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Fibonacci sequences are sequences of numbers whose first two elements are

0, 1, and such that, starting from the third number, every element of the

sequence is the sum of the previous two. They are of finite length when

the number of elements of the sequence is finite. Furthermore, Fibonacci

sequences are namedgeneralized Fibonacci sequenceswhen they are generated

by two positive integers—called seeds—that do not necessarily equal 0 and

1. This relaxation provides the analyst with larger degrees of freedom if the

elements of the Fibonacci sequences have to refer to the durations of the sub-

phases of a physical movement or gesture that di�er from 0 and 1. Indeed,

by taking inspiration from their use of symmetric walking—where the stance

duration is the sum of the double support and swing durations and, in turn,

the duration of the entire gait cycle is the sum of the stance and swing

durations—, generalized Fibonacci sequences of finite length have been very

recently adopted to extend the resulting original walking gait characterization

to gestures in elite swimmers and tennis players, by accordingly associating the

durations of the sub-phases of the gesture to the elements of such sequences.

This holds true within movement-automatization-allowable scenarios, namely,

within scenarios in which no external disturbances or additional constraints

a�ect the natural repeatability of movements: at a comfortable speed in walking,

at amediumpace in swimming, and under no need for lateral/frontalmovements

of the entire body in tennis forehand execution or no wind in the serve shot.

Now, in such sequences of sub-phase durations of a physical movement or

gesture, the golden ratio has been further found to characterize hidden self-

similar patterns, namely, patterns in which all the ratios between two consecutive

elements of the sequence are surprisingly equal, thus representing a harmonic

and mostly aesthetical gesture that admits a perfectly self-similar sub-phase

partition in terms of time durations. In such a case, the larger scale structure

within the gesture resembles the smaller scale structure so that the brain can

aesthetically resort to the minimum amount of information for the movement

temporal design. In the framework of how cognitive factors such as working

memory and executive control facilitate motor learning and adaptation, this

paper addresses, for the first time in the literature, the open problem of providing

a complete mathematical understanding of the automatic generation process

at the root of such hidden Fibonacci sequence-based and self-similar patterns

appearing in the aforementioned cyclic human movements. Data referring
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to walking and tennis playing are used to illustrate the e�ectiveness of the

proposed approach.

KEYWORDS

generalized Fibonacci sequence, symmetry, automatized movement, self-similarity,

golden ratio, neuroscience, physiological systems

1 Introduction

Motor learning is expressed by a relatively permanent change

in movement performance, resulting from training or previous

experience in the situation. Indeed, cognitive processes, such as

perception, attention, reasoning, memory, and problem-solving,

operate to help produce skilled movement performance and

are all involved in skill learning (Magill and Anderson, 2010).

Automaticity of movements occurs when subjects no longer need

to pay attention to the act itself during the movement execution.

The natural and non-conscious coordination of a set of body

segments is thus allowed to form a smooth and efficient execution

(Kibler and Sciascia, 2004). In particular, in sports, to learn

specific skills and effectively execute gestures, coordination is

fundamental and is developed through training (Haubenstricker

and Seefeldt, 1986). The number of repetitions of the gesture to

be learned represents one of the necessary elements for storing

information about the initial conditions, sensory feedback, and

the results obtained to form and reinforce the action pattern

(Schmidt et al., 2018). The performance is refined each time

with each new execution; in fact, the technique is an element

that can be modified and refined continuously until a relatively

stable pattern is formed by which the movement can approach

the desired technical model. The effectiveness of practice, defined

as the number of repetitions, has been accordingly recognized as

the basic elements of learning and perfecting gestures (Jonides,

2004; Lee and Genovese, 1988): learning takes place as a process

dependent on subjective experience with each experience being

able to significantly influence neuronal connections and brain

structures, a phenomenon known as neural plasticity (Galván,

2010). Some mental abilities also can intensify and enhance

perceptions so that learning can be viewed as an active process of

adaptation through the acquisition of automatic stable behaviors

due to both external and internal stimuli. Currently, some human

movements, such as walking, are characterized by cyclic and reliable

patterns. Recent studies have observed that the repeated structure

is not only evident between cycles but also within each cycle,

where a specific proportion is preserved. This proportion creates

a larger scale structure that resembles the smaller scale structure

through the generation of a self-referential loop. Indeed, this self-

similarity in complex movements is mathematically associated with

the golden ratio, an irrational number related to fractals and the

Fibonacci sequence. In particular, the golden ratio φ = (1 +√
5)/2 ≅ 1.618 is the (positive) solution to the equation x2 =

1 + x (Marino et al., 2020). It is related to Euclid’s problem of

cutting self-proportionally a given segment (namely, as the whole

segment is to the greater subsegment, so is the greater to the

lesser) and possesses geometric and aesthetic properties (namely,

the highly aesthetical golden rectanglewith long side a+b and short

side a can be divided into two pieces: a similar golden rectangle

with long side a and short side b and a square with sides of

length a), making it an object of interest in computer science, art,

architecture, and design. Among the mathematical properties of

the golden ratio, φ−1 = φ − 1 seems to be the most effective,

as φ−1 is the limit value of the ratios between two consecutive

numbers of the generalized Fibonacci sequence (Bormashenko,

2022; Rostami, 2006; Mohanta et al., 2023). Another point of view

can be provided as well. The considered human movements are

executed through the coordination of multiple muscles, involving

simultaneous control of several degrees of freedom. The abundance

of degrees of freedom allows humans to achieve the same goal

through various possible patterns of muscle activations. The

degrees of freedom, motor equivalence, or Bernstein’s problem

(Bernstein, 1967) consists of explaining how the central nervous

system (particularly the brain) rapidly selects the optimal set of

activation patterns. One proposed optimization strategy involves

the use of fractals to account for the complexity of biological

systems and motor control (Goldberger, 1996). In this case, the

optimal solution is the replication of a specific schema at different

levels; in fact, a fractal is a characteristic or phenomenon composed

of subunits that resemble the larger scale structure of the whole

unit in a recursive or self-similar manner (Mandelbrot, 1977).

With this respect, the simplest example of self-similarity is the

golden ratio, which is, as aforementioned, related to the Fibonacci

sequence and has been measured in motor patterns (Iosa et al.,

2018). In particular, very recent research efforts (Verrelli et al.,

2021a), starting back from Iosa et al. (2013), have been dedicated

to theoretically characterizing and explaining the experimental

occurrence of golden ratio-based time-harmonic motor patterns

in human walking. They involve the following: (i) the foot-off

event, which typically happens at 60% to 62% of the physiological

gait when a subject is walking—symmetrically and recursively—

at his/her comfortable speed [approximately 4 km/h (Cavagna

and Margaria, 1966)]; (ii) the ratio between the swing and the

double support phase durations, which is close to the golden

ratio, with this holding true even for the ratio between the

stance and the swing phase durations. From a mathematical

point of view, the resulting discoveries explain the existence of

patterns that are implicitly defined by the golden ratio when it

occurs as the ratio of gait sub-phases durations composing a

generalized Fibonacci sequence. According to a similar principle,

they appear not only in walking but also in running and swimming

(Verrelli et al., 2021b,c, 2023) at middle-long pace. It is true

that swimming does not seem to belong to CPG-based instinctive

patterns, but it naturally owns a rhythmicity similar to walking and

running as soon as it is induced by repetitive training for a long

enough time. A high level of technique automatizes the learning

of complex movements, so high/top-level athletes can avoid
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redundant time- and energy-consuming movements. Nevertheless,

the results of the latest (Verrelli et al., 2024) confirm the existence of

the same harmonic structures even for the forehand of advanced-

level tennis players in comfortable conditions (i.e., with no need for

lateral/frontal movements of the entire body), so they seem to allow

the brain/body to optimize energy usage in temporally designing

the shot. Even though tennis is not traditionally considered as cyclic

as running and swimming, which are suitable examples of rhythmic

activities, however, some aspects of tennis movements certainly

become highly stereotyped and efficient with practice. Currently,

even in the presence of unquestionable developments, the process

at the root of such experimental and theoretical evidence is still far

from being totally understood. Within the framework of cognitive

factors such as working memory and executive control facilitating

motor learning and adaptation, this paper addresses, for the first

time in the literature, the open problem of:

• (i) providing an algorithmic understanding of the automatic

process that generates mechanized and self-similar patterns

appearing in cyclic human movements within movement-

automatization-allowable scenarios, while

• (ii) simultaneously explaining the existence of mechanized

cyclic movements that do not perfectly satisfy the self-similar

internal partition yet.

In particular, mechanized cyclic movements that do not

perfectly satisfy the self-similar internal partition happen in

swimming and tennis—more often than walking, for which a

large number of repetitions have been generally performed—

where the disjunction between temporal symmetry and self-

similarity & golden ratio occurrence as a fixed point is made

more evident by the role played by the technical abilities of

players in conjunction with the training level. In other words,

the key idea here hinges on an original conceptual disjunction—

within movement-automatization-allowable scenarios under no

external disturbances or additional constraints—between (i) the

Fibonacci sequence generation through the process of temporal

symmetrization and ii) the time harmonization through the self-

similarization step. While the former achieves ever higher levels

of coordinative mechanization—based on an ever longer Fibonacci

sequence—with the self-similarity playing a just asymptotic role

for such a first process, the latter perfects, enhances, and refines

the former while achieving minimization of the Shannon entropy

(see Serrao et al., 2017 for an experimental interpretation in

terms of energy-expenditure-minimization and Verrelli et al.,

2021a for dynamics-on-graph interpretations) and flowering of

aesthetic (highly technical) movement characteristics. The two

aforementioned processes are conceived to involve an ever lower

amount of information for the movement temporal design, by

building ever better automatic circuits of mental dependence

on memory as soon as the length of the Fibonacci sequence

increases and self-similarity is additionally achieved (Section 2

and Appendix). The consequent internal evolutionary process

uses recursive limits as fundamental canons of perfection while

memorization induces reflective loops. Data referring to walking

(Section 3) and tennis-playing (Sections 4, 5) are used to illustrate

the effectiveness of the proposed approach. Implications of these

findings for rehabilitation and sports training are also discussed

(Section 6).

2 Automatic generation process

The original idea of the paper is presented in this section.

2.1 Generation process (steps 3–4)

With the aim of improving the readability of the section, the

main logical considerations are applied to a specific step of the

procedure (namely, the step corresponding to a Fibonacci sequence

of length 4), before extending it to the generic step of the same

procedure. To the same purpose, the description—though being

back-extendable (see Remark 1)—starts directly from the step

corresponding to a Fibonacci sequence of length 3. The resulting

step is named steps 3–4.

2.1.1 Fibonacci sequence generation through a
symmetrization process (steps 3–4)

A Fibonacci sequence is one of the simplest ways of generating

a sequence on the basis of a self-referential loop. For the sake of

simplicity, the reader can think of the event below as the human

walking gait cycle, partitioned into the double support, left swing,

and right swing phases. Consider an event F consisting of three

consecutive disjoint phasesFA,FB,FC with durations dFA, dFB,

dFC . Apparently the duration dF of the event F satisfies

dF = dFA + dFB + dFC . (1)

Without loss of generality, let FA be the phase with the

minimum duration, namely

dFA = min{dFA, dFB, dFC}. (2)

It is the double support phase (whose duration is generally

smaller than the swing phase) in the recursive and consistent

walking gait cycle of a healthy subject (Verrelli et al., 2021a). Then,

consider the generalized (non-decreasing) Fibonacci sequence

(Horadam, 1961) of length 3 associated with the aforementioned

partition:

Fib3 : dFC , dFA + dFB, dF . (3)

Notice how this sequence is the one that comes from the

automatic procedure of this subsection once it is directly applied

to event F . Furthermore, the aggregate phase whose duration

constitutes the second element of Equation 3 resembles the stance

phase in human walking. Currently, the question is as follows:

under which conditions, the length of the above Fibonacci sequence

(Equation 3) can be increased by splitting, into the two phases

FA,FB, the aggregate phase FA ∪ FB that appears, with its

duration, as a second element of Equation 3? With this in mind

and looking for a formal development, introduce the following

definition. As we shall see, such a definition resembles the case of

a symmetrical human walking gait cycle with left and right swing

phases of equal duration.

Definition 1: Event F , consisting of three consecutive disjoint

phases FA, FB, FC whose durations satisfy Equations 1, 2 and

compose the Fibonacci sequence Fib3 of Equation 3, is once-

Fibonacci-left-extendable if it is symmetrically partitioned, i.e., if
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the second and the first elements of Equation 3 satisfy the temporal

constraint

dFB = dFC . (4)

In other words, a symmetrically partitioned event F consists

of a shorter phase FA and two longer phases FB, FC of equal

duration. This is the key idea at the root of the argument

transposition extending the self-similar (harmonic) analysis of

walking to swimming and tennis playing. The resulting pattern, call

it PA, which symmetry is at the root of, will constitute the special

pattern that the automatic generation process of this subsection

will aim at replicating, while the length of the Fibonacci sequence

is repeatedly increased. This is shown in detail by the following

theorem.

Theorem 1: The generalized (non-decreasing) Fibonacci

sequence of length 4 (extending Fib3 of Equation 3 to the left)

Fib4 : dFA, dFC , dFA + dFC , dF . (5)

is associated with the once-Fibonacci-left-extendable event F of

Definition 1.

Proof. Just recognize that dFC+dFA+dFC = dFC+dFA+dFB =
dF .

To understand well the relevance of Theorem 1, we formulate

the following question. Why a longer Fibonacci sequence (e.g.,

Equation 5 in place of Equation 3) might be associated with a

higher level of coordinative mechanization in the generation of

the event F? Apparently, the extension of Equation 3 to the left

removes the aggregate phase FA ∪ FB in Equation 3 from the

set of seeds and makes the elementary phase FA, in Equation 5,

enter it. This means that the generation of the self-referential

loops involves an increased-by-one number of elementary phases

in place of an aggregate one, once the length of the Fibonacci

sequence is increased-by-one. This also means that the generation

of the self-referential loops will turn out to involve an ever larger

number of elementary phases in place of aggregate ones, once the

length of the Fibonacci sequence is repeatedly increased. In this

light, coordinative mechanization is viewed as an increase in the

number of physical phases of the movement that enter the set of

seeds within the self-referential loop so as to reduce the number

of durations to be independently determined and memorized in

the design of the event. This happens at the price of an increased

number of repetitions performed by the human, in which the

temporal symmetrization step of Definition 1 and Theorem 1 is

successfully performed. Nevertheless, there exists a connection

between a sufficiently long Fibonacci sequence (i.e., a higher level

of coordinative mechanization) and the golden ratio. If sequence

(Equation 5) is represented through the discrete time, second-order

autoregressive scalar system: y(k+ 2) = y(k+ 1)+ y(k) (k = 0, 1),

with y(0) = dFA
.= a, y(1) = dFC

.= b and y(2) = dFA+dFC
.= c,

y(3) = dF
.= d, then its state-space representation reads:

ξ (k+ 1) = Mξ (k), k = 0, 1 (6)

with ξ (l) representing the vector [y(l), y(l+ 1)]T, l = 0, 1, 2, andM

denoting the square 2× 2 matrix [0, 1; 1, 1]. Here, notation a, b, c, d

is used for the sake of simplicity. Currently, by repeatedly solving

the system for k = 0, 1, one gets ξ (1) = Mξ (0), ξ (2) = Mξ (1) =
M2ξ (0), with M2 as [1, 1; 1, 2]. Let cφ = (1 + φ2)−1/2. As M is

a symmetric real matrix with distinct eigenvalues {φ, 1 − φ} and
orthogonal eigenvectors vφ = cφ[1,φ]

T, v(1−φ) = cφ[φ,−1]T, the

solution in terms of y(2) and y(3) takes the explicit form

[

y(2)

y(3)

]

= φ2βvφ + (1− φ)2αv(1−φ) ,

where α =
〈

ξ (0), v(1−φ)

〉

= (φa − b)cφ , β =
〈

ξ (0), vφ

〉

= (a +
φb)cφ denote the projections of the initial condition ξ (0) along

the directions of the two orthogonal eigenvectors. Meaningful

properties are in order.

1. When α is equal to zero, i.e., when the initial vector ξ (0) has no

components along the direction of the eigenvector v(1−φ), the

equality b/a = φ holds and the equalities c/b = φ, d/c = φ

hold too.

2. In the general case in which b/a 6= φ denote: b/a by α0; c/b by

β0; d/c by γ0, and write c/b = β0 = (a+ b)/b = 1 + 1/α0;

d/c = γ0 = (a+ 2b)/(a+ b) = 1 + 1/β0; then get (recall that

φ − 1 = 1/φ): φ − β0 = φ − 1 − 1/α0 = (α0 − φ)/(φα0);

φ − γ0 = φ − 1 − 1/β0 = (β0 − φ)/(φβ0), and, as the two

ratios c/b = β0 and d/c = γ0 are greater than 1 as follows: i)

|φ − γ0| < |φ − β0|; ii) |φ − β0| < |φ − α0| when also b/a = α0

is greater than 1, hold.

Inequalities (i)–(ii) in 2. thus show that the last (third) ratio of

the elements of the sequence (Equation 5) is closer to the golden

ratio than the first and the second ones. Indeed, the last ratio

associated with the generalized Fibonacci sequence becomes ever

closer to the golden ratio once the length of such a sequence

becomes longer and longer (for the same initial ratio). This is in

accordance with the limit behavior

lim
k→+∞

y(k+ 1)

y(k)
= lim

k→+∞

φk+1βcφ − (1− φ)kαcφ

φkβcφ + (1− φ)kφαcφ
= φ,

holding true for a generalized Fibonacci sequence of infinite

length. The illustrative example in the Appendix will shed more

light on the question. This means that by increasing the length

of the Fibonacci sequence (thus reducing the number of sub-

phase durations working as independent seeds), the ratios between

consecutive elements come close to the golden ratio, with this being

in line with the experimental evidence, in automatizable scenarios,

regarding walking gait cycles of healthy subjects (see Verrelli

et al., 2021a and references therein), as well as swimming strokes

(Verrelli et al., 2021b,c, 2023) and tennis forehand executions

(Verrelli et al., 2024): constraints coming from the temporal

symmetrization process (iteratively leading to extended Fibonacci

sequences), which are satisfied in all the subjects having carried

out a sufficiently large number of cyclic movements (training in

sports), make the last ratios approximate the golden ratio, with

such a special number thus unfolding and becoming quite visible

by experimental measurements.
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2.1.2 Time harmonization through exact
self-similarity achievement (steps 3–4)

Come back to the generalized Fibonacci sequence: a, b, c, d

of Theorem 1, with dFA = a, dFC = b and dFA + dFC = c,

dF = d. If the last ratio d/c is imposed to equal φ, then, by direct

computation,

φ =
d

c
=

c+ b

c
= 1+

b

c
(7)

and then

φ − 1 =
b

c
=

1

φ

leading to c/b = φ. By applying similar steps, b/a turns out to equal

φ too. In other words, imposing the last ratio d/c to be equal to φ

leads to a chain of equalities—involving φ—holding true for all the

consecutive ratios b/a, c/b, d/c. In general, imposing the last ratio

of a Fibonacci sequence of length r to be equal to φ leads to a chain

of equalities—involving φ—holding true for all the r−1 consecutive

ratios and with one value—the first seed—determining the whole

sequence. The resulting event F is a special event, among the ones

generated by a self-referential loop and described by Theorem 1.

When the second subprocess of this subsection, namely, the exact

self-similarity enforcement, is additionally carried out after the

first subprocess of the previous subsection, the brain will resort

to the minimum amount of information (zero Shannon entropy)

for a highly aesthetical movement temporal design. It will lead to

building ever stronger automatic circuits of mental dependence on

memory as soon as the length of the Fibonacci sequence increases.

This is highlighted hereafter (taken, for the sake of exhaustiveness,

from Verrelli et al., 2021a): the more different letters there are in a

string, the more difficult it is to correctly predict which letter will

be the next one in the same string. To this purpose, take the three

differences d1 = b/a − c/b, d2 = d/c − c/b, d3 = b/a − d/c and

let MR be a sufficiently large positive odd integer. Let P be a finite

partition of the compact set [−MR,MR], with disjoint blocks (or

cells)Aj of the form:

Aj = [xj, xj+1), j = 1, 2, . . . ,MR − 1,

Aj = [xj, xj+1], j = MR,

where xj+1 = xj + 2, j = 1, 2, . . . ,MR, and x1 = −MR. Let Pl

a finite refinement of P (l = 0, 1, . . . ,Rl, Rl is a sufficiently large

natural number), with finer blocksA
[l]
k[j]

⊂ Aj of the form:

A
[l]
k[j]

= [x
[l]
k[j]

, x
[l]
k+1[j]

),

where x
[l]
k+1[j]

= x
[l]
k[j]

+ 1/2l, k = 1, . . . , 2(l+1), and x
[l]
1[j] = xj. For

each l = 0, 1, . . . ,Rl, define the set of characters (or letters)

6[l] = {x1 = x
[l]
1[1], . . . , x

[l]

2(l+1)+1[1]
= x2 = x

[l]
1[2], . . . , . . .}.

Consider the string of characters: (s
[l]
1 , s

[l]
2 , s

[l]
3 ), where s

[l]
1 , s

[l]
2 , s

[l]
3

belong to the above set 6[l] and s
[l]
m (m = 1, 2, 3) equals the

smallest element of A
[l]
k[j]

when the difference dm belongs to the

blockA
[l]
k[j]

. Let p
[l]
∗r be the number of characters belonging to the r-

th character type in the three-elements-string (s
[l]
1 , s

[l]
2 , s

[l]
3 ) divided

by 3 (r = 1, . . . ,N[l], N[l] ≤ 3). Finally, take the Shannon index for

such a string (s
[l]
1 , s

[l]
2 , s

[l]
3 ) as

H
[l]
s = −

N[l]
∑

r=1

p[l]∗r ln
(

p[l]∗r

)

,

where
∑N[l]

r=1 p
[l]
∗r = 1. The more unequal the abundances of types

in the string are, the smaller the corresponding Shannon entropy is

made, withH
[l]
s satisfying

H
[l]
s ∈

[

0, ln
(

N[l]
)]

.

In particular, if all abundance is concentrated to one type,

Shannon entropy is zero and there is no uncertainty in predicting

the type of the next entity. The case in which the golden ratio φ

is a fixed point for the consecutive ratios b/a, c/b, and d/c is thus

characterized by the condition
∑Rl

l=1
H

[l]
s = 0, for any Rl ∈ N∪{0}.

2.2 Generation process (step r-r + 1)

The same logical scheme (Definition-Theorem) of the previous

subsection can be further extended to the step r-r + 1. It suffices to

look at:

• The role of the aggregate phase FA ∪ FB whose duration

appears as the second element of Fib3 of Equation 3;

• Its partition FA, FB and at the corresponding

symmetrization step in which the duration of the longest

subphase of FA ∪ FB is imposed to equal the first element of

Fib3 of Equation 3;

• The Fibonacci sequence extension in which the duration of the

shortest subphase ofFA∪FB is used as a new first element of

Fib4 of Equation 5 extending Fib3 of Equation 3.

In other words, at each step, the symmetric sub-partitioning

leading to the elementary pattern PA is iteratively applied. Thus,

it comes to the following Definition 2 and Theorem 2 (its proof is

straightforward at this stage, including the non-decreasing nature

of the resulting Fibonacci sequence) generalizing Definition 1 and

Theorem 1:

Definition 2: The r−3-times-Fibonacci-left-extendable eventF ,

consisting of r phases F1, . . . ,Fr = F whose durations compose

a (non-decreasing) Fibonacci sequence Fibr of length r:

Fibr : d1, d2, . . . , dr (8)

is r−2-times-Fibonacci-left-extendable ifF2 can be partitioned into

F2a, F2b with durations d2a < d2b satisfying the symmetrization

step

d2b = d1. (9)

Theorem 2: The generalized (non-decreasing) Fibonacci

sequence of length r + 1 (extending Fibr of Equation 8 to the left)

Fibr+1 : d2a, d1 = d2b, d2, . . . , dr (10)
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is associated with the r− 2-times-Fibonacci-left-extendable eventF

of Definition 2.

For what the second subprocess enforcing self-similarity is

concerned, when the length of the Fibonacci sequence increases

(along the symmetrization direction) the self-similarity constraint

might involve an ever larger number of ratios. Indeed the level

of aesthetic perception of the gesture increases with the number

of characters in the string related to the Shannon index as the

number of independently determined durations of the subphases

constituting the gesture converges to one. Accordingly, the power

of self-similarity can be defined. It depends on the number of ratios

involved in the self-similarity constraint as well as, necessarily, on

the length of the involved Fibonacci sequence. This is again in line

with the experimental evidence regarding walking gait cycles of

healthy subjects—as well as swimming strokes and tennis forehand

executions—and resembles the different levels of self-similarity

there introduced: self-similarity of power 1, which involves 3 ratios

for a generalized 4-length Fibonacci sequence, is called simple self-

similarity, while self-similarities of power 2 or 3, which involve 4

or 5 ratios for generalized 5- and 6-length Fibonacci sequences,

are referred to as strong self-similarity and enhanced self-similarity

(see Verrelli et al., 2021b), respectively. Higher powers for self-

similarity—coming from higher lengths of Fibonacci sequences—

constitute more advanced versions of self-similarity as they

correspond to ever better sewn sub-phases with ever higher

aesthetical features. Indeed, when the entire gesture is captured by

a generalized Fibonacci sequence (namely, all the sub-phases of the

gesture are mapped into a generalized Fibonacci sequence of their

durations) and all the ratios of consecutive elements of the sequence

are equal to the golden ratio, the perceiver catches the presence of a

single, well-defined, highly aesthetical, uniform pattern within the

entire gesture.

Remark 1: It is worth mentioning that if the general step

described by Definition 2 is applied from the beginning to an event

F which the sequence

d, dF

corresponds to, with d yet to be determined, the procedure

turns out to automatically generate (Equation 3). In this light, the

described process is self-generating from the very first step.

Remark 2: If, at each step, the partitioning regarding the

sub-phase, whose duration appears as the second element of the

Fibonacci sequence to be extended, also applies to the symmetric

phase, then the extension to the left can be viewed as a strong

extension to the left. In the example regarding the human walking

gait cycle, this corresponds, for example, to a partition of both the

swing phases in which both of their longest sub-phases last as the

double support.

Remark 3: The two distinct sub-processes of the procedure

described in this paper, as two increasing levels of automatization,

use the addition operation to generate the Fibonacci sequence

and the product operation to enforce self-similarity. The first

subprocess symmetrizes the phase durations, while the second one

enforces self-similarity. It is clear that iteratively sub-partitioning

each phase (starting from the event itself) while enforcing the

self-similarity constraint at each step coincides with the sequential

application of the two sub-processes.

3 Application to the walking gait

The results of the previous section have a direct application

to the walking scenario. Consider the walking gait cycle of a

healthy subject at a comfortable speed of Verrelli et al. (2021a) and

apply the general procedure so far described. Thus, start from F

representing the gait cycle, FA representing the double support,

FB, FC representing the swing phases. Therefore, the gait cycle is

as follows:

1. Once-Fibonacci-extendable if the swing phases have the same

duration (generally the double support phase duration is smaller

than the swing phase duration);

2. Twice-Fibonacci-extendable if the swing phase can be

partitioned into two subphases with the longest one lasting like

the double support;

3. 3-times-Fibonacci-extendable if the double support phase can be

partitioned into two phases with the longest one lasting like the

shortest subphase of the swing phase.

A simple illustrative numerical example is here given for a 3-

times-Fibonacci-extendable gait cycle whose duration is 1. This is

in line with the conventional gait analysis that expresses the walking

phases with respect to the gait cycle (100%, i.e., Equation 1),

defined from a foot strike to the subsequent strike of the same

foot on the ground. Indeed, all the walking phases are reported

as percentages of the gait cycle. The procedure of the previous

section involving the temporal symmetrization generates the

6-length sequence

0.10, 0.14, 0.24, 0.38, 0.62, 1.00 (11)

starting from an original 3-length sequence 0.38, 0.62, 1.00.

Equation 11 is not perfectly self-similar, though the last ratio

is rather close to φ. Indeed, it approximates the self-similarly

partitioned sequence reading:

0.09018, 0.14591, 0.23608, 0.38198, 0.61804, 1.00000. (12)

Currently, the above conditions 1.-3. for such a sequence are

reviewed as follows.

• Condition 1. corresponds to a symmetrical gait cycle in which

the percentage durations of both the swing phases are equal to

38.198%, the first starting at 11.804 = 23.608/2% of the gait

cycle, the second starting at 61.806 = 23.608+ 38.198%.

• Condition 2. corresponds to a partition of the second swing

phase (percentage-wise lasting 38.1984) with boundary event

at 14.591% of such a swing phase (and thus at 76.395% of the

gait cycle).

• Condition 3. corresponds to a partition of the double support

phase with boundary event at 7.2955 = 14.591/2% of each

portion of the double support phase (the first occurring at

7.2955%, the second occurring at 57.2975 = 11.804+38.198+
7.2955%).

Such partitions of the last two items exhibit a physical meaning

(Novacheck, 1998) as soon as they identify (i) the knee flexion

peak and (ii) the instant of the minimum position of the foot
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FIGURE 1

Typical partition (at a comfortable speed) of: gait cycle; typical knee profile; typical ankle profile. Partitions coming from Condition 2 and Condition 3

here refer to (i) the knee flexion peak and (ii) the instant of the minimum position of the foot relative to the tibia with 90 degrees-angle being plotted

at 0-degrees, respectively.

relative to the tibia with 90 degrees-angle being plotted at 0-

degrees, as the boundary events previously introduced, respectively.

While the latter reduces to the matter of the conjecture in

Verrelli et al. (2021a), the former is brand new and surprisingly

complies with Figure 1, which reports the typical percentages

that are associated with a gait cycle at speeds around the

comfortable one.

Nevertheless, Figure 2 reports the percentages that are

associated, in our experiments, with a healthy subject and a

pathological one (a case of muscular dystrophy) walking at a

comfortable speed. As can be seen, though both the levels of

coordinative mechanization and harmonicity are not totally

accomplished, the mechanization and self-similarity level of the

healthy subject is largely higher than the pathological subject and

it turns out to be closer to the sequence in Equation 12 [compare

the percentages reported there to the bold ones appearing in the

previous text].

Differently from top-rank tennis players of the next section,

who get ever higher levels of coordinative mechanization

and self-similarization through repetitive training aimed at

continuously improving performance, general healthy subjects

settle for—but do not definitely improve—their satisfactory

mechanization and self-similarization levels, as a perfectly

mechanized and self-similar gait cycle (at comfortable speed) is

not generally connected to a competitive advantage. Nevertheless,

lower levels associated with pathological gaits are in line

with the results of Iosa et al. (2007) and, more in general, of

Iosa et al. (2016).
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FIGURE 2

Healthy subject and pathological subject: Partition of the gait cycle with knee–ankle profiles. Mechanization and self-similarity level of the healthy

subject is here largely higher than the pathological subject and closer to the sequence in Equation 12.

4 Application to the tennis forehand

The main discoveries from Verrelli et al. (2024) are recalled

here for the sake of clarity. The contribution of this section consists

of showing how the constraints that were introduced there are

here found to coincide with the conditions 1.-2. (once-Fibonacci

extendability, twice-Fibonacci extendability) so far discussed and

this actually sheds more light on paper (Verrelli et al., 2024).

The forehand stroke is characterized by the following five

time instants that belong to the modern forehand stroke and are

not conditioned by personalism and high-level initial muscle co-

activation (see Figures in Verrelli et al., 2024): TI1: swing start

point of maximum loading (point of maximum racket height); TI2:

shoulder rotation, beginning shoulder line rotation; TI3: impact;

TI4: R180, 180 deg rotation of the racket after impact (the point

where the racket cap faces the camera); TI5: final, time instant when

the kinetic energy of the blow is exhausted.

As reported in Verrelli et al. (2024), they define the following

four phases (the total duration PS of the stroke is the duration of the

phase fromTI1 to TI5): Phase i: from TIi to TIi+1, with duration Pi

(fraction of the forehand stroke duration PS), i = 1, . . . , 4. Apply

the procedure presented in this paper starting from the 3-length

generalized Fibonacci sequence

P3+ P4, P2+ P1, 1,

so that

• The 4-length generalized Fibonacci sequence (steps 3–4 with

P1 being longer than P2)

P2, P3+ P4, P2+ P1, 1 (13)

is obtained under the constraint (once-Fibonacci-

extendability):

C1 : P3+ P4− P1 = 0; (14)

• The 5-length generalized Fibonacci sequence (steps 4–5 with

P4 being longer than P3)

P3, P2, P3+ P4, P2+ P1, 1 (15)

is obtained under the additional constraint (twice-Fibonacci-

extendability):

C2 : P4− P2 = 0. (16)

Indeed, the first constraint is nothing but condition 1., while

the second constraint is nothing but condition 2. They quantify

(namely, the absolute values of P3+P4-P1 and P4-P2) the level of

coordinative mechanization as previously meant (0 represents the

maximum level of coordinativemechanization). On the other hand,

the self-similarity level of the two above sequences is quantified by

the two 8-bonacci indices in Verrelli et al. (2024):

If ,4 = 100
[

(P1+ P2− 0.61804)2 + (P1− 0.38198)2

+ (P2− 0.23608)2
]1/2

If ,5 = 100
[

(P1+ P2− 0.61804)2 + (P1− 0.38198)2

+ (P2− 0.23608)2 +

(P3− 0.14591)2
]1/2

comparing consecutive ratios of sub-phase durations in the

Fibonacci sequences (Equations 13, 15) to the golden ratio φ.

The smaller such indices are, the stronger the level of self-

similarity results for such sequences. They rely on the following

two propositions (adapted from Verrelli et al., 2024) providing the

harmonic percentages of the Fibonacci sequences (Equations 13,

15).

Proposition 1: If P1/P2 = φ, then sequence (Equation 13)

exhibits an internal self-similar structure, with percentage duration
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of Phase 1 and Phases 3-4≅ 38.198%, percentage duration of Phase

2≅ 23.608%.

Proposition 2: If P2/P3 = φ, then sequence (Equation 15)

exhibits an internal enhanced self-similar structure, with

percentage duration of Phase 1 ≅ 38.198%, percentage duration of

Phase 2 and Phase 4 ≅ 23.608%, percentage duration of Phase 3

≅ 14.591%.

Currently, it is original to analyze, in the new light provided

by this paper, the measurements in Verrelli et al. (2024) in terms

of the level of coordinative mechanization achieved by Amateurs

players and Advanced players.1 Those data are also complemented

here by (analogously obtained) timing data concerning two top-

rank players, namely, TP1 (male) and TP2 (female), performing

successful forehand strokes in the most challenging scenario of a

(public—ATP Master 1000 and WTA 1000) training rally (strokes

not requiring lateral/frontal movements of the entire body are

selected).2 They are reported in Table 1 while the corresponding

phase percentages are in Table 2. They lead to the values for

the constraints (Equations 14, 16) and for the 8-bonacci indices

highlighted in Table 3. It is straightforward to recognize, on the

basis of such values, a high level of coordinative mechanization for

both TP1 and TP2. The reader might also appreciate the stability

of the stroke timing in the challenging scenario of a training rally.

Meanwhile, self-similarity in TP2 is preserved even under a stroke

with a larger duration, as the timing of the following stroke [s]—

not reported in the Tables—0.000, 0.375, 0.600, 0.725, 0.946 (and

percentages 39.6, 23.8, 13.2, 23.4) reveals. Such new data from top-

rank tennis players turn out to be crucial in identifying high-quality

automatized and harmonic strokes. Furthermore, stroke 2 of TP2

(whose relative rank is higher than TP1) demonstrates that a highly

automatized and self-similarized stroke exists in real practice and,

actually, in the challenging scenario of a training rally.

This is further confirmed by Figure 3, which definitely

shows how the levels of coordinative mechanization and self-

similarization increase—namely, the related indices decrease—

with the quality of players. In particular, the level of coordinative

1 For the sake of exhaustiveness, the study involved 11 subjects (9 males

and 2 females), divided based on their technical quality into two groups:

advanced (n=8 age: 21.3± 4) and amateurs (n=3 age: 32.7± 6.8). The players

in the advanced group all had an international ATP (Association of Tennis

Professionals) or ITF (International Tennis Federation) ranking on the day of

sampling. Those in the Amateurs’ group had no ranking, neither national nor

international. All the subjects performed 10 longline forehands (two sets of

five repetitions) on easy balls fed by the coach from the basket. A WOLFANG

GA200 camera set at 720px 240fps and GOPRO hero 11 in HD at 240fps were

used for video shooting. The cameras were placed approximately 6 m behind

and in addition to the player’s impact position (back and side perspectives),

respectively, and at a height of 1.10 m above the ground. In this regard, it

is worth mentioning that line C2 of Figure 6 in Verrelli et al. (2024) contains

some (here amended) typos (as well as Phase 5 in place of Phase 4 before

Proposition 1) while constraint values are not percentages in Figures 6, 7 of

Verrelli et al. (2024).

2 Additional data—not reported here for the sake of brevity—confirm

that a distortion of the coordinative mechanization and self-similarization

processes occurs as soon as external disturbances or additional constraints

act on the player.

TABLE 1 Time instants TI1-TI5 for top-rank players TP1 (male) and TP2

(female).

TI1
(s)

TI2
(s)

TI3
(s)

TI4
(s)

TI5
(s)

TP1 (stroke 1) 0.00 0.333 0.583 0.704 0.950

TP1 (stroke 2) 0.00 0.354 0.552 0.658 0.850

TP1 (stroke 3) 0.00 0.308 0.500 0.612 0.812

TP2 (stroke 1) 0.00 0.308 0.508 0.620 0.825

TP2 (stroke 2) 0.00 0.308 0.500 0.616 0.808

TP2 (stroke 3) 0.00 0.312 0.512 0.629 0.829

TABLE 2 Percentage durations of Phases 1–4 for top-rank players TP1

(male) and TP2 (female).

P1 (%) P2 (%) P3 (%) P4 (%)

TP1 (stroke 1) 35.05 26.32 12.74 25.89

TP1 (stroke 2) 41.65 23.29 12.47 22.59

TP1 (stroke 3) 37.93 23.65 13.79 24.63

TP2 (stroke 1) 37.33 24.24 13.58 24.85

TP2 (stroke 2) 38.12 23.76 14.36 23.76

TP2 (stroke 3) 37.64 24.13 14.11 24.13

TABLE 3 Top-rank tennis players TP1 and TP2: values for constraints

(Equations 14, 16) and for 8-bonacci indices representing the levels of

coordinative mechanization and self-similarization (three strokes per

player).

TP1 Stroke 1 Stroke 2 Stroke 3 RMS

C1 (%) 3.579 −6.588 0.493 2.376

C2 (%) −0.421 −0.706 0.985 0.406

If ,4 (%) 4.173 4.673 0.353 1.984

If ,5 (%) 4.567 5.132 0.872 2.190

TP2 Stroke 1 Stroke 2 Stroke 3 RMS

C1 (%) 1.091 0.000 0.603 0.394

C2 (%) 0.606 0.000 0.000 0.192

If ,4 (%) 1.096 0.190 0.765 0.427

If ,5 (%) 1.494 0.302 0.902 0.560

A high level of coordinative mechanization occurs for both TP1 and TP2. Stroke 2 of TP2

(whose relative rank is higher than TP1) here demonstrates that a highly automatized and

self-similarized stroke exists in real practice, in the challenging scenario of a training rally.

mechanization of advanced players is closer to top-ranking

players than amateurs. However, differently from top-rank players,

advanced and amateurs players’ data do not concern the

challenging training rally scenario but a simple basket drill (closed-

skill situation). Furthermore, the results of the correlation analysis

related to all the players’ strokes in terms of Spearman correlations:

- If ,5-C1: 0.828 (p < 0.001)

- If ,5-C2: 0.737 (p < 0.001)

- If ,5-If ,4: 0.957 (p < 0.001)

- C1-C2: 0.528 (p < 0.001)

- C1-If ,4: 0.869 (p < 0.001)
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FIGURE 3

Levels of coordinative mechanization and self-similarization within

the three groups: amateurs, advanced, top-rank players (RMS stands

for root mean square). The levels of coordinative mechanization and

self-similarization increase with the quality of players (statistically

significant di�erences were found between the groups in all the

variables—p < 0.001—by using the Kruskal–Wallis Test).

- C2-If ,4: 0.688 (p < 0.001)

show how strong Spearman correlations were found among all

the investigated parameters except between constraints C1 and C2,

for which a moderate correlation was found. This seems to move

along the direction of viewing a tennis player first improving, along

the repetitions of strokes, the level of coordinative mechanization

(with no priority given to one of the two constraints) and just then

increasing the level of self-similarity (with the highest priority given

to lower powers of self-similarity over higher ones).

5 Extension to the tennis serve

This section is dedicated to originally showing how the

automatic generation process described in this paper is also at

the root of hidden self-similar patterns that appear in the tennis

serve (under no external disturbances). The conceptual disjunction

between the symmetrization-based Fibonacci sequence generation

and the time harmonization achieved through exact self-similarity

enforcement is then illustrated by the serve performed by the

top-rank tennis player TP1 (see the previous section). First, we

define, within the serve swing movement, the following eight

instants, common in all players (free from personalism): S1:

Trophy position: instant of maximum loading; S2: Non-dominant

arm descent: beginning of the downward movement of the non-

dominant arm and the tilting of the shoulder line; S3: Racquet-arm

flexion: start of the racquet acceleration phase, characterized by

flexion of the dominant arm; S4: Shoulder Over Shoulder/Racquet

arm extension: shoulder line overturn and start of arm extension;

S5: Start pronation: start of forearm pronation movement; S6:

Impact: instant the racket impacts the ball; S7: End of pronation:

end of forearm pronation movement; S8: Final: instant in which

the kinetic energy of the stroke is exhausted. They are reported and

illustrated in Figure 4. They define the following seven phases (the

total duration PS of the serve swing is the duration of the entire

serve movement from S1 to S8): Phase i: from Si to Si + 1, with

percentage duration Pi, i = 1, . . . , 7.

Apply the procedure presented in this paper starting from the

three-length generalized Fibonacci sequence

P3+ P4+ P6, P1+ P2+ P5+ P7, 1, (17)

so that the four-length generalized Fibonacci sequence (steps 3–4

with P7 being longer than P1+P2+P5)

P1+ P2+ P5, P3+ P4+ P6, P1+ P2+ P5+ P7, 1 (18)

is obtained under the constraint (once-Fibonacci-extendability of

sequence (17)):

C1 : (P3+ P4+ P6)− P7 = 0; (19)

the five-length generalized Fibonacci sequence (steps 4–5 with P3

being longer than P4+P6)

P4+ P6, P1+ P2+ P5, P3+ P4+ P6, P1+ P2+ P5+ P7, 1

(20)

is obtained under the additional constraint [twice-Fibonacci-

extendability of sequence (Equation 18)]:

C2 : (P1+ P2+ P5)− P3 = 0; (21)

the six-length generalized Fibonacci sequence (steps 5–6 with P1

being longer than P2+P5)

P2+ P5, P4+ P6, P1+ P2+ P5, P3+ P4+ P6,

P1+ P2+ P5+ P7, 1 (22)

is obtained under the additional constraint [three-times-Fibonacci-

extendability of sequence (Equation 20)]:

C3 : (P4+ P6)− P1 = 0; (23)

the seven-length generalized Fibonacci sequence (steps 6–7 with P6

being longer than P4)

P4, P2+ P5, P4+ P6, P1+ P2+ P5, P3+ P4+ P6,

P1+ P2+ P5+ P7, 1 (24)

is obtained under the additional constraint [four-times-Fibonacci-

extendability of sequence (Equation 22)]:

C4 : (P2+ P5)− P6 = 0; (25)

the eight-length generalized Fibonacci sequence (steps 7–8 with P5

being longer than P2)

P2, P4, P2+ P5, P4+ P6, P1+ P2+ P5, P3+ P4+ P6,

P1+ P2+ P5+ P7, 1(26)

is obtained under the additional constraint [five-times-Fibonacci-

extendability of sequence (Equation 24)]:

C5 : P5− P4 = 0. (27)
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FIGURE 4

Eight instants characterizing the tennis serve. S1: Trophy position; S2: Non-dominant arm descent; S3: Racquet-arm flexion; S4: Shoulder Over

Shoulder / Racquet arm extension; S5: Start pronation; S6: Impact; S7: End of pronation; S8: Final.

TABLE 4 Time instants S2–S8 top-rank player TP1 (male) and related

phase percentages (S1 = 0).

S2 (s) S3 (s) S4 (s) S5 (s) S6 (s) S7 (s) S8 (s)

0.100 0.135 0.330 0.370 0.430 0.505 0.826

P1 (%) P2 (%) P3 (%) P4 (%) P5 (%) P6 (%) P7 (%)

12.1065 4.2373 23.6077 4.8426 7.2639 9.0799 38.6620

Currently, the time instants S2–S8 corresponding to a (stable)

serve swing performed by the top-rank tennis player TP1 (same

setup as the previous section) are reported in Table 4 (S1 = 0). First,

by inspecting the five constraints, it turns out that they take the

values:

C1 : P3+ P4+ P6 = P7,↔ 37.5302 ≅ 38.8620

C2 : P1+ P2+ P5 = P3,↔ 23.6077 ≅ 23.6077

C3 : P4+ P6 = P1,↔ 13.9295 ≅ 12.1065

C4 : P2+ P5 = P6,↔ 11.5012 ≅ 9.0799

C5 : P5 = P4,↔ 7.2639 ≅ 4.8426.

The first three ones quite precisely hold true (the second

one perfectly matches), whereas the last two ones are less

precisely satisfied, though corresponding to relatively small time

discrepancies (PS = 0.826 s). Second, the generalized Fibonacci

sequences are computed in accordance with Equations 18, 20, 22,

24, 26. In particular, the four-length generalized Fibonacci sequence

(under C1) reads

23.6077, 37.5302, 61.1379, ≅ 100; (28)

the five-length generalized Fibonacci sequence (under C2) reads

13.9295, 23.6077, 37.5302, 61.1379, ≅ 100; (29)

the six-length generalized Fibonacci sequence (under C3) reads

11.5012, 13.9295, 23.6077, 37.5302, 61.1379, ≅ 100; (30)

the seven-length generalized Fibonacci sequence (under C4) turns

out to be

4.8426, 11.5012, 13.9295, 23.6077, 37.5302, 61.1379,

≅ 100; (31)

TABLE 5 Time instants S2–S8 and related phase percentages (S1 = 0) for

the fully automatized and harmonic version of the same serve swing by

TP1 in Table 4.

S2 (s) S3 (s) S4 (s) S5 (s) S6 (s) S7 (s) S8 (s)

0.12052 0.14898 0.34398 0.39001 0.43604 0.5105 0.826

P1 (%) P2 (%) P3 (%) P4 (%) P5 (%) P6 (%) P7(%)

14.591 3.445 23.608 5.5573 5.5573 9.018 38.198

Such durations and percentages, explicitly computed by means of Equations 17–27, 33, would

represent the most automatized and harmonic version of the same serve swing performed by

TP1 of Table 4.

the eight-length generalized Fibonacci sequence (under C5) turns

out to be

4.2373, 4.8426, 11.5012, 13.9295, 23.6077, 37.5302,

61.1379, ≅ 100. (32)

Meaningfully, they well-approximate the self-similarly

partitioned sequence reading:

3.445, 5.573, 9.018, 14.591, 23.608, 38.198, 61.804, 100, (33)

which self-similarity of power 5 corresponds to. On the other

hand, the previous derivations lead to a rather interesting

enrichment of the analysis, which is illustrated in Table 5.

Such a table reports the harmonic durations and percentages

that would represent the most mechanized and harmonic

version of the same serve swing performed by TP1 and

described in Table 4. They are explicitly computed by means of

Equations 17–27, 33.

Apparently, the discrepancies between durations (s) in Table 4

and computed values (s) in Table 5 have just a (maximum) 0.02-

magnitude, while the video analysis procedure allows the operator

to manually identify instants affected by 0.004 errors (s) [camera

shooting mode 1,920 × 1,080 px at a sampling rate of 240

fps; inaccuracy of the internal clock oscillator of the camera

less than 0.1µs]. It is worth emphasizing that the partition of

Table 5 is highly aesthetical as it corresponds to a self-similarity

of power 5 for a generalized Fibonacci sequence of length 8

(namely, Equation 33).
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6 Discussion

This paper addresses the analysis of complex repetitive human

movements (or parts of them) that allow for a converging iterative

sub-partitioning procedure to be gradually and progressively

achieved through learning (Singer, 2002), with coordinative

mechanization and self-similarization playing distinct crucial roles.

In such a light, this paper addresses the analysis of complex

repetitive human movements (or parts of them) that allow for an

iterative sub-partitioning procedure subject to a bilateral (such as

in walking) or unilateral (such as in tennis) process of temporal

symmetrization. This commonly happens when motion is mainly

characterized by (i) alternation of flexor and extensor muscle

activities in the sagittal plane or (ii) alternation of abduction and

adduction phases in the lateral plane or (iii) activities of internal

and external rotator muscles in the transverse plane. Currently,

the recent results discussed in Section 1 have suggested that

humans resort to the same Fibonacci sequence-based criterion to

automatize repetitive movements associated with both the lower

limbs (walking) and the upper limbs (tennis). This fact can be

explained by recognizing that our brain has to optimize motor

control by reducing the biomechanical degrees of freedom for

each limb, with this being similar in upper and lower limbs (3

for shoulder and hip, 1 for elbow and knee, and 2 for ankle

and wrist). Nevertheless, mechanization (involving all the sub-

phases of the gesture) and self-similarity generation, as increasing

levels of automatization of the entire gesture, tend to progressively

reduce Shannon entropy: the ratios between the durations of

consecutive sub-phases in the associated Fibonacci sequence tend

to be restricted to the same value so that the brain can resort to

the minimum amount of information for the movement temporal

design (just one sub-phase duration) in a highly aesthetical fashion.

This, in turn, is reasonably connected to fluidity maximization

and rigidity minimization (Feletti et al., 2023), as one sub-phase

duration of a complex movement is able to aesthetically generate

an entire sequence of sub-phase durations of the samemovement as

it happens in perfectly sewn sub-movements. Obviously, Shannon

entropy and rigidity minimizations are mapped through a non-

injective and surjective mapping of spatial position/speed profiles

into phase durations, which necessarily requires the analysis of

this paper to complement a spatial angle-based analysis of the

gesture. Indeed, the findings of this paper may have practical

implications across various fields. As aforementioned, from a

neurophysiological perspective, the subdivision of amovement into

phases that maintain the same proportion with their subphases

appears to be an optimization strategy for simplifying motor

control and addressing the motor equivalence problem associated

with the coordinated control of numerous possible degrees of

freedom (Goldberger, 1996). Dominici et al. (2011) found that the

development of independent walking starts from two locomotor

primitives already present in the stepping reflex furtherly developed

into four primitives that may correspond to the stride phases:

two double support phases, single support, and swing. The first

independent steps of toddlers seem to act as a trigger for developing

a self-similar structure of these gait phases based on the golden ratio

(Bartolo et al., 2022). This trend, although slower and asymmetric,

was also observed in children with cerebral palsy and could be used

to assess walking deficits (Bartolo et al., 2024). The presence of

this fractal structure may be relevant not only in the development

of walking but also in the recovery of locomotor function during

rehabilitation. Some examples of this approach already exist. The

distance between gait phase ratios and the golden ratio can be

measured to assess locomotor impairment and even used to

treat patients. Several studies have demonstrated the efficacy of

providing rhythmic acoustic stimuli to patients with Parkinson’s

disease to support the timing of their walking. Belluscio et al. (2021)

provided external auditory cues whose timing was based on the

golden ratio, finding that these cues partially compensated for the

defective internal rhythm of the basal ganglia in Parkinson’s disease.

Additionally, Tez and Kuscu (2017) constructed a humanoid robot

that walked according to the golden proportion, observing that this

approach resulted in a smoother gait. Furthermore, considering

walking gait rehabilitation and sports training as degenerate (re-)

learning processes, it is crucial to employ repetitive strategies that

facilitate the recovery of specific movement patterns. Dzeladini

et al. (2014) utilized a computerized neuromuscular skeletal

model capable of auto-adapting its parameters to simulate human

walking and noted that the model naturally converged toward a

configuration in which the golden ratio equals the ratio between

successive gait phases. This concept may also influence sports

training by encouraging athletes to adapt their motor patterns, over

repetitions, toward self-similar structures, particularly in closed-

skill sports such as swimming or in open-skill sports with specific

gestures that can be considered closed skills, such as the tennis

forehand and serve, of this paper. With this respect, although

movement learning is a continuous process, three stages can be

identified to characterize events during the early, middle, and late

stages in the development of a single motor activity. They are in

order:

(1) The cognitive stage occurs at the beginning of learning.

Attempts are made to understand the character of the motor

activity to be learned. In this stage, much thinking is needed,

understanding the intent and purposes of certainmotor actions and

devising techniques to achieve the goals.

(2) The associative stage is the intermediate stage, in which the

learner understands what needs to be done.

(3) The autonomous phase is considered the final one in the

process toward skill acquisition. The behavior is automatic and

there is minimal conscious control over movement (Salehi et al.,

2021). Indeed, the final stage is combined with automaticity and

presents self-control and direction as in the mechanization process

of this paper.

An additional related issue regards the connection between

movement dynamics and underlying neural processes. In

particular, further studies should investigate the Fibonacci

sequence- based patterns presented in this paper from the

neuroscience point of view, with specific attention to the brain

neuroplasticity—in terms of neural reconfigurations, attentional

processes, and cognitive efforts—at the root of the temporal

Fibonacci sequence generation and harmonization. In this respect,

the dynamic reconfiguration of the brain networks occurring

during learning has been found to predict the relative amount

of learning in the future sessions (Bassett et al., 2011), with the

attention given to the new task and the related cognitive effort

Frontiers inHumanNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnhum.2025.1525403
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Verrelli et al. 10.3389/fnhum.2025.1525403

being progressively reduced when the mechanism becomes more

automatic. Indeed, current findings show that the development

of walking is a locomotor learning process that is based on the

brain network adaptation being triggered by the experience of

the first independent steps. After them, the gait–phase ratios in

toddlers rapidly seem to converge to the golden value (Bartolo

et al., 2022). In children with cerebral palsy, instead, an overall

harmonic walking pattern is developed, but more slowly and

asymmetrically in the two legs (Bartolo et al., 2024). It is worth

noticing, as well, that brain reconfiguration during the learning

processes has been also investigated, via electroencephalography,

in cognitive tasks regarding language (Mariani et al., 2023) or

thinking (Jia and Zeng, 2021) and in the Stroop task (Barzon

et al., 2024). Studying the electrical activity of the brain using

electroencephalography (Thompson et al., 2008) is also crucial for

understanding the processes behind learning and skillful execution

of sporting gestures. Electroencephalography is in fact an excellent

non-invasive technique to investigate psychomotor efficiency

(Hatfield et al., 2020) and study the neural mechanisms of sports

performance during training (Cheng and Hung, 2020a,b). In spite

of possible limitations (Thompson et al., 2008; Tharawadeepimuk

and Yodchanan, 2021; Fang et al., 2022)—brain data might be

contaminated by artifacts of non-brain origin, for example, due

to muscle activity, especially during exercise—new state-of-the-

art amplifier and headset systems allow for good accuracy in

recording during exercise and sports (di Fronso et al., 2019),

electroencephalography could be applied, in future developments,

to enhance understanding of the processes behind learning

automatized sports movements while investigating what happens

in sports gestures that respect harmonic temporal structures

and how athletes’ mental states are related to automation and

harmonicity, and consequently performance (Cheng et al., 2024).

On the other hand, the fluidity of movements, which appears

to be related to the harmonic self-similarity of this paper, actually

refers to how smoothly and seamlessly actions are performed, with

no abrupt transitions or jerky motions. Motions blend into the

next ones naturally, whereas high control over muscular tension

and relaxation is required to obtain steady and graceful movement.

Indeed, synchronization achieves well-coordinated movements,

which appear effortless and connected, as well as graceful and

elegant, whereas movements that match a rhythm or are timed

correctly relative to other actions avoid being choppy, with tension

being minimized even in complex or demanding motions. This

can be achieved only when motor behavior is advantageously

influenced by attention, perception, memory, and memory-based

decision-making, which suitably balancesmuscle activation and co-

activation within the gesture while getting large benefits from the

prolonged practice. Indeed, it is themuscle co-activation that affects

movement mechanics in optimizing movement and providing

stability during various physical activities (Latash, 2018). It refers

to the simultaneous activation of agonist and antagonist muscles

useful for motor control, to avoid over-extension during rapid and

explosive movements. It thus influences movement efficiency. This

phenomenon has been quantified using several indices, usually

based on direct recording of muscle activation of both muscles

within an agonist–antagonist pair. The co-activation index (CoI),

for instance, compares the activation of the antagonist muscle (or

muscle group) to the activation of the agonist muscle (or muscle

group) or analyzes combined agonist and antagonist activation.

In particular, research indicates that muscle co-activation plays a

vital role in the coordination of movements to maintain postural

control, especially in the presence of high cognitive load or

environmental challenges. High levels of muscle co-activation have

been shown to occur in healthy subjects with fatigue (Wang

et al., 2015), whereas, in sports, high levels of CoI can lead to

increased joint stiffness and stability, Latash (2018), Salem et al.

(2021), and Akl et al. (2021) and may reduce the risk of injury

(Hirokawa et al., 1991; Lehman, 2006; Knudson and Blackwell,

1997). However, excessive CoI can lead to increasedmetabolic costs

and reduced movement efficiency, indicating a delicate balance

that must be maintained for optimal performance (Mian et al.,

2006). The relationship between co-activation and movement

optimization is further underscored by studies that explore the

effects of training and rehabilitation on co-activation patterns,

suggesting that targeted interventions can enhance motor control

and functional outcomes (Palazzo et al., 2022). Nevertheless, some

studies (Wang et al., 2019; Pizzamiglio et al., 2017) indicate that

expert athletes could have a different muscle activation pattern

with less antagonist muscle activation, implying that antagonistic

muscle coupling might be altered by specialized activity. As a result,

especially during fast movements, athletes may have lower muscle

co-activation than non-athletes (Bazzucchi et al., 2008). In tennis

(Rota et al., 2012; Tai et al., 2022) and other racquet sports, for

instance, CoI of elbow muscles could be used as an indicator

of coordination between agonist and antagonist muscle activity

during three phases of the shot (Akl et al., 2021). Greater levels

of CoI in the arm muscles were found during fast compared to

slow movements, increasing in the preparation phase (neglected

by our previous analysis of tennis forehand and serve), low

during execution to allow for greater acceleration, and increasing

at the end of the movement to provide dynamic braking and

inhibit elbow extension (Bazzucchi et al., 2006; Rouard and Clarys,

1995). Decreasing muscle co-activation during the execution phase

enables the generation of greater speed and increased performance

(Bazzucchi et al., 2008; Akl et al., 2021). It is clear, however,

that even though balancing muscle activation and co-activation

to maximize fluidity seems to be conceptually related to Shannon

entropy minimization (with duration ratios as characters) and

in line with the results of the present study, such results are to

be interpreted with caution, owing to its specific limits, such as

the small size of the samples analyzed in the experimental sets.

Involving the achievement of experimental evidence that confirms

the theoretical connection between the effects of the mechanization

and self-similarization process and the fluidity improvements will

be the goal of future study.

7 Conclusion

A solution has been provided to the open problem of

providing a theoretical understanding of the automatic generation

process at the root of hidden self-similar patterns appearing

in cyclic human movements (walking, running, swimming,

and tennis-playing) within movement-automatization-allowable
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scenarios under no external disturbances or additional constraints.

An original conceptual disjunction between the symmetrization-

based Fibonacci sequence generation (coordinative mechanization)

and the time harmonization through self-similarity enforcement

has been presented. They represent two increasing levels of

automatization, with the latter enhancing, refining, and perfecting

the former. This explains how cyclic human movements can

progressively achieve: (i) sequence length-based increasing levels

of coordinative mechanization, with self-similarity as a just

asymptotic feature; (ii) minimization of the Shannon entropy

with ever higher aesthetic (highly technical) characteristics at

increasing powers of self-similarity. Theoretical results have

been illustrated in detail via data concerning walking and

tennis playing [though results are to be interpreted with

caution, owing to its specific limits, such as the small size of

the samples analyzed in the experimental sets]. They provide

support to explain how people suitably determine the timing

of complex repetitive movements that are characterized by

a high number of degrees of freedom while shedding light

on how motor behavior is influenced by cognitive processes

such as attention, perception, memory, and decision-making.

In our view, even though relationships between Shannon

entropy minimization (coming from the mechanization & self-

similarization process) and muscle activation and co-activation

optimal balance (to maximize fluidity) are to be covered by

future experimental works, the temporal concepts outlined in

this paper might relevantly be applied to both sports training

and rehabilitation while encouraging athletes and patients to

adapt or recover their motor patterns, over repetitions, toward

self-similar structures.
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Appendix

Illustrative example for golden ratio
generation

First, consider a 3-length (non-decreasing) generalized

Fibonacci sequence of the form (the reader can think of the

percentage durations of swing, stance, and gait cycle in order)

x1, x2, x3 = 100.

The only constraints are here given by x1 > 0, x2 ≥ x1 and

x1 + x2 = x3. The previous sequence can be thus rewritten as

x1, x2, x1 + x2 = 100

so x1 must belong to the set (0,50] while x2 must belong to the

set [50,100). Currently, assume that you can extend the previous

sequence to the left, in accordance with the generation step of

Section 2.2, and get

x0, x1, x2, x3 = 100.

The additional couple of constraints would be given by x1 ≥ x0 and

x0 + x1 = x2, allowing us to rewrite the previous sequence as

x0, x1, x0 + x1, x0 + 2x1 = 100,

with this leading to i) x0 ≤ 100/3 = 33.3̄, x1 ≥ 100/3 = 33.3̄,

x2 = 100− x1 ≤ 66.6̄, ii) x0 > 0, x1 < 50 and x2 = 100− x1 > 50.

The procedure would have thus narrowed the range of the sequence

elements x1, x2 from (0, 50] and [50, 100) to [33.3̄, 50) and (50, 66.6̄]

(while x0 ∈ (0, 33.3̄]). It is interesting to also evaluate what would

happen if the previous sequence could be further extended to the

left. It would read

x+, x0, x1, x2, x3 = 100

while inheriting the additional constraints x+ > 0, x0 ≥ x+, and

x+ + x0 = x1. Analogously, rewriting the previous sequence as

x+, x0, x+ + x0, x+ + 2x0 = x0 + x1, 2x+ + 3x0

= x0 + 2x1 = x1 + x2 = 100

would lead to (i) x+ ≤ 100/5 = 20, x0 ≥ 100/5 = 20, x1 =
(100 − x0)/2 ≤ 40, x2 = 100 − x1 ≥ 60, (ii) x+ > 0, x0 =
(100−2x+)/3 < 100/3 = 33.3̄, x1 = (100−x0)/2 > 100/3 = 33.3̄,

x2 = 100−x1 < 66.6̄. As such, x2 would be reduced to belong to the

set [60, 66.6̄), x1 to (33.3̄, 40], x0 to [20, 33.3̄) (while x+ ∈ (0, 20]).

The same reasoning would happen in the case in which the previous

sequence can be further extended to the left, namely, into

x−, x+, x0, x1, x2, x3 = 100

under the additional constraints x− > 0, x+ ≥ x− and x− + x+ =
x0. Analogous computations can be used to show that x2 would

be reduced to belong to the set (60,62.5], x1 to [37.5,40], x0 to

(20,25], x+ to [12.5,20) (while x− ∈ (0,12.5]). It is clear that, with

the increase in the number of sub-partitioning steps, the reduction

in the size of the sets, to which the elements of the increasing-

length sequence belong to, performs a sort of convergence toward

the self-similarity scenario.
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