
Frontiers in Human Neuroscience 01 frontiersin.org

The use of low-density EEG for 
the classification of PPA and MCI
Panteleimon Chriskos 1,2†, Kyriaki Neophytou 1*†, 
Christos A. Frantzidis 2,3, Jessica Gallegos 1, Alexandros Afthinos 4, 
Chiadi U. Onyike 5, Argye Hillis 1, Panagiotis D. Bamidis 2 and 
Kyrana Tsapkini 1,6

1 Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States, 
2 Laboratory of Medical Physics and Digital Innovation, Faculty of Health Sciences, School of Medicine, 
Aristotle University of Thessaloniki, Thessaloniki, Greece, 3 School of Engineering and Physical 
Sciences, College of Health and Science, University of Lincoln., Lincoln, United Kingdom, 4 Cooper 
Medical School of Rowan University, Camden, NJ, United States, 5 Department of Psychiatry and 
Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States, 6 Department 
of Cognitive Science, Johns Hopkins University, Baltimore, MD, United States

Objective: Dissociating Primary Progressive Aphasia (PPA) from Mild Cognitive 
Impairment (MCI) is an important, yet challenging task. Given the need for low-cost 
and time-efficient classification, we used low-density electroencephalography 
(EEG) recordings to automatically classify PPA, MCI and healthy control (HC) 
individuals. To the best of our knowledge, this is the first attempt to classify 
individuals from these three populations at the same time.

Methods: We collected three-minute EEG recordings with an 8-channel system 
from eight MCI, fourteen PPA and eight HC individuals. Utilizing the Relative 
Wavelet Entropy method, we derived (i) functional connectivity, (ii) graph theory 
metrics and extracted (iii) various energy rhythms. Features from all three 
sources were used for classification. The k-Nearest Neighbor and Support 
Vector Machines classifiers were used.

Results: A 100% individual classification accuracy was achieved in the HC-MCI, 
HC-PPA, and MCI-PPA comparisons, and a 77.78% accuracy in the HC-MCI-PPA 
comparison.

Conclusion: We showed for the first time that successful automatic classification 
between HC, MCI and PPA is possible with short, low-density EEG recordings. 
Despite methodological limitations of the current study, these results have 
important implications for clinical practice since they show that fast, low-cost 
and accurate disease diagnosis of these disorders is possible. Future studies 
need to establish the generalizability of the current findings with larger sample 
sizes and the efficient use of this methodology in a clinical setting.
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1 Introduction

Neurodegenerative disorders are diverse pathologies and clinical phenotypes, and 
differential diagnosis and classification require considerable expertise from the clinician. For 
example, the dissociation between Primary Progressive Aphasia (PPA) and Mild Cognitive 
Impairment (MCI) is often challenging. PPA is an age-related neurodegenerative syndrome, 
primarily characterized by a gradual deterioration of language functions but other cognitive 
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functions are impaired as well (Mesulam, 1982; Mesulam, 1987). PPA 
is usually divided into three variants: non-fluent/agrammatic variant 
PPA (nfvPPA), semantic variant PPA (svPPA) and logopenic variant 
PPA (lvPPA), although there are also mixed and unclassified cases 
(Gorno-Tempini et al., 2011). Each variant is associated with distinct 
regions of brain atrophy, diverse pathologies (primarily frontotemporal 
lobar degeneration and Alzheimer’s disease), as well as with diverse 
neuropsychological profiles (Gorno-Tempini et al., 2011). MCI, on the 
other hand, is a neurodegenerative syndrome characterized by 
cognitive decline (in memory only or in more than one cognitive 
functions) that is over and above what is expected given an individual’s 
age and education level (Gauthier et al., 2006), and high prevalence of 
Alzheimer’s pathology (Bennett et al., 2005). Given the overlap in 
symptoms, confident diagnosis of early PPA versus MCI can 
be difficult (Faroqi-Shah et al., 2020; Rogalski and Mesulam, 2009). 
However, accurate diagnosis is important for understanding the 
trajectory of the patient’s disorder and, consequently, for suggesting 
appropriate treatments. From a clinical perspective, a quick and task-
free way of classifying PPA vs. MCI, will be extremely valuable—
especially in low resource settings.

Prior work has primarily focused on automatic classifications of 
healthy control (HC) vs. PPA individuals, and the three variants of 
PPA (Álvarez et al., 2019; Bisenius et al., 2017; Díaz-Álvarez et al., 
2022; Matias-Guiu et al., 2019, 2022; Moral-Rubio et al., 2021; Spinelli 
et al., 2017), as well as on the classification of HC vs. MCI (Chriskos 
et al., 2021; Faghfouri et al., 2024; Fraser et al., 2019; Lagun et al., 
2011). To the best of our knowledge, only one study has attempted to 
classify PPA vs. MCI patients (Bruun et al., 2019). These studies have 
utilized data recorded from two main sources: neuroimaging and 
behavior. Neuroimaging sources include Magnetic Resonance 
Imaging (MRI) (Agosta et al., 2015; Bisenius et al., 2017; Bruun et al., 
2019; Kim et al., 2019; Poonam et al., 2021; Spinelli et al., 2017) and 
Positron Emission Tomography (PET) (Álvarez et al., 2019; Díaz-
Álvarez et al., 2022; Matias-Guiu et al., 2018, 2019, 2020; Slegers et al., 
2021), while Magnetoencephalography (MEG) has been used to 
investigate the differences observed between PPA patients and healthy 
controls in reactions to linguistic stimuli, but without attempting to 
automatically classify PPA individuals (Kielar et al., 2018, 2019, 2022). 
Behavioral sources include audio recordings from which speech 
features are extracted (Cho et al., 2020; Cordella et al., 2017; García 
et al., 2022; Mahmoud et al., 2021; Matias-Guiu et al., 2018, 2022; 
Themistocleous et al., 2021; Zimmerer et al., 2020), as well as other 
cognitive and language data based on, for example, spelling 
performance (Neophytou et  al., 2019), morphological processing 
(Stockbridge et al., 2021), semantic knowledge and episodic memory 
(Hoffman et al., 2017).

The classification accuracy varies considerably in the reviewed 
works, but several studies have reported high accuracy, especially 
when advanced classification algorithms were used. Classification of 
HC vs. PPA is often achieved with extremely high accuracy using 
methods such as a Convolutional Neural Network (CNN) (Mahmoud 
et al., 2021) and a Support Vector Machine (SVM) (Bisenius et al., 
2017). In several cases (Agosta et al., 2015; Cordella et al., 2017; García 
et al., 2022), the two classes used are healthy and non-fluent variant 
PPA (nfvPPA) with Cordella et al. (2017) reporting a perfect score of 
100%. Classification of the three PPA variants has also been achieved 
with high accuracy, 78%, using a deep neural network on speech 
utterances (Themistocleous et al., 2021). Classification attempts for 

HC vs. MCI have achieved high accuracy, 87%, using SVM algorithms 
(Lagun et al., 2011), and up to 91% using CNN (Chriskos et al., 2021). 
The one study that has compared MCI vs. PPA has achieved relatively 
low accuracy values (59%), but no advanced classification algorithms 
were used (Bruun et al., 2019).

Classification accuracy is tightly associated with the classification 
algorithms used, but also with the type of data used. Neuroimaging 
data usually allows for higher classification accuracy, yet they are 
inherently high cost and require the availability of appropriately 
trained medical and support staff. Behavioral data can be used to 
achieve good classification accuracy, especially if coupled with 
advanced classification algorithms. However, while audio recordings 
can be conducted with simple and low-cost equipment, they are highly 
time-consuming to collect and preprocess, as well as to extract the 
information relevant for classification.

To the best of our knowledge, only one study has tried to dissociate 
PPA from MCI, but this was based on MRI data (Bruun et al., 2019). 
Given the need for low-cost and time-efficient classification of PPA 
and MCI, in the current study we used low-density (i.e., 8-channel) 
Electroencephalography (EEG) recordings to classify between PPA, 
MCI and HC individuals. To achieve this, we used features extracted 
from three sources. Utilizing the Relative Wavelet Entropy (RWE) 
method, we derived (i) Functional Connectivity (FC) values across the 
8 channels, as well as (ii) graph theory metrics, and also separately 
extracted (iii) the energy of various rhythms.

In contrast to behavioral tasks, often a time-consuming endeavor 
that requires several language-specific tests, we used only 3 minutes 
of resting-state EEG recordings per individual with an 8-channel 
system to extract all these features, which is quick to set up and task-
free. Importantly, unlike neuroimaging techniques, such as MRI and 
PET, which are expensive and often non-accessible, EEG is a low-cost 
option for studying the brain and is widely used. Previous research has 
shown abnormalities in the EEG profiles of PPA (Grieder et al., 2016; 
Mesulam, 1982; Utianski et al., 2019, 2022) and MCI (Baker et al., 
2008; Grunwald et al., 2002; Jelic et al., 2000; van der Hiele et al., 2007) 
individuals. However, no study has attempted to distinguish PPA from 
MCI based on their EEG profiles. The current study aimed to address 
this gap and automatically classify PPA and MCI individuals using 
features extracted from short EEG recordings.

2 Materials and methods

2.1 Participants and experimental 
procedure

The data used in this paper originate from two different datasets. 
The first one, containing the healthy elderly and the MCI group, was 
derived from the Long Lasting Memories (LLM) study (Frantzidis 
et al., 2014). Participants underwent detailed clinical examinations. 
MCI diagnosis was based on the Petersen criteria (Petersen, 2004). 
The MCI group comprised of eight right-handed individuals (mean 
age = 67.8, SD = 4.6) with MMSE scores ranging from 24 to 25 
(mean = 24.75, SD = 0.46) and MoCA scores ranging between 22 and 
24 (mean = 22.88, SD = 0.83). The MCI individuals were diagnosed as 
amnestic MCI following neuropsychological assessment which was 
part of the screening process for the LLM study. The healthy control 
(HC) group comprised of eight age-matched healthy individuals 
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(mean age = 66.95, SD = 6.4), with MMSE scores above 28 
(mean = 28.65, SD = 0.98) and MoCa scores above 27 (mean = 26.35, 
SD = 1.70), in accord with Greek norms (Fountoulakis et al., 2000; 
Konstantopoulos et  al., 2016). The MCI group suffered from 
impairments in multiple domains, with memory impairment being 
predominant. As part of the LLM study, eyes closed resting-state EEG 
activity was recorded for 5 minutes, with a sampling frequency of 
500 Hz. EEG data were recorded using a Nihon Kohden JE-207A 
device with 57 active EEG electrodes positioned according to the 
International 10–10 system. The remaining seven electrodes were: two 
for reference on the mastoids, a ground electrode, vertical and 
horizontal electro-ophthalmogram and electrocardiogram, the latter 
two using bipolar electrodes. All electrode impedances were kept 
below 2 kOhms and the quality of the signal was monitored during 
the whole recording.

The PPA group comprised 14 right-handed individuals (mean 
age = 68.57, SD = 7.9) from a treatment investigation at the Johns 
Hopkins University (JHU). PPA diagnosis and variant classification (9 
lvPPA, 5 nfvPPA) was based on the consensus criteria published by a 
group of experts in 2011 (Gorno-Tempini et al., 2011). The MMSE 
scores for the PPA group ranged between 12 and 29 (mean = 22.14, 
SD = 4.93) and MoCA scores ranged between 9 and 26 (mean = 16.93, 
SD = 5.09). Electrophysiological data included eyes-closed resting-
state 8-channel EEG recordings, lasting for 2–4 minutes. EEG data 
were recorded using the Neuroelectrics StarStim 8 system with the 
electrodes positioned according to the International 10–10 system, 
sampled at 500 Hz, with a maximum impedance value of 2 kOhms. 
The PPA group included more participants than the other groups, to 
account for the shorter duration of the PPA EEG recordings.

Participants from both studies gave written consent for their 
participation according to Helsinki declaration. The protocol for the 
MCI and healthy control participants recruitment was approved by 
the Bioethics Committee of the School of Medicine of the Aristotle 
University of Thessaloniki, as well as the Board of the Greek 
Association of Alzheimer’s Disease and Related Disorders 
(GAADRD). The PPA participants were recruited under the following 
protocols approved by the Johns Hopkins Medicine Institutional 
Review Board: IRB 00201027, and IRB 00229164.

2.2 Data pre-processing

In order to incorporate the EEG signals from two heterogeneous 
sources, we retained all eight channels from the PPA dataset and the 
same eight channels from the LLM dataset, namely channels F7, T7, 
CP3, P5, F8, T8, CP4, and P6. This facilitated the incorporation of 
these two datasets into one for the purpose of the current analyses.

Prior to feature extraction, the recorded data were pre-processed 
to remove content unrelated to brain activity and eliminate noise 
artifacts. The process involved several steps which are detailed in 
Chriskos et  al. (2018). Briefly, the mean of each electrode was 
subtracted from its respective activation so that all signals have a mean 
value of zero, followed by the application of 5 s order Butterworth 
filters. The order in which the filters were applied was, first, a high pass 
filter at 0.5 Hz (remove the direct current, DC, component), second, 
a low pass filter at 100 Hz (remove high frequency content irrelevant 
to the EEG), and, finally, three band-stop filters centered at the 
powerline frequency and its first two harmonics, depending on the 

region in which the recordings took place (50 Hz for PPA recordings 
and 60 Hz for LLM and healthy recordings). The final pre-processing 
step was the segmentation of the EEG data into epochs of 8.192 s each. 
In some cases, where strong linear trends could not be removed by 
filtering, the least-squares fit straight line was calculated and 
subtracted from the data (Schlögl, 2002). Re-referencing was carried 
out using the common average re-referencing method (Kayser and 
Tenke, 2010). Independent Component Analysis (ICA) was not 
applied since the small number of channels in one of the datasets 
prohibited its implementation.

2.3 Feature extraction

A total of 113 features were extracted per epoch and were used for 
the classification analyses. These features included (i) 56 FC values 
across the 8 channels, (ii) 12 values based on graph theory metrics, 
and (iii) 45 values reflecting the energy of various rhythms. The 
extraction of these features is described in more detail below.

2.3.1 Functional connectivity
FC features between electrode pairs were estimated using the 

Relative Wavelet Entropy (RWE) (Rosso et al., 2001; for more details 
on the method used, see Supplementary Appendix 1). The FC features 
used in this study represent the degree to which the energy distribution 
between the delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta 
(12–20 Hz), and gamma (20–50 Hz) EEG rhythms are similar between 
each electrode pair.1 Since RWE provides a non-symmetric functional 
connectivity matrix (for details, see Supplementary Appendix 1), 
we extracted a total of 56 FC features across the 8 channels.

2.3.2 Graph metrics
The RWE functional connectivity matrix (derived as described 

above and in Supplementary Appendix 1), also known as 
synchronization matrix, can be regarded as a graph adjacency matrix, 
from which graph metrics can be  calculated to assess the overall 
connectivity between each pair of electrodes (Deuker et al., 2009; 
Frantzidis et al., 2014). In total, 12 values were extracted based on the 
following five graph theory metrics:

 1 the Clustering Coefficient (CC), quantifying the strength of 
immediate neighbor connectivity (eight values  - one value 
per electrode),

 2 the Characteristic Path Length (CPL) the sum of the 
connectivity values in the shortest path connecting all nodes 
(one value for all electrodes),

 3 the Characteristic Path Efficiency (CPE) the efficiency of the 
above path (one value for all electrodes),

 4 the Connection Density (CD), the ratio of the number of 
connections present in the graph divided by the total number 
of possible connections (one value for all electrodes),

1 Although frequencies above 50 Hz (i.e., high-gamma activity) can be highly 

relevant for the populations studied in the present paper, we excluded them 

because it is often argued that they are not highly reliable when measured on 

the skull rather than the cortical surface (Crone, 1998; Riès et al., 2017).
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 5 the Small World Metric (SW) is calculated by dividing the 
mean CC and CPL of the given graph as a ratio of the same 
metrics derived from a set of random graphs with the same 
size, which quantifies the ease of information transfer between 
the nodes in the graph (one value for all electrodes).

2.3.3 EEG rhythm energy ratio
The final set of features reflected the rhythm energy ratios of the 

EEG signal. The energy ratios of the five main brain rhythms were 
calculated for the whole signal, as well as for each electrode separately. 
Specifically, we focused on the power ratios of the delta (δ), theta (Θ), 
alpha (α), beta (β) and gamma (γ) rhythms over the total energy of the 
signal. The energy was calculated as described in 
Supplementary Appendix 2 - Equation 2. In total 45 values reflecting 
the energy of various rhythms were extracted, five for each rhythm per 
electrode and another five for each rhythm, for the whole EEG.

2.4 Classification analyses

The classification analysis evaluated how successful different 
classifiers are in dissociating the three groups based on the features 
extracted from the EEG data. The entire set of 113 features was used 
for the classification analyses. Our classification analysis had two 
levels: epoch-level and participant-level. First, we  conducted a 
classification analysis at the epoch-level, to assign a group label to each 
epoch. Then, for the participant-level classification, for each 
participant, the labels of the classified epochs were counted, and the 
participant was classified in the group with the majority of labels. The 
classification analysis required the separation of the dataset into a 
training and test sets, that were used to train and evaluate the 
classifiers, respectively. A ratio of approximately 70–30 (for training 
and testing, respectively) was used for all analyses. The number of 
epochs per participant group and classification set are presented in 
Table 1.

Classification was carried out using the k-Nearest Neighbor 
(k-NN) and Support Vector Machines (SVM) classifiers, with k-NN 
mostly used for linearly separable groups, and SVM used for more 
complex schemes. Initially Bayesian Optimization (BO) (Snoek et al., 
2012) was used in order to attain approximate good parameter value 
ranges and combinations. However, BO is only applied on the training 
set, not the testing set. Therefore, it is not expected to provide the best 
possible results. The values were manually optimized based on the 
accuracy attained by each classifier on the test set.

The main parameters optimized for the k-NN classifier are the 
number of nearest neighbors k and the distance metric used. In our 
experiments we  used the Cityblock (Manhattan) distance, the 
Euclidean distance and the Cosine similarity metric. For the SVM 

classifiers, we used three different kernels, i.e., linear, polynomial and 
radial basis function (RBF). The polynomial kernel is governed by its 
degree parameter, while the RBF σ was optimized. The σ parameter 
adjusts the width of the RBF kernel. Other combinations of parameters 
were also used but provided similar or poorer results. The use of more 
complex classifiers (neural networks, convolutional neural networks, 
extreme learning machines) was prohibited by the small number of 
available data. Analyses were conducted for binary (i.e., two groups at 
a time) classification between all class pairs, namely HC vs. MCI, HC 
vs. PPA, PPA vs. MCI, as well as across the three groups, that is HC vs. 
MCI vs. PPA.

In order to assess the importance of each calculated feature 
we used the C4.5 algorithm (Quinlan, 2014). The C4.5 algorithm was 
applied with no limit on the maximum depth, merging the leaves from 
the same parent node that have risk values equal or greater compared 
to the parent, prior probabilities calculated on the training set and 
with pruning enabled. This algorithm is used to generate a decision 
tree by identifying the features that, when removed from the rest, 
maximize the normalized information gain ratio. For each one of 
these features a decision node is created in order to classify the 
training samples. This process is repeated until all samples belong to 
the same group or the remaining features do not provide information 
gain. Since the features are selected by order of importance, this 
algorithm can be used as a feature ranking method.

3 Results

3.1 Classification

As mentioned earlier, a large set of combinations of classifiers 
and parameters were tested. The results are presented in Table 2, 
which shows in bold font the row that corresponds to the 
classifiers with the highest classification accuracy on the test set 
for each classification scheme. Below we discuss the results of the 
test sets for the two classifiers that achieved the highest accuracy 
scores in each group comparison, both at the epoch- and 
participant-levels. As a reminder, our classification analysis had 
two levels: epoch-level and participant-level. First, we conducted 
a classification analysis at the epoch-level, to assign a group label 
to each epoch, and then, for the participant-level, the labels of the 
classified epochs were counted separately for each participant, and 
the participant was classified as belonging in the group with the 
majority of labels.

3.1.1 HC vs. MCI
When classifying between HC and MCI patients, the highest 

accuracy was achieved by the k-NN classifier with k = 1 using the 

TABLE 1 Number of epochs per participant (Epochs) and number of participants (PP) for each of the three groups, separately for the train and test sets, 
as well as the total numbers.

Set HC MCI PPA Total

Epochs PP Epochs PP Epochs PP Epochs PP

Train 270 6 225 5 210 10 705 22

Test 91 2 94 3 84 4 269 8

Total 361 8 319 8 294 14 974 30
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Cityblock distance. For the test set, accuracy at the epoch level was at 
76.11%, while at the participant level it was at 100%. The second 
highest accuracy rate was achieved by the k-NN with 3 nearest 
neighbors and the Cosine similarity metric. For the test set, accuracy 
at the epoch level was at 68.33%, while at the participant level it 
was at 80%.

3.1.2 HC vs. PPA
When classifying between the HC and PPA patients, the highest 

accuracy was achieved by the SVM classifier with an RBF kernel with 
σ = 0.7 and the box constraint equal to 1. For the test set, accuracy at 
the epoch level was at 90.29% while at the participant level it was at 
100%. The second highest accuracy rate was achieved by a coarse 

TABLE 2 Classification results both at the epoch level (Epoch accuracy) as well as the participant level (Participant accuracy), separately for each 
comparison of interest.

HC-MCI

Classifier Parameters Epoch accuracy Participant accuracy

Train Test Train Test

k-NN Cityblock 1 100.00% 76.11% 100.00% 100.00%

k-NN Euclidean 3 99.54% 67.78% 100.00% 80.00%

k-NN Cosine 3 99.77% 68.33% 100.00% 80.00%

SVM Linear – 99.76% 61.67% 100.00% 80.00%

SVM Poly d = 11 99.74% 62.22% 100.00% 80.00%

SVM RBF σ = 0.00001 100.00% 65.56% 100.00% 80.00%

HC-PPA

Classifier Parameters Epoch accuracy Participant accuracy

Train Test Train Test

k-NN Cityblock 101 98.36% 74.85% 100.00% 83.33%

k-NN Euclidean 93 96.04% 67.43% 100.00% 66.67%

k-NN Cosine 111 92.29% 68.00% 100.00% 66.67%

SVM Linear – 98.54% 58.29% 100.00% 66.67%

SVM Poly d = 5 93.54% 56.00% 100.00% 66.67%

SVM RBF σ = 0.7 99.58% 90.29% 100.00% 100.00%

MCI-PPA

Classifier Parameters Epoch accuracy Participant accuracy

Train Test Train Test

k-NN Cityblock 65 89.84% 69.94% 93.33% 71.43%

k-NN Euclidean 77 88.77% 72.83% 100.00% 71.43%

k-NN Cosine 63 90.91% 76.88% 100.00% 85.71%

SVM Linear – 98.66% 82.66% 100.00% 71.43%

SVM Poly d = 3 99.20% 85.55% 100.00% 85.71%

SVM RBF σ = 1.1 100.00% 91.91% 100.00% 100.00%

HC-MCI-PPA

Classifier Parameters Epoch accuracy Participant accuracy

Train Test Train Test

k-NN Cityblock 7 98.91% 54.17% 100.00% 66.67%

k-NN Euclidean 3 99.20% 53.03% 100.00% 66.67%

k-NN Cosine 3 99.38% 54.54% 100.00% 66.67%

SVM Linear – 98.91% 45.08% 100.00% 55.56%

SVM Poly d = 7 99.69% 46.21% 100.00% 55.56%

SVM RBF σ = 1.38 100.00% 54.17% 100.00% 77.78%

k-NN, k nearest neighbor; SVM, support vector machine; RBF, radial basis function. Bold values indicate highest accuracy rate achieved on the test set for each classification experiment.
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k-NN classifier with k = 101 and the Cityblock distance metric. For 
the test set, accuracy at the epoch level was at 74.85%, while at the 
participant level it was at 83.33%.

3.1.3 MCI vs. PPA
When classifying between MCI and PPA patients, the highest 

accuracy was achieved by the SVM classifier, using the RBF kernel 
with σ = 1.1 and the box constraint equal to 10. For the test set, 
accuracy at the epoch level was at 91.91% while at the participant 
level it was at 100%. The second highest accuracy rate was achieved 
by the SVM classifier with a third-degree polynomial kernel with a 
box constraint, as in the previous case, equal to 10. For the test set, 
accuracy at the epoch level was at 85.55% while at the participant 
level it was at 85.71%.

3.1.4 HC vs. MCI vs. PPA
When classifying between all three groups, that is HC, MCI and 

PPA patients, the highest accuracy was achieved by the SVM with a 

RBF kernel, a σ value of 1.38 and a box constraint value equal to 1. For 
the test set, accuracy at the epoch level was at 54.17% while at the 
participant level it was at 77.78%, misclassifying one PPA patient as 
MCI, and one MCI patient as healthy. The other classifiers achieved 
even lower classification accuracies.

For each of the three pair-wise comparisons, the highest 
performing classifier achieved 100% accuracy at the participant-
level. In the case of the three-way classification, the highest 
performing classifier achieved 77.78% accuracy at the 
participant-level. The misclassified cases were one PPA patient 
classified as MCI and one MCI patient classified as HC. Confusion 
matrices for epoch-based classification are provided in 
Supplementary Appendix 2.

The feature ranking results for each classification approach are 
presented in graphical format in Figure 1. In both cases, the features 
are presented in decreasing rank value. The number of features in each 
classification scheme are different depending on the similarity of the 
differentiated groups.

FIGURE 1

Feature ranking graphs for: (A) HC vs. MCI, (B) HC vs. PPA, (C) MCI vs. PPA, (D) HC vs. MCI vs. PPA. Rank values have been normalized to render 
comparisons easier. RWE, Relative Wavelet Entropy; SW, Small World Metric.
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3.2 EEG features per group

In this section, we provide a description for each group with 
respect to the various features that were used to generate the above 
classification results (in section 3.1): (I) FC values, (II) Graph theory 
metrics, and (III) Energy rhythms. It is important to note that based 
on the steps followed to calculate the various features, for each feature 
there is just one value per group (rather than per individual). 
Therefore, a statistical comparison of these features between groups 
is not possible.

3.2.1 Functional connectivity values
Figures  2A,B graphically show the strength of FC between 

each pair of electrodes. Figure  2A shows the FC values 
superimposed on a brain image, while in Figure 2B, the same FC 
values are represented in a matrix format for ease of readability. 
Table  3 presents the average LMC, RMC, and IMC values 
per group.

3.2.2 Graph theory metrics
Table 4 provides the average values of the graph theory metrics for 

each group. Overall, CC is lower in PPA in all electrodes of both 
hemispheres studied here relatively to MCI and HC.

3.2.3 Energy rhythms
Figure  3 shows how the two patient groups, MCI and PPA, 

compare against the HC group with respect to the power of each 
energy rhythm at each of the eight channels, as well as averaged across 
all channels.

4 Discussion

This study investigated classification accuracy for individuals with 
PPA and MCI as compared to HC using low-density EEG data. 
Specifically, we evaluated how functional connectivity values, graph 
theory metrics derived from the functional connectivity graph, as well 
as energy rhythms can allow us to distinguishing the three groups 
from one another using EEG data from 8 electrodes. Providing a 
detailed description of group-specific profiles and of group differences 
is beyond the scope of the current study. However, a discussion of the 
differences between groups detected based on the features we used for 
classification in the current study is provided below. As mentioned 
earlier (section 3.2.), given our methodology, a statistical comparison 
of these features between groups is not possible. Thus, the discussed 
differences between groups are only indicative and future studies are 
needed to assess their statistical significance.

FIGURE 2

Functional Connectivity (FC) values superimposed on a brain image (A) and represented in a matrix format (B) as well, for each group (a) HC, (b) MCI 
and (c) pPA. (A) L, left hemisphere; R, right hemisphere. Warm colors (red) and thicker connections suggest higher FC values, while colder colors (blue) 
and thinner connections suggest lower FC values. The FC values were inverted to represent similarity values, and consecutively normalized to render 
the differences between the groups more apparent. Also, the nodes represent EEG electrodes. The brain surface is presented for demonstration 
purposes only. Diagonal values (i.e., of identical signal) are set to zero. The size of the spheres represents the node degree. (B) Electrodes with odd 
numbers represent left hemisphere locations whereas the opposite is true for electrodes with even numbers. For their approximate positions refer to 
(A). FC values have been normalized to render the differences more apparent.
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4.1 Classification

The results showed distinct patterns of functional connectivity 
and rhythm patterns across the three groups which allowed for high 
classification accuracies across all four comparisons of interest: (i) 
HC vs. MCI: 100.00%, (ii) HC vs. PPA: 100%, (iii) MCI vs. PPA: 
100%, and (iv) HC vs. MCI vs. PPA: 78%. The high accuracy rates 
indicate that the proposed methodology is suitable for differentiating 
the three groups and future studies with larger sample sizes can 
validate its applicability.

Previous classification attempts between HC and PPA groups have 
been equally successful, but they involved lengthy behavioral testing 
(e.g., Cho et al., 2020; Cordella et al., 2017; García et al., 2022; Neophytou 
et al., 2019; Themistocleous et al., 2021), or expensive neuroimaging 
studies (e.g., Agosta et al., 2015; Bisenius et al., 2017; Bruun et al., 2019; 
Kim et al., 2019; Poonam et al., 2021; Spinelli et al., 2017). Classification 
attempts for HC vs. MCI have achieved high accuracy, such as 87% 
(Lagun et al., 2011), and 91% (Chriskos et al., 2021), but this is the first 
study that has achieved a perfect 100% accuracy. With respect to MCI 
vs. PPA, the one study that has compared the two groups has achieved 
relatively low accuracy values (59%), while in the current study 
we report 100% accuracy in classifying the two disorders. Finally, to the 
best of our knowledge, no other study has compared all three groups at 
the same time. While the three-way comparison shows the lowest 
accuracy scores, it is still considerably high (i.e., 78%).

The successful classification of the two patient groups (MCI and 
PPA), both in the two-way and the three-way comparisons is 
particularly important. In our PPA group, the majority of patients 
were diagnosed with lvPPA, which is primarily characterized by 
Alzheimer’s pathology (Gorno-Tempini et al., 2008). MCI is also often 
characterized by Alzheimer’s pathology (Bennett et  al., 2005). 
Therefore, the fact that we were able to successfully classify the patients 
in the two groups, despite the probable overlap in the underlying 
pathology is especially significant.

With respect to the two classifiers used in the current study, the 
SVM classifiers achieved the lowest classification accuracy results 
for the HC vs. MCI comparison, perhaps indicating that these 
groups are linearly separable. While this might seem a surprising 
outcome, it suggests that the participant groups can be distinguished 
by simple classifiers, while more complex ones tend to 
be overtrained. On the other hand, for the HC vs. PPA and MCI vs. 
PPA comparisons, higher-complexity classifiers were needed to 
achieve high accuracy rates. These results suggest that the PPA 
group is not linearly separable from the other two groups, which 
highlights the intricate nature of this disorder and the need for 
further research into the neurophysiological profiles of the 
different variants.

Finally, we want to address any concerns that might arise for the 
validity of the above-mentioned classification results because of 
using data from heterogenous recording sources. Several 
measurements were taken to ensure the validity of our classification 
analysis and results. First, we retained the same 8 channels from 
both datasets, and we applied the same preprocessing pipeline in 
preparing the data for further analysis. To further mitigate a 
possible recording system effect, we  used a functional 
synchronization metric that converts the EEG time-series into a 
matrix of synchronization values. Therefore, while the EEG data 
may be recorded differently between devices, the synchronization 
between the electrode pairs is mostly unaffected and not device-
dependent. Another step taken to address such issues was the 
normalization of the data into the interval [0, 1] subtracting any 
direct current components that would affect the joint utilization of 
the initially heterogeneous sources.

4.2 Functional connectivity across groups

For the HC group (Figures 2Aa,Ba) we observed that the FC 
values cover the full spectrum of values, from 0 to 1. This was true 
both for within-hemisphere connections, with the strongest 
connection being between the posterior temporo-parietal areas (e.g., 
CP3-P5), as well as for the between-hemispheres connections. On 
the other hand, the range of values for the MCI group 
(Figures 2Ac,Bc) was characterized by distinctive either high or low 
values. Characteristic to the MCI group, are the high FC values 
observed between the two hemispheres, which is confirmed by the 
high overall interhemispheric connectivity value (IMC) for which the 
MCI group had the highest value out of the three groups (see 
Table 3).

TABLE 3 Mean connectivity values per hemisphere and between the two 
hemispheres per group.

LMC RMC IMC

HC 0.10 0.12 0.15

MCI 0.05 0.06 0.17

PPA 0.18 0.17 0.14

LMC, left mean connectivity; RMC, right mean connectivity; IMC, interhemispheric mean 
connectivity.

TABLE 4 Mean graph theory metrics per group.

CC-F7 CC-T7 CC-CP3 CC-P5 CC-F8 CC-T8 CC-CP4 CC-P6

HC 0.626 0.631 0.63 0.636 0.629 0.626 0.631 0.634

MCI 0.635 0.657 0.652 0.67 0.648 0.664 0.652 0.673

PPA 0.581 0.617 0.616 0.62 0.594 0.617 0.608 0.617

CPL CPE CD SW

HC 1.615 0.636 0.632 1.297

MCI 1.555 0.661 0.66 1.257

PPA 1.687 0.616 0.615 1.352

CC, clustering coefficient, per electrode; CPL, characteristic path length; CPE, characteristic path efficiency; CD, connection density; SW, small world metric.
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Similar to the MCI group, the range of values for the PPA group 
(Figures 2Ac,Bc) was characterized by distinctive either high or low 
values. Characteristic to the PPA group, are the high FC values 
observed within each hemisphere and mostly in the left, primarily 
between the electrodes located above the perisylvian areas (e.g., 
T7-P5), and in the connections between frontal and more posterior 
areas of the brain (e.g., F7-T7). This is further supported by the high 
within-hemisphere mean connectivity values in both hemispheres 
(see LMC and RMC values in Table 3), for which the PPA group had 
the highest values out of the three groups, especially for the left 
hemisphere. This observation is made with the exception of the low 
connectivity values between the posterior temporo-parietal areas (e.g., 
CP3-P5) in the PPA group.

These rather different functional connectivity profiles across the 
three groups are, of course, a driving force for the successful 
classification of the three groups. Some notable differences between 
the groups are the particularly low left and right hemisphere mean 
connectivity values (LMC and RMC) of the MCI group compared 
to the other two groups, especially with respect to the PPA group. In 
other words, while the MCI group shows very low mean connectivity 
values within each hemisphere compared to HC, the PPA group 
shows the exact opposite pattern, that is very high mean connectivity 
values within each hemisphere compared to HC. A decline of 
intrahemispheric connectivity in MCI has been previously reported 
(Handayani et al., 2018). Increased within-hemisphere connectivity 
in PPA has been reported in past studies as well, both in EEG 
(Moral-Rubio et al., 2021) as well as fMRI resting-state functional 
connectivity (Tao et  al., 2020). The difference between the two 
groups might suggest that over the course of PPA, connectivity 
within hemispheres is strengthened to support the various functions 
of each hemisphere, while in MCI, this is not the case.

4.3 Graph theory metrics

The graph theory metrics provided another important source 
for understanding how the electrophysiological profiles of the 

three groups are different from one another. An important graph 
theory metric is the clustering coefficient that characterizes each 
node. Clustering coefficient is an index of the functional 
segregation of brain networks, with high values indicating a more 
specialized structure of the network. In this study, the MCI group 
showed the highest set of values out of the three groups. The high 
CC values obtained in this study for the MCI group, are in line 
with the lower CPL value and higher CPE and CD values 
compared to the HC group. In other words, the high connectivity 
between each node’s immediate neighbors (high CC values) is 
associated with shorter (low CPL value) and more efficient (high 
CPE value) connections, and, therefore, a denser network (high 
CD value).

On the other hand, the PPA group showed the exact opposite 
pattern of results compared to the HC group. Specifically, the PPA 
group showed the lowest set of CC values out of the three groups, 
which is evidence of a less functionally segregated brain network. The 
low CC values obtained in this study for the PPA group are in line 
with the higher CPL value and lower CPE and CD values observed 
compared to the HC group. In other words, the low connectivity 
between each node’s immediate neighbors (low CC values) is 
associated with longer (high CPL value) and less efficient (low CPE 
value) connections, which lead to a less dense network (low CD 
value). Overall, these results suggest that the PPA group shows a less 
segregated network compared to the HC group. On the contrary, 
previous research has shown greater segregation in PPA measured 
with graph theory metrics in fMRI resting-state (Agosta et al., 2014; 
Mandelli et al., 2018; Tao et al., 2020). Interestingly, brain stimulation 
through transcranial Direct Current Stimulation (tDCS) improves 
segregation in PPA (Tao et al., 2021).

The only graph theory metric that does not show values in the 
expected direction given the values we  get from the other graph 
theory metrics is SW. SW is considered an index of ease of 
information transfer. High CC values are expected to be associated 
with high SW values, because nodes that are strongly connected to 
their neighbors are likely to be  associated with easy information 
transfer. In the current study, contrary to the expected pattern, SW 

FIGURE 3

Differences of rhythm energy ratios for whole EEG and for each electrode separately, for (A) MCI against healthy controls, and (B) PPA against healthy 
controls. Warm colors (red) indicate a higher value for the healthy control group as opposed to the patient group, while colder colors (blue) indicate a 
higher value for the patient group as opposed to the healthy control group.
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values go in the opposite direction. Namely, the MCI group showed 
a lower SW value compared to the HC group (while they showed 
high CC values), while the PPA group showed a higher SW value 
compared to the HC group (while they showed low CC values).

Such a discrepancy might be caused by nodes that allow easy and 
efficient connectivity between otherwise far nodes. These nodes are 
also known as “hubs.” The low SW values for the MCI group might 
then be  associated with the high mean connectivity between 
hemispheres (high IMC value), which could reflect efficient 
connections across faraway nodes. On the other hand, the high SW 
values for the PPA group might be associated with the low mean 
connectivity between hemispheres (low IMC value), which could 
reflect efficient connections only between nodes that are spatially close 
to each other, i.e., within the same hemisphere (see high LMC and 
RMC values for PPA).

4.4 Energy rhythms

The final set of features we investigated were the energy rhythms 
for each of the eight channels, as well as on average across all 
channels. As shown in Figure 3, the PPA group showed the greatest 
differences compared to the healthy control individuals. Specifically, 
PPA showed higher values for the delta rhythm for each of the eight 
channels we investigated, as well as on average across all channels. 
Previous work looking into changes in delta rhythm activity in MCI 
had also found increased delta activity in MCI as compared to HC, 
particularly in frontal areas (e.g., Babiloni et al., 2010; Fauzan and 
Amran, 2015). In the current data, while there is a trend for higher 
delta rhythm values in MCI vs. HC as well, the difference between 
these two groups did not appear to be as large as in the case of PPA 
vs. HC. Alpha rhythms, especially in the left frontal lobe, also 
showed differences between PPA and HC, but in the opposite 
direction. In other words, the PPA group showed lower values 
compared to HC. While previous research that looked into 
differences in alpha rhythms in MCI has also shown lower alpha 
values for MCI compared to HC (Jelic et al., 2000), in the current 
study, the MCI group did not show substantial differences compared 
to the HC group. Finally, previous research has reported theta 
rhythm slowing as a characteristic difference between PPA 
compared to healthy aging (Utianski et al., 2022). In the current 
dataset, theta rhythm in the left frontal lobe also showed a trend in 
the same direction.

4.5 Limitations

While the results if this study allow us to better understand  
the value of low-density EEG signal in understanding 
neurodegenerative disorders like PPA and MCI, there were several 
important limitations that need to be acknowledged. First, there 
was a relatively small samples size (total of 30 participants) which 
might limit the generalization of the results. This fact also created 
a challenge in correctly training the classifiers which was 
nonetheless achieved, addressing the concern of overfitting. 
Regarding the generalizability of the current findings, the small 
dataset size also reduces the ability of the trained classifiers to 
be applied to different datasets. This is particularly true for larger 

datasets where variability is higher. However, it is still possible, 
with careful optimization, to achieve high accuracy rates on 
datasets of various sizes.

Other limitations relate to the EEG montages. Specifically, the 
fact that the dataset is composed of data recorded using two 
different EEG montages is an important limitation of the current 
work. The use of different EEG montages necessarily implies 
variability in the internal pre-processing steps for each device, along 
with differences in the capabilities of the recording devices to deal 
with noise and other artifacts. Another issue is the unbalanced 
number of individuals per group due to the length of the recordings. 
Related to these issues, it should be  noted that, in order to 
incorporate the EEG signals from two heterogeneous sources, 
we retained all eight channels from the PPA dataset and the same 
eight ones from the LLM dataset. Despite how challenging it was to 
get our groups to be as large and as balanced as possible, meaningful 
results were attained. Finally, an additional limitation of the 
low-density recordings is that the limited spatial resolution could 
lead to random or erroneous functional connectivity indicators, yet 
our results are in line with previous research that further supports 
the reported results.

5 Conclusion

Currently, distinguishing symptoms of healthy aging from those 
of the first stages of PPA and MCI requires lengthy cognitive and 
language assessments, paired with time-consuming and expensive 
neuroimaging data collections. The current study shows that 
successful classification between HC-MCI-PPA is possible with a 
simple 3-min EEG recording with eight electrodes. Previous attempts 
have been made to classify HC versus each of the two neurocognitively 
impaired groups separately. However, to the best of our knowledge, 
this is the first study that successfully classifies individuals across all 
three groups at the same time. The successful three-way classification 
renders the methodology more applicable to real-world scenarios 
where the distinction does not follow a strict normal vs. 
pathological paradigm.

Despite the methodological limitations associated with this study, 
these results have important implications for clinical practice since 
they allow for fast and accurate disease diagnosis which, in turn, allows 
for better management of disease progression and treatment. These 
results also highlight the importance of further investigating and 
understanding the electrophysiological changes observed in 
neurodegenerative diseases, particularly in PPA which is still relatively 
understudied. In order to gain a deeper understanding of how the three 
groups differ with respect to their neurophysiological profiles, future 
studies with larger sample sizes are needed to further compare these 
measurements between groups. Such studies can also allow us to 
establish the generalizability of the current findings with larger sample 
sizes and the efficient use of this methodology in a clinical setting.
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