplitudes) is increased at a particular angle (phase),

then the MVL has a non-zero value that represents the amount

of PAC. To tackle one of the main drawbacks of MVL, which is

its amplitude dependency, we computed the direct MVL proposed

later by Okurt and Schnitzler (2011) with the following equation :

MVL =

∣

∣

∣

∣

∣

∑n
t=1 AfA (t)e

jφfp (t)

n

∣

∣

∣

∣

∣

.

It normalizes the MVL using the amplitude, which bounds

its values between 0 and 1 and renders it less vulnerable to high

frequency band power variations.

Given that the measurement of the PAC is highly dependent on

the duration of the window over which it is calculated, particularly

for short time windows (Dvorak and Fenton, 2014), the amplitude

and phase time series of each trial (one target reaching) were

segmented into non-overlapping time-windows of equal size before

estimating the PAC (either MVL or MI). Part of trials that were

shorter than window length were excluded from this analysis

(Figure 1). Furthermore, to assess the influence of window length

on classification accuracy, windows of 1, 3, 5, 8 and 10 sec were

considered. For each window, a phase-amplitude comodulogram

of MI or MVL values was obtained using the amplitudes from

the fA bands AfA (t) and the phases from the fP bands φfp (t),

for the whole window duration. PAC was computed for each

frequency band pair in (fA, fp), using all the combinations of

AfA (t) and φfp (t), as no preliminary assumption was drawn on the

modulating andmodulated frequencies. The same compute process

was repeated for each electrode, leading to a PAC features tensor

XPAC ∈ IR11×13×64 (11 bands for phase, 13 bands for amplitude, 64

channels) for each window (Figure 1).

2.3 O	ine binary classification

To assess whether PAC measurements contained information

related to the patients individual mental tasks, we conducted three

different binary classification tests based on PAC features: idle vs

right hand (ID-RH), idle vs left hand (ID-LH) and right hand vs

left hand (RH-LH).

The classification was performed with flattened (reshaped in

row-major order into a one-dimensional vector) PAC features

using two different classifiers: a Partial Least Square regression

(PLS) with output variable encoding for classification and a

Linear Discriminant Analysis (LDA). PLS was chosen because

it is particularly suited for cases with high dimensional features

space. In addition it is similar to the BCI classification we use in

online settings. LDA was used as a more classical approach for

classification, to validate the conclusion drawn from PLS.

PLS extracts a set of latent variables or components that capture

the maximum covariance between the independent and dependent

variables, and then, constructs a regression model by sequentially

fitting these components to the data (Geladi and Kowalski, 1986).

To use PLS for classification, the response variables were encoded

as n × m binary matrix (m = 2 being the number of classes),

with the desired class (i.e. ID, RH and LH) labeled as 1 and the

other as 0. The regression output was then discretized by selecting

the class with the maximum predicted value as the predicted class.

This approach facilitated the modeling of the relationship between

predictor variables and class labels. To find the optimal number

of components to use in this PLS, other PLS classifications were

conducted on a smaller dataset that was recorded before this

experiment in which the subject was performing a similar but

slightly different task. For this dataset, classification was repeated

for each number of components from 1 to 15, and the performance

metrics estimated with a 10-fold cross-validation scheme (i.e.,

mean squared error and percentage of explained variance) were

averaged across the folds. The number of components was selected

as the best tradeoff betweenminimal error andmaximum explained

variance, which led to 6 components in the initial PLS (see

Supplementary Figure S1).

Linear Discriminant Analysis (LDA) is a classification and

dimensionality reduction technique that projects data onto a space

that maximizes class separability. It finds a linear combination

of features that best distinguishes between classes by maximizing

between-class variance and minimizing within-class variance

(Tharwat et al., 2017).

The classification output performance of both classifiers was

evaluated on a 5-fold stratified cross validation scheme with

balanced accuracy to take into account potential class imbalances

within sessions. Although the database is globally balanced, some
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sessions have individually a slight imbalance. Balanced accuracy

was computed for each fold and average across folds, as follows:

balanced accuracy =
1

2

TP

TP + FN
+

1

2

TN

TN + FP
,

with TP, FN, TN and TP respectively the number of true

positives, false negatives, true negatives and false positives.

For each pair of tasks and classifier, the obtained balanced

accuracies across sessions were statistically compared using two-

way ANOVAs, with the first factor being the used PAC value (MI

or MVL) and the second factor the length of the time-window

(from 1 to 10 seconds). Since the distributions of the residuals were

not normal, ANOVAs were performed after a rank-transformation

procedure on balanced accuracies.

2.4 Features analysis

To evaluate the importance of the features in the classification

process of the PLS, in which components are obtained as

linear combinations of the original variables, the VIP (Variable

Influence on the Projection) score of each feature was computed.

VIP score measures the importance of each variable in

explaining the variance of the response variable (Y) in the

PLS model. The VIP computation is based on the PLS weights,

weighted by how much of the responses are explained by each

PLS component:

VIPk =

√

K ·
∑A

a=1 w
2
ak
SSYa

A · SSYtotal
.

where K is the number of original predictors, A the number

of PLS components, wak is the weight of the k
th feature in the ath

component, SSYa the amount of sum of squares of Y explained by

the ath component and SSYtotal the amount of sum of squares of Y

explained by all components (Wold et al., 1993). Variables with VIP

scores greater than 1 are typically considered important.

The VIP score was used to study the features from a spectral and

spatial point of view. First, the importance of different frequencies

and frequency-couples in the classification was assessed by the

number of occurrences of a VIP score greater than 1. Then, for the

most represented frequency pair, we depicted the mean VIP score

over each electrode of the implant to analyze the localization of the

features of importance.

Features of importance analysis was only performed for PLS-

based classification as it output better classification results than

LDA, then should provide more accurate insights on spectral and

spatial contributions.

2.5 Shared variance between gamma
amplitude and PAC

To assess on which extent information provided by PAC

was independent from the information contained in amplitude

of gamma time series, we estimated the portion of variance of

gamma amplitude that can be explained by MVL. To do so, for

each window on which MVL was calculated, values of gamma

amplitude were extracted by averaging AfA (t) time series over

window duration. This led to a tensor of gamma amplitude Xγ ∈

IR13×64 (13 bands, 64 electrodes). Then, for each session, each

band and each electrode, a linear model was fitted between gamma

amplitude and PAC estimated byMVLmethod, which was averaged

over all phase frequency bands. For each model, the coefficient of

determination R2 was assessed as the proportion of the total sum of

squares explained by the model.

2.6 Pseudo-online classification

Previous offline method using non overlapping and long

windows is inapplicable in an online asynchronous BCI. Then,

to assess if PAC features could be used in online asynchronous

BCI settings, classification was also performed in a pseudo-online

manner. PAC features were computed in the same way as the

previous binary-classification approach, obtaining the time series

AfA and φfP in the frequency bands of interest. However, instead

of considering windows containing only data from the same trial

and task, PAC features XPAC ∈ IR11×13×64 (11 bands for phase,

13 bands for frequency, 64 channels) were computed every 0.1

s, based on the last second of signal (sliding window with 0.9

s overlap), simulating an online feature computation at the rate

of 10 Hz.

Similar to online experiments, HiddenMarkovModels (HMM)

combining emission and transition probabilities were trained and

used for 3-class classification (ID, RH, LH) in a pseudo-online

setup (Moly et al., 2022). Emission probability was computed using

Recursive Exponentially Weighted N-way Partial Least Squares

Regression (REW-NPLS) with one-hot encoded class labels, post-

processed by softmax function. REW-NPLS is a variant of PLS

for tensor features and compatible with recursive online updates

(Eliseyev et al., 2017). The transition probability matrix was

estimated by counting the number of transitions in the training

set. The class prior was established to ensure equal probability

distribution among classes.

To assess if PAC features add information to the amplitude

features generally used, the 3-class pseudo-online classification

task was performed based on PAC features only, on amplitude

features only and on the combination of PAC and amplitude

features concatenated in the same tensor. For amplitude features

the same CCWT as for PAC features computation was used

to map the ECoG signal in the time-frequency domain, with

central frequencies ranging from 10 to 150 Hz (10 Hz step,

15 bands). Features were then defined as 10 points description

of 1-s windows of the amplitude time series (averaging over

0.1 s fragments) with 0.9 s overlap, leading to an amplitude

features tensor XAmp ∈ IR10×15×64 (10 time points, 15 bands,

64 channels) for each window. Note that these are the same

features that were used during the online experiments (Moly

et al., 2022). To combine PAC and amplitude features in the same

classification, tensors were flattened and concatenated over time

and frequency dimensions resulting in a combined features tensor

XBoth ∈ IR222×64.
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As the MVL method showed better performances than the MI

in offline binary classifications, only the MVL was used to compute

PAC features for the pseudo-online setup. Models were retrained

on the first six sessions, which allows to reach 85% of the maximum

achievable performances, defined as a REW-MLSMdecoder trained

on all sessions (Śliwowski et al., 2023).

The obtained models were then tested on every other sessions

and balanced accuracy was calculated. For each class, accuracy

(one-vs.-all), recall, precision and specificity were also assessed as

follows:

accuracy =
TP + TN

TP + TN + FP + FN
,

recall =
TP

TP + FN
,

precision =
TP

TP + FP
,

specificity =
TN

TN + FP
.

Chance levels were estimated by computing the same metrics

100 times with random permutations of the real label vector, then

averaging the results across repetitions.

Weights of the amplitude and PAC models were were also

analyzed to determine whether classifications were based on the

same spatial patterns and frequency bands. To do so, model

regression tensors were summed over all dimensions except the

dimension of interest.

All the analysis were performed with Matlab R2024a. In the

offline classifications, the MI and MVL indices were computed

with the original codes proposed by the respective authors (Tort

et al., 2010; Okurt and Schnitzler, 2011). In the pseudo-online

classification, the MVL computation was performed in a tensor-

based way adapted from Tensorpac (Combrisson et al., 2020).

3 Results

3.1 O	ine binary classifications:
performances

We tested MI and MVL features in three classification

tasks (ID-RH, ID-LH, RH-LH) with two different classifiers and

several time windows. Although both features sets performed

above chance (33% in balanced accuracy), MVL demonstrated

significantly higher performances regardless of the classification

task, the classifier used and the length of the time window (p <

0.001—Figure 2A). Regarding the influence of the time window,

a significant loss of performance was observed as the window

length decreases, more prominent when using LDA as a classifier

as opposed to PLS (p < 0.001 both for PLS and LDA). The higher

accuracy was reached for 10 s-windows with 92.9 ± 0.7% (mean ±

sem), 88.7 ± 1.2% and 95.3 ± 0.7% respectively for ID-RH, and

RH-LH classifications using PLS and 94.6 ± 0.6%, 91.9 ± 1.0%

and 97.9 ± 0.4% respectively for ID-RH, for ID-RH, ID-LH and

RH-LH classifications using LDA. This accuracy dropped to 83.6

± 0.7%, 80.5 ± 0.7% and 88.2 ± 0.6% respectively for ID-RH, ID-

LH and RH-LH classifications using PLS and 73.6 ± 0.6%, 72.0 ±

0.7% and 77.3 ± 0.6% respectively for ID-RH, ID-LH and RH-LH

classifications using LDA, when window length was reduced to 1 s.

These results illustrate that MVL features are more efficient for

classifying ECoG motor tasks on a span of a few seconds, as also

illustrated by the average row-normalized confusion matrices for a

5s window (Figure 2B).

3.2 O	ine binary classifications : features’
importance

To assess the impact of different features components on

classification performance, we conducted VIP score analysis, both

on spectral and spatial perspectives. Since results were similar

across window lengths, only those with a 5 s window are

presented here.

For all the classifications, the gamma band (30–80 Hz) was

the most modulated amplitude while the phase frequencies were

all represented in the PLS weights. However, looking at the most

represented couples highlighted different pattern of contributing

frequencies in the distinction of idle vs. hand and hand vs. hand

tasks (Figure 3A). In the ID-RH and ID-LH classifications, themost

contributing phase-amplitude couplings were the modulation of

the amplitude of the 30–40 Hz low-gamma band by the whole

range of frequency bands for phase (5–30 Hz) (e.g., 43.0 ± 0.8

and 45.7 ± 0.9 occurrences of the 15–30 Hz PAC for ID-RH

and ID-LH respectively). This coupling, which was maximal at 15

Hz and below, was also present in RH-LH classification (45.0 ±

0.9 occurrences of the 15–30 Hz PAC), however a pattern of

beta/high-gamma coupling also figured in the comodulogram with

the modulation of the 70 Hz amplitude by the 15 -30 Hz phase (e.g.

40.8± 1.1 occurrences of the 20 Hz–70 Hz PAC).

Figures 3B, C show the anatomical spatial distribution on the

left and right implants of electrodes of importance, based on their

average VIP scores. The VIP scores are shown for the influential

amplitude-phase frequency couples found in the previous analysis

for the different classification cases (15–30 Hz for ID-RH, ID-LH

and RH-LH in Figure 3B and 20–70 Hz for RH-LH in Figure 3C).

For the 15–30 Hz coupling, the pattern of contributing electrodes

was similar across the classification tasks with contribution of

large clusters of electrodes, in particular on the anterior and

posterior parts of the implants (mean VIP score, all electrodes,

ID-RH: 1.38 ± 0.51 and 1.42 ± 0.54; ID-LH: 1.41 ± 0.45 and

1.55 ± 0.48; RH-LH: 1.48 ± 0.62 and 1.58 ± 0.72 for left and

right implants respectively). Regarding the 20–70 Hz coupling

present int the RH-LH case, it can be observed that contributing

electrodes are less clustered, with information extracted from few

individual electrodes (mean VIP score, all electrodes, left implant:

1.20 ± 0.40, right implant: 1.19± 0.32). Figure 3D provides the

anatomical localization of the implants on the subject’s cortex.

3.3 Shared variance between PAC and
gamma amplitude

Since PAC can be used to decode motor states, like gamma

amplitude (Branco et al., 2017), we may ask whether the
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FIGURE 2

Binary classification results. (A) Average balanced accuracy of PLS (top) and LDA (bottom) using MI (blue) or MVL (green) features computed on

di�erent time windows lengths (shaded) for three di�erent tasks: idle vs. right hand (ID-RH), idle vs. left hand (ID-LH) and right vs. left hand (RH-LH).

(B) Confusion matrices (row normalized) depicting results of the 5s window length case.

information carried by these two markers is identical, distinct,

or overlapping. To assess the extent to which these two pieces

of information overlap, we conducted a regression analysis.

Figure 4 shows the coefficient of determination (portion of

shared variance) between PAC and gamma amplitude across

the electrodes for different frequency bands, using a time

window of 5 s. On average across frequencies, PAC accounted

for 6 to 31% of gamma amplitude variance for the different

electrodes (Figure 4A). The portion of shared variance was

maximal at 70 Hz, ranging from 9 to 50% across the implant

(Figure 4B), and minimal at 30 Hz ranging from 0 to 12%

(Figure 4C).

3.4 Pseudo-online classification results

Lastly, we tested the PAC features performances in a pseudo-

online setting (Figure 5), to compare their classifying power with

the amplitude-only features. Classifications were performed using

PAC features, amplitude features and the combination of PAC

and amplitude features to test if information provided by PAC is

different from that provided by amplitude. While PAC features

showed a good classification power, amplitude features performed

better (balanced accuracy by session) and combined features

classification was not significantly different than amplitude-based

(balanced accuracy by session 91.4% ± 4.0%, 82.9% ± 6.4%

and 89.7% ± 4.3% for amplitude, PAC and combined features

respectively). Interestingly, the confusion matrices (Figure 5A)

reveal that misclassifications primarily occur when motor states

(LH and RH) are incorrectly identified as idle. Thus, regarding

precision and specificity, PAC features performed almost as well

as amplitude-based features for right and left hands states, but

with a lower recall. Regarding idle state precision/specificity

and recall were lower with PAC features. Although combined

features decoding did not outperform amplitude-based decoding,

weights of the amplitude and PAC models indicates that decoding

was based on overlapped but different frequency bands. The

most contributing frequency band was centered on 20 Hz for

amplitude decoding and on 40 Hz for PAC. Regarding spatial

patterns, PAC decoding was based on more localized areas than

amplitude decoding.

4 Discussion

The findings presented above advance empirical evidence

of the discriminative power of phase-amplitude coupling

measurements in neural oscillations to classify motor attempts

of different movements. On one hand, we demonstrated that

PAC enables offline classification of a motor attempt vs.

rest, or between two different motor attempts, with high

accuracy. However, this accuracy deteriorates as the length of

the time window used for PAC computation decreases. On

the other hand, we demonstrated that a PAC-based pseudo-

online BCI operates effectively, although it is less efficient than

amplitude-based decoding.
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FIGURE 3

PAC spectral and spatial features analysis, with a 5 s window. (A) Top: boxplot of the number of occurrences of the di�erent frequencies with a VIP

score > 1. On each box, the central mark indicates the median of occurrences of amplitude (blue) and phase (red) frequencies of interest in the

features; the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. Bottom: occurrences are shown by

amplitude-phase frequencies couples. (B) Average VIP scores of each WIMAGINE implant electrode following their anatomical distribution for the

three classification scenarios for the 15-30 Hz phase-amplitude couple. (C) Average VIP scores of each WIMAGINE implant electrode following their

anatomical distribution for the RH-LH case, for the 20–70 Hz couple. (D) Anatomical localization of the implants and the electrodes on the brain

surface reconstruction of

the subject.

4.1 PAC features are able to decode motor
attempts with high accuracies

The high classification accuracies achieved using PAC features

derived from Mean Vector Length (MVL) in the offline approach

highlights its efficacy in distinguishing motor attempts. This

is in line with previous studies (Combrisson et al., 2017;

Yanagisawa et al., 2012) that highlighted the capability of PAC

features to discriminate different motor states and intentions,

and demonstrates that PAC can effectively differentiate attempted
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FIGURE 4

Portion of shared variance between MVL-based PAC and gamma

amplitude averaged over time window (with a 5s time-window). (A)

Average over frequencies. (B) At 70 Hz (maximal shared variance).

(C) At 30 Hz (minimal shared variance). (D) At 40 hz.

motor tasks in ECoG. Although Modulation Index (MI), which

also quantifies phase-amplitude coupling allowed to classify left

and right hands and hand vs. idle, it showed significantly lower

performances. This contrasts with previous research that showed

the robustness of MI (Canolty et al., 2006; Tort et al., 2010) and

suggest that MI is less suited for ECoG-BCI applications. This

might be due to the fact that MVL is more sensitive to modulation

strength high signal-to-noise ratio conditions (Hlsemann et al.,

2019), which is the case with ECoG recordings as opposed

to EEG.

The supervised machine learning framework based on

PLS method also allowed to determine which PAC features

(phase-amplitude couples and electrodes) contributed the most to

the discrimination between the different states and motor tasks, as

evaluated by features VIP scores. Furthermore, regression analysis

showed that, although a portion of variance was shared between

PAC and amplitude of gamma oscillations, they also carried out

different information. In particular, while coupling with low-

gamma amplitude was the major contributor discriminatingmotor

and idle states, there was almost no shared variance between PAC

and gamma amplitude in this frequency band. This suggests that

classification framework was able to extract PAC information that

was not present in gamma amplitude alone. In the contrary, at 70

Hz an important part of the variance was shared between PAC and

gamma amplitude, although the distribution over the implant was

different. Thus, classifier seems to have extracted information that

is specific to PAC measure. Moreover, one should note that a part

of the shared variance can be explained by the fact both measures

correlated to the task (motor attempts). This does not necessarily

mean that both measures encompass the same information.

4.2 Coupling with low-gamma amplitude
discriminates motor and idle states

In all the binary classification evaluated, whether between idle

and motor states (ID-RH, ID-LH), or motor and motor states

(RH-LH), the coupling of the whole range of frequencies with low-

gamma band contributed to the discrimination between states. It

includes theta/low-gamma, alpha/low-gamma and to a lesser extent

beta/low-gamma couplings. The spatial contributions were similar

across classification tasks, and did not reveal a clear contralateral

pattern when distinguishing idle frommotor states, as it might have

been expected. Instead, the coupling was visible widely over both

implants. However, this coupling was also present in discriminating

left from right motor states, indicating that the spatial pattern is

nevertheless task-dependent.

Theta/gamma coupling, where the phase of theta oscillations

drives the amplitude of the gamma oscillations is thought to be a

neural code that reflects the coordination of the communication

between brain regions (Lisman and Jensen, 2013). It has recently

gained interest in cognitive neuroscience and has been observed

across a wide variety of paradigms, in particular in tasks involving

memory processes (Mormann et al., 2005; Sauseng et al., 2009;

Axmacher et al., 2010) but also in sensorimotor tasks (Canolty

et al., 2006). Thus, although brain activity of the patient was

only recorded over the sensorimotor cortex, it is likely that

the theta/gamma coupling we observed indicates large-scale

integration and/or transmission of information from/to other brain

areas involved in motor process. This can explain the wide spatial

distribution of the contributing electrodes in the classifications, as

well as the implication of both motor and sensorimotor cortices in

the process. Low-gamma power has also been shown to be phase-

locked to alpha oscillations, during resting spontaneous brain

activity (Osipova et al., 2008). This phenomenon could also have

contributed to the distinction between states.

During movement and motor attempts, theta and alpha

activity, typically ranging from 4-8 Hz and 8-12 Hz, is particularly

notable in the frontal and motor areas of the brain, where it

is thought to play a role in motor planning and execution,

enhancing the integration of sensory and motor information

necessary for movement (Horschig et al., 2015; Brauns et al., 2014).

In particular, studies have shown that theta rhythms are involved

in the coordination of motor tasks, with increased event-locked
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FIGURE 5

Pseudo online classification results.(A) Confusion matrices (row normalized) using the di�erent input features. (B) Average balanced accuracy,

accuracy (one vs. rest), recall, precision and specificity. Except for balanced accuracy, metrics were calculated per state. Performances of the

pseudo-online classification are shown for amplitude (blue), PAC (red) or both (purple) features on the three states classification. States are shown in

di�erent shades. (C) Amplitude (blue) and PAC (red) models weights across amplitude frequency bands (weight tensors summed over time steps and

electrodes for amplitude and over phase frequency bands and electrodes for PAC). (D) Amplitude and PAC models weights across electrodes (weight

tensors summed over time steps and frequency bands for amplitude and over phase and amplitude frequency bands for PAC).

theta activity observed in the followingmilliseconds (aroud 500ms)

after cues are presented to the subject - either motor preparation or

motor execution cues (Pellegrino et al., 2018; Struber et al., 2021).

This burst of activity then decreases during motor execution, as

well as the theta/gamma coupling which has been shown to be

accurately time-locked to the theta band activity evolution (Canolty

et al., 2006). Alpha activity which is suppressed during movement,

is also phase-locked to motor or execution cues and coupled with

gamma band power albeit in a lesser extent (Canolty et al., 2006;

Struber et al., 2021).

It is probable that our classifiers detected these brief time-

locked changes in theta/gamma coupling as the patient was

planning and imagining several movements in a row during the

motor states periods. This could partly explain why the classifiers

performances decreased when the time window was shortened as

it becomes more probable that a window contained only motor

execution without active movement planning. In a BCI context,

the use of theta/gamma based features could then be useful to

rapidly detect motor intention of a patient as it occurs before beta

desynchronization (Combrisson et al., 2017), reducing thus the lag

of the decoders. However, this hypothesis needs to be validated

in further studies in which PAC dynamics could be assessed. The

decrease of performances with shorter windows could also be

explained by the reduction of the number of theta cycles within the

windows, resulting in more uncertain PAC measures.

4.3 Beta/high-gamma coupling
discriminates left and right hand motor
states

Interestingly, another pair of PAC bands, namely beta/high-

gamma, contributed to the discrimination between motor states.
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In particular this coupling was strongly represented in the

classification of right hand vs. left hand movements. Although

research on this coupling is more sparse, especially for motor

decoding, several studies investigating abnormal beta/high-gamma

coupling in patients with Parkinson’s disease showing a deficit of

its suppression, that normally occurs during movement in healthy

subjects (Gong et al., 2022; Hodnik et al., 2024).

These results are in line with widely demonstrated

desynchronization and fluctuations of beta oscillations during

different active states of movements (Engel and Fries, 2010; Kilavik

et al., 2013), which are commonly implicated in sensorimotor

processing (Pfurtscheller and Lopes da Silva, 1999; Baker, 2007).

Recent studies (Tan et al., 2014; Alayrangues et al., 2019; Struber

et al., 2021) have strengthened the link between beta oscillations

and sensorimotor processes, in particular visuo-motor error

integration, by examining beta’s role in motor learning contexts.

Additionally, patterns of beta desynchronization have been found

to be similar between motor imagery, attempted movements

and actual movement, particularly in right-hand vs. left-hand

movements compared to imagery or rest (Pfurtscheller et al.,

2003), further underscoring the importance of beta rhythms in

both actual and imagined motor tasks (Barone and Rossiter, 2021).

Beta band is indeed the most commonly used characteristic of

neural signals for EEG movement and motor decoding (Korik

et al., 2018).

Beyond the beta band, ECoG studies, that allow for a better

temporal resolution, showed that high gamma band (60 - 120

Hz) is crucial for accurate movement decoding (Moly et al., 2022;

Kuo et al., 2024). However, it could have been expected that their

coupling contributes to the separation between idle and motor

states as suggested in studies with patients with Parkinson’s disease.

We hypothesize that it contributed less to this discrimination

because the large widespread theta/low-gamma coupling was

sufficient to dissociate them. Furthermore, the theta/low-gamma

coupling being bilateral, other discriminating features may have

been necessary to distinguish between motor states. The beta/high-

gamma coupling, being more spatially localized distinguished

motor states associated with very lateralized neural activity,

suggesting that the classifier captured the suppression of the

beta/high-gamma coupling within the contralateral hemisphere of

each motor state.

4.4 PAC-based pseudo-online
classification is e�cient but does not
outperform amplitude-based classification

The findings illustrated above could motivate the use of

PAC features for online BCI. In order to investigate if PAC

features provide better or different information that amplitude

features, we tried to classify the three states in a pseudo-online

manner. However, our results showed that PAC-based decoders—

although efficient - did not completely reached the accuracy of

amplitude-based decoders. Moreover, using combined features did

not achieve higher performances than amplitude-based decoding.

Previous regression analysis indicated however that PAC-based

classifications were able to extract information not included in

amplitude only. Model weights analysis also pointed in the same

direction, indicating that amplitude features convey overlapped but

different information than PAC features for classification. There

are mainly two explanations that limited the performances of

PAC-based decoding.

First, as mentioned before, the theta/low-gamma and

alpha/low-gamma couplings that were the main drivers of the

offline binary classifications, might be time-locked with the

initiation of a movement. Using 1 s windows to compute the

PAC, it is highly probable that some windows did not present any

significant coupling while a movement was ongoing. This likely

explains why more samples of left and right hand states were falsely

classified as idle with PAC features.

Secondly, it is acknowledged that it is crucial to select an

appropriate data length that corresponds to the slowest frequency

being examined to obtain reliable phase-amplitude coupling

measurements (Dvorak and Fenton, 2014). This is because slower

oscillations produce fewer cycles within a given time frame, making

it essential to have a sufficient duration of data to capture these

cycles accurately (Aru et al., 2015; Tort et al., 2010). Idle vs. motor

states classification in our study showed to be mostly driven by

theta/low-gamma coupling. Theta waves are in the slower range

of oscillating frequency; extracting features on a 1-second time

frame, may be not enough to give meaningful information on

the theta/low-gamma coupling, motivating the lower accuracy

when decoding with PAC features. Conversely, beta/high-gamma

coupling determines the right vs left hand classification. beta waves

oscillate considerably faster than theta, making the 1-second time

frame sufficient for capturing numerous complete cycles. The more

reliable PAC measurement on this coupling motivates the very

good distinction between left and right hand movement even in the

pseudo-online setting.

These insights suggest that PAC features can correctly classify

different motor states, but a balance must be found between

event duration and the window length needed for accurate PAC

estimation. Furthermore, a poorer distinction between RH and

LH was possible using PAC features, indicating that PAC could

carry less information about movement vs. movement classification

than amplitude, while being able to distinguish resting state

from movement.

4.5 Limitations and perspectives

First, it is necessary to mention that the conclusions drawn

here are based on a single subject and should be validated

over a larger cohort. Nevertheless, the results were consistent

over 32 BCI sessions that were performed over 6 months. Only

two lateralized motor tasks were considered in the main article,

but we also conducted the pseudo-online analysis over the 5

states of the considered database with consistent results (see

Supplementary Figure S2). Although further tasks and experiments

should be investigated, this indicate that the results presented

here could generalize over other tasks. In addition, binary

classifications allowed reaching high decoding accuracies, and

extracting significant information in coherence with the literature

on PAC and oscillatory bands involved in motor processes.
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Also, this study on PAC measurements for ECoG motor

attempts decoding is preliminary, offering initial insights into the

potential of phase-amplitude coupling as a feature for BCI. To

expand on these findings, several avenues for further research

can be envisioned. First, exploring alternative coupling estimation

methods, such as time-resolved PAC (e.g., tPAC Samiee and

Baillet, 2017), could provide finer temporal resolution without

relying on predefined windows. Additionally, investigating inter-

electrode coupling could help capture more complex coordination

and communication between brain regions (Roehri et al., 2022),

although this approach would require strong a priori hypotheses

about relevant electrode pairs (e.g. sensory/motor coupling).

Adapting coupling frequencies to user-specific frequency bands

may also enhance decoding by tailoring the analysis to individual

neural patterns.

Even though they depict information at different timescales,

when using both amplitude and PAC features in pseudo online

classification, tensors of PAC and amplitude were flattened and

concatenated. More elaborated methods to combine and eventually

select informative features before decoding should be considered

to benefit from the different information provided by both features

types. Model weights indeed indicated that different frequency

bands and electrodes contributed to the classification between

tasks, despite overlapping patterns (Figure 5C). Regression analysis

also pointed out that PAC and gamma amplitude share overlapping

but also distinct information. Employing more advanced non-

linear classifiers could also improve decoding accuracy, potentially

capturing complex patterns within PAC features.

Finally, as PAC is widely regarded as a marker of memory

processes and effective communication between brain regions,

observing how PAC evolves over time in a rehabilitation study

could provide important perspectives, potentially revealing changes

and optimization in neural communication patterns as motor

functions recover.

5 Conclusions

In conclusion, this study provides evidence that phase-

amplitude coupling (PAC) can be used as a discriminative feature

for classifying motor attempts in an long-term ECoG-based BCI

context. PAC features, particularly those derived from theta/low-

gamma and beta/high-gamma coupling, showed the ability to

distinguish between motor tasks and resting states with high

accuracy in offline settings, highlighting PACs potential to capture

critical motor-related neural dynamics. Despite the observed

efficacy, PAC-based pseudo-online decoding did not outperform

traditional amplitude-based decoding, probably due to limitations

in accurately measuring coupling within short time windows. This

constraint suggests a trade-off between capturing temporally brief

motor events and maintaining the accuracy of PAC estimation,

especially for lower frequency oscillations. As theta/low-gamma

coupling is tightly time-locked to the initiation of the movement,

we believe that it could be particularly suitable for BCI where motor

imagery/attempts serves to trigger an event and notmaintain a state

as in the current study. Furthermore since theta burst occurs before

beta suppression in motor tasks, theta/low-gamma coupling could

be investigated to reduce delay in future BCI studies.

Future research should aim to address these challenges by

refining PAC measurement techniques to enhance PAC temporal,

spectral and spatial sensitivity. Additionally, further studies are

needed to assess the advantages of PAC decoding, such as a

possible reduction in response lag, and to explore ways in which

amplitude-based decoding could benefit from incorporating PAC

features. Finally, while this study highlights the potential of

PAC measurements in neural oscillations to differentiate motor

attempts for ECoG-BCI applications, it also provides insights

into the neural components of PAC during motor processes.

These findings underscore the value of rare long-term ECoG

recordings to advance neurophysiological research, such as PAC in

neural oscillations.
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