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Schizophrenia (SCZ) is a severe mental disorder that impairs brain function and 
daily life, while its early and objective diagnosis remains a major clinical challenge 
due to the reliance on subjective assessments. This study aims to develop a 
machine learning-based framework for the auxiliary diagnosis of SCZ using multi-
dimensional electroencephalogram (EEG) features and to investigate the underlying 
neural alterations. Resting-state EEG data were obtained from 45 male patients 
with pediatric SCZ and 39 age-and gender-matched healthy controls. Three 
types of EEG features (relative power (RP), fuzzy entropy (FuzEn), and functional 
connectivity (FC)) were extracted under various time window lengths and fed into 
four ensemble learning models. A data-driven feature selection approach (Recursive 
Feature Elimination) was applied to identify the most informative features, resulting 
in 212 most discriminative features (48 RP, 40 FuzEn, and 124 FC) out of the initial 
760. Leveraging the selected features, the Categorical Boosting model achieved 
the highest classification accuracy of 99.60% at the 4-s window. Further analysis 
of the discriminative features revealed that the altered EEG characteristics were 
mainly in the alpha, beta, and gamma bands. Particularly, altered FCs exhibited a 
fronto-increase-parieto-decrease pattern mainly in the right hemisphere along 
with spectral-dependent RP alterations and a universally reduced FuzEn in the 
pediatric SCZ group. In summary, this study not only showcases the potential of 
advanced ensemble learning algorithms in precisely identifying pediatric SCZ, but 
also provides new insights into the altered brain functions in pediatric SCZ patients, 
which may benefit the future development of automatic diagnosis systems.
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1 Introduction

Schizophrenia (SCZ) is a severe mental disorder characterized by symptoms such as 
cognitive impairments, persistent hallucinations and delusions, which significantly affect 
patients’ daily functioning and quality of life (Hirano and Uhlhaas, 2021). According to the 
latest research estimates in 2024, SCZ affects approximately 0.32% of the global population 
(Oprea et al., 2024). There are approximately 24 million SCZ patients worldwide, making it 
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one of the top 25 leading causes of disability (Rahul et al., 2024). SCZ 
typically onsets in late adolescence or early adulthood and can have a 
lasting impact throughout the patient’s life (Buckley and Miller, 2015). 
Currently, antipsychotic medications are the primary treatment for 
SCZ, with about 70% of patients experiencing symptom improvement 
through appropriate treatment. However, the long-term outcomes of 
the disease vary widely among individuals: about 25% of patients 
achieve good recovery, 50% have moderate disability, and 25% 
experience significant persistent symptoms throughout their lives 
(Ranjan et al., 2024). The mortality rate among SCZ patients is two to 
three times higher than that of the general population, and their 
average lifespan is ten to twenty years shorter than that of healthy 
individuals (Laursen, 2011). SCZ not only causes profound suffering 
to patients but also imposes a heavy burden on families and society. 
Therefore, early diagnosis and deeper understanding of the neural 
mechanisms of SCZ, especially for pediatric SCZ, are crucial for 
improving treatment outcomes, reducing the disease burden, and 
enhancing patients’ quality of life (Wang et al., 2024; Li et al., 2024).

EEG, as a non-invasive technique for monitoring neural electrical 
activity, has the advantages of low cost, high temporal resolution, 
portability, flexible experimental design, and strong real-time feedback 
ability (Pan et  al., 2024), and has extensive application value in 
neuroscience and brain function research (Pan et al., 2025; Pei et al., 
2025). SCZ, as a complex and highly heterogeneous mental disorder, 
EEG shows unique advantages in revealing its underlying neural 
mechanisms. Numerous studies have demonstrated significant EEG 
abnormalities in patients with SCZ (Perrottelli et al., 2021; Perrottelli 
et al., 2022; Grohn and Eriksson, 2022; Hamilton and Northoff, 2021). 
For instance, aberrations in EEG power have been associated with 
specific cognitive impairments, such as deficits in verbal learning and 
memory function in SCZ patients (Koshiyama et al., 2021; Tanaka-
Koshiyama et al., 2020). The elevated or reduced power anomalies 
exhibited by these patients significantly correlate with cognitive 
dysfunction, reflecting disturbances and imbalances in brain activity 
(Hamilton and Northoff, 2021; Iglesias-Tejedor et al., 2022). Moreover, 
the irregularity and complexity of EEG signals as assessed by entropy 
exhibited abnormal patterns in EEG signals of SCZ patients both at rest 
and during cognitive tasks (Goshvarpour and Goshvarpour, 2022; 
Molina et  al., 2020). These entropy anomalies not only indicate 
disrupted neural network synchronization within the brain but also 
directly relate to patients’ negative symptoms and impairments in 
verbal memory ability, indicating that entropy disturbances might be a 
core factor in cognitive decline and could potentially serve as a 
biomarker for assessing disease progression and treatment efficacy 
(Molina et  al., 2020). Recent findings have revealed that SCZ is 
associated with functional dysconnectivity between disparate brain 
regions (Fornito et al., 2012). Studies have found significantly reduced 
connectivity between key functional areas such as the prefrontal cortex 
and temporal region, and this diminished connectivity may be closely 
linked to the manifestation of symptoms, including cognitive 
impairments (Naim-Feil et  al., 2018). Additionally, EEG-based 
dynamic studies of brain networks have revealed altered dynamic 
patterns of brain network connectivity in SCZ patients during cognitive 
tasks, characterized by increased global efficiency, decreased clustering 
coefficients, and changes in connection strength within specific brain 
regions. These changes are particularly evident within specific time 
windows following cognitive stimulation, further reflecting dynamic 
imbalances in brain function (Sun et al., 2019; Yan T. et al., 2023). In 
sum, multi-dimensional EEG measures have emerged as potent tools 

for unveiling the underlying mechanisms of SCZ and provide profound 
insights into the pathophysiological basis of SCZ.

In recent years, machine learning techniques have played an 
increasingly pivotal role in the diagnosis of SCZ, particularly in the 
analysis of resting-state EEG signals, where they have demonstrated 
remarkable advantages (Perellón-Alfonso et al., 2023; Yan W. et al., 2023; 
Lin et  al., 2023). Numerous studies has concentrated on extracting 
multi-dimensional features from EEG to precisely identify patterns of 
brain electrical activity associated with SCZ. These studies can 
be broadly categorized into two main directions. First, a significant body 
of research has focused on applying advanced machine learning 
algorithms, such as adaptive neuro-fuzzy inference systems and 3D 
convolutional neural networks, achieving high classification accuracies 
for SCZ at 99.92% (Najafzadeh et al., 2021) and 97.74% (Shen et al., 
2023), respectively. These investigations not only validate the efficacy of 
machine learning in the interpretation of complex EEG signals but also 
lay a solid foundation for its application in SCZ diagnosis. Second, other 
studies’ efforts are directed towards extracting EEG features and 
integrating them with traditional machine learning or deep learning 
models to further enhance diagnostic accuracy and provide interpretable 
findings. For instance, a study based on brain functional connectivity 
analysis, which fused different connectivity measures combining Partial 
Directed Coherence and PLI features, attained an accuracy of 95.16% 
(Zhao et al., 2021). Another study combined three effective connectivity 
measures (partial directed coherence, direct directed transfer function, 
and transfer entropy) with convolutional neural networks and transfer 
learning, elevating the diagnostic accuracy to 96.67% (Bagherzadeh and 
Shalbaf, 2024). These achievements not only uncover specific alterations 
in brain functional connectivity and other features in SCZ patients but 
also provide new insights into optimizing machine learning for EEG 
feature extraction and disease diagnosis.

While EEG has shown great promise in SCZ research, most 
existing studies rely on single-dimensional features or focus solely on 
adult populations, limiting their ability to reveal comprehensive 
neural patterns. To address these gaps, this study proposed a 
systematic analytical framework to dissect the brain functional 
mechanisms in pediatric SCZ patients. The primary contributions of 
this paper are summarized as follows:

	(1)	 Integration of multi-dimensional EEG features: Univariate 
power spectrum, fuzzy entropy, and multivariate functional 
connectivity were extracted to capture spectral, nonlinear, and 
network-level characteristics of brain activity.

	(2)	 Machine learning based feature selection and classification: 
Ensemble learning algorithms were employed to identify the 
most informative feature subset, enabling accurate differentiation 
between pediatric SCZ patients and healthy controls.

	(3)	 Revealing abnormal brain mechanisms: Group-level analyses 
were conducted to uncover specific alterations in power, 
entropy, and functional connection, providing insights into the 
electrophysiological dysfunctions associated with pediatric SCZ.

2 Materials and methods

2.1 Participants

The data used in this study were publicly available from the 
Mental Health Research Center (MHRC), Russian Academy of 
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Medical Sciences, including 45 boys diagnosed with schizophrenic 
disorders (infant SCZ, schizotypal and schizoaffective disorders 
corresponding to F20, F21 and F25 according to the ICD-10) and 39 
age-matched healthy participants. The age of patients ranged from 
10 years and 8 months to 14 years, while the healthy participants 
ranged from 11 years to 13 years and 9 months. The mean age of both 
groups is 12 years and 3 months. The diagnoses of the patients were 
performed and confirmed by specialists of the MHRC. None of the 
patients were undergoing chemotherapy during the examination 
period at the MHRC. Further details pertaining to the clinical 
characteristics of patients could be found in reference (Borisov et al., 
2005). The current study with the objective of data analysis, was 
approved by the Institutional Review Board of the Shaoxing 
People’s Hospital.

2.2 EEG data recording and preprocessing

EEG data were recorded from 16 channels while the participants 
were in an awake and relaxed state with their eyes closed. The 
electrode positions (i.e., F3, F4, F7, F8, C3, C4, Cz, T3, T4, T5, T6, P3, 
P4, Pz, O1, and O2) were placed in accordance with the 10–20 
international standard system. The reference electrode was the left 
and right mastoid and the sampling frequency was set as 128 Hz. A 
previously validated standard EEG preprocessing pipeline was 
adopted for raw EEG signals (Dimitrakopoulos et  al., 2018), the 
specific preprocessing procedure included the following steps: (1) A 
bandpass filter was applied to filter the data to the 0.5–45 Hz range, 
in order to remove low-frequency drifts and high-frequency EMG 
interference; (2) The EEG signals were re-referenced using an average 
reference across all electrodes; (3) Fast ICA was used to extract 
independent components, and artifacts were identified with the help 
of manual inspection and the ICLabel tool, in order to remove 
non-neural artifacts such as eye movements, blinks, and muscle 
activity; (4) The same filter was used to further divide the signals into 
five standard frequency bands: Delta (0.5–4 Hz), Theta (4–8 Hz), 
Alpha (8–13 Hz), Beta (13–30 Hz), and Gamma (30–45 Hz); (5) The 
preprocessed and band-divided signals were segmented into six time 
windows of different durations, providing a foundation for the 
extraction of multidimensional EEG features across multiple 
temporal scales. All preprocessing steps were conducted using 
customized codes in MATLAB 2021b (The MathWorks, Inc., U. S.) 
and the EEGLAB toolbox (Delorme and Makeig, 2004).

2.3 Feature extraction

After obtaining the artifact-free preprocessed EEG data, three 
widely used features that cover linear/nonlinear univariate and 
multivariate domains were adopted in this work for feature extraction, 
including relative power spectrum (RP), fuzzy entropy (FuzEn), and 
phase lag index (PLI). The extracted features were subsequently used 
as inputs for the following machine learning models.

Relative Power Spectrum (RP): For a given EEG signal x(t) (t = 1, 
2, 3, …, N; N is the time point of x(t)), its spectrum x(f) can 
be estimated using Fast Fourier Transform. The power spectrum Px(f) 
is then obtained via ( ) ( )=

21
xP f X f

N
. Then, RP of EEG band can 

be estimated by Equation 1:
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where fh and fl are the upper and lower limits of different rhythms, 
and fm and fn are the frequency bounds of the EEG signal. The RP was 
estimated within each frequency band for each channel, resulting 
16 × 5 RP features.

Fuzzy Entropy (FuzEn): For a given EEG signal x(t), it can 
be  reconstructed into a set of m-dimensional vectors 
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Then the Om(r) could be estimated by Equation 3:
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The FuzEn of the given signal x(i) could be obtained by Equation 4 
(Al-sharhan et al., 2001):

	 ( ) ( ) ( )+= − 1, , ln lnm mFuzEn m r N O r O r
	 (4)

In the current work, the embedding dimension m is set to 2, and 
r is determined by k × δ. Here, k is a constant value set to 0.2 (typically 
ranging between 0.10 and 0.25), and δ is the standard deviation of the 
EEG signal x(i). Within each frequency band, the FuzEn was estimated 
for each channel, leading to 16 × 5 features.

Phase Lag Index (PLI): PLI was adopted to estimate the functional 
connectivity for its superiority in minimizing the influence well-
known volume conduction and common sources (Stam et al., 2007). 
For a given pair of two EEG signals xk(t) and xl(t), the instantaneous 
phase is calculated using the Hilbert transform as Equation 5:
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where Zk and Zl are instantaneous amplitude, ϕk(t) and ϕl(t) are 
the instantaneous phases at t moment, ( )kx t  is the Hilbert transform 
of each time series. Then the PLI between these two signals could 
be defined as Equation 6:
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where   means the absolute value, and sign stands for the signum 
function as Equation 7:
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The range of PLI values is from 0 to 1. A large PLI value indicates 
a strong degree of phase synchronization between the pair of EEG 
signals, e.g., PLI = 0 indicates no coupling while PLI = 1 means two 
signals are in complete phase synchronization. After the functional 
connections of all pairs of channels were estimated, a 16 × 16 PLI 
matrix was obtained for each frequency band. Given that PLI(k, 
l) = PLI(l, k), a total number of (16 × 15 / 2) × 5 PLI features 
were obtained.

2.4 Ensemble learning models

Once we obtained the EEG features, four widely-used ensemble 
learning models that were popular in classification studies of EEG 
signals were adopted here to assess the performance of pediatric SCZ 
identification, including Random Forest (RF), eXtreme Gradient 
Boosting (XGBoost), Categorical Boosting (CatBoost), and Light 
Gradient Boosting Machine (LightGBM).

RF is an ensemble learning method that enhances prediction 
accuracy and stability by combining multiple decision trees. Each tree 
is trained on a random subset of the data and selects features randomly 
at each split, which helps reduce the risk of overfitting. Ultimately, RF 
derives the final prediction by aggregating the predictions of all trees. 
It is widely used in data science due to its simple implementation, rapid 
training, and robustness to outliers and noise.

XGBoost is a powerful gradient boosting algorithm, highly 
regarded for its exceptional predictive performance. It constructs a 
series of weak learners (typically decision trees) to progressively 
reduce prediction errors and improve model accuracy. XGBoost 
incorporates regularization techniques to control model complexity 
and overfitting, while employing efficient column sampling and 
parallel processing strategies that significantly enhance training speed 
and predictive performance. Additionally, it can handle missing values 
and offers a variety of flexible parameter tuning options, making it 
excellent in practical applications.

CatBoost is an efficient ensemble learning framework particularly 
suitable for handling complex categorical feature data. It employs 
symmetric decision trees and ordered boosting techniques to reduce 
overfitting and enhance the model’s generalization ability. CatBoost 
automatically processes categorical features and missing data, simplifying 
the data preprocessing pipeline, and accelerates model convergence 
through adaptive learning rate adjustments, thereby demonstrating 
outstanding performance in various application scenarios.

LightGBM is a fast and efficient gradient boosting framework 
designed for large-scale datasets. It adopts a histogram-based learning 
approach and incorporates a series of optimization strategies, such as 
Gradient-based One-Side Sampling (GOSS) and parallel processing 
of leaf splitting, to improve training speed and prediction accuracy. 
LightGBM excels in handling high-dimensional features and big data, 
making it widely applicable across various domains.

Taking the 4-s time window as an example, the dataset contained 
a total of 1,260 samples, including 585 HC samples and 675 SCZ 
patient samples. A 10-fold cross-validation approach was employed as 
the model basis, where the dataset was randomly divided into ten 
subsets, with nine as the training set and the remaining one as the test 
set. As such, by iterating this procedure 10 times, we could obtain the 
average classification performance metrics, including accuracy, 
precision, Recall, and F1 score.

2.5 Feature selection

Recursive feature elimination (RFE) is a model-based feature 
selection algorithm designed to identify the most significant features 
for model prediction performance from a feature set (Yan and Zhang, 
2015). It operates through an iterative process to progressively evaluate 
and eliminate features that contribute less to model performance, 
thereby achieving feature selection and model optimization. Initially, 
a baseline model is trained using all features, and importance scores 
are calculated for each feature. These importance scores are typically 
derived from model coefficients or the extent to which features 
influence prediction outcomes. Subsequently, features are ranked 
based on their importance, and those with the least contribution to 
the model are gradually eliminated. After each feature elimination, 
RFE retain the model and recalculates the importance scores for the 
remaining features. This process continues until a predetermined 
number of features remain or until there is no significant improvement 
in model performance. This stepwise elimination strategy effectively 
identifies the most predictive features while reducing the interference 
of redundant features, thereby enhancing model accuracy and stability. 
By systematically selecting features, RFE helps us to identify the most 
discriminative features. This approach not only improves the 
computational efficiency but also mitigates the risk of overfitting, 
thereby improving the model’s generalization ability. Heuristically, 
RFE provides a pure data-driven approach for quantifying the 
contribution of each feature to the final prediction outcomes and 
reveals the role of each feature within the overall model through 
feature importance ranking, thereby facilitating the interpretation of 
the etiology of SCZ.

3 Results

3.1 Classification performance

The abovementioned multidimensional EEG features were 
estimated using a time window approach. To evaluate the influence of 
the window length on the classification performance, the proposed 
analysis framework was applied using six different window lengths: 1, 
2, 3, 4, 5, and 6 s. Specifically, multidimensional EEG features were 
estimated within each non-overlapping window and set as input for 
the ensemble learning models. Figure 1 illustrates the classification 
performance of four ensemble learning models under six window 
lengths. As shown in Figure 1, longer window lengths led to improved 
estimation of EEG features, which in turn enhanced classification 
performance. All models achieved satisfactory results when the 
window length exceeded 2 s, while further increases in window 
duration produced only marginal improvements. The CatBoost 
classifier demonstrated the best classification performance with a 4 s 
time window (Table 1). Therefore, the window length of 4-s was used 
for the following analyses.

3.2 Feature selection

Given that the full feature set comprises 760 features, potentially 
leading to feature redundancy, this study conducted feature selection 
based on the entire feature set. Considering the superior performance 
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of CatBoost, it was chosen as the base model for RFE. By applying the 
RFE algorithm to the CatBoost model, the contribution scores were 
obtained for all features and then sorted in ascending order, thereby 
determining the feature importance ranking. Subsequently, the least 
contributive features were iteratively removed based on their 
importance and the CatBoost model was retrained by adding one 
feature per cycle until all features were traversed. The accuracy peaked 
at 99.60% when the number of input features for the model was 212. 
The variation of its accuracy rate with the number of features is shown 
in Figure  2. Therefore, the top  212 features with the highest 
contribution scores were selected as the optimal feature subset. 
We  then further interrogated the frequency distribution of the 
obtained optimal feature subset and found a predominance toward 
high frequency bands (Delta /Theta /Alpha /Beta/Gamma = 12/31/54 
/64/51) (Table 2).

3.3 Spatio-spectral distribution of the 
discriminative features

Once we have obtained the optimal feature subset, we then look 
into the spatio-spectral distribution of the discriminative features 
separately. The brain topographic maps of relative power features are 
presented in Figure 3. Specifically, an increase of RP in delta, theta and 
beta and a decrease in alpha and gamma band were observed in 
pediatric SCZ patients. The regions with differences in delta were 
mainly distributed in frontal, temporal, and occipital areas, the regions 
with differences in theta were mainly distributed in central and 
occipital areas, whereas the regions with differences in beta, alpha, and 
gamma were spread across the entire brain. In Figure 4, we showed 
the topographic maps of FuzEn in both groups. For pediatric SCZ 
patients, a universal decrease pattern was observed in four frequency 
bands. No discriminative FuzEn feature was revealed in the Delta 

band. In terms of the spatial distribution, we found a fronto-central 
predilection in Theta, Alpha and Beta bands, while spread across the 
brain in the Gamma band. The PLI distribution results, as well as the 
corresponding proportion of each brain region are depicted in 
Figure 5. The research findings a predominantly increased PLI pattern 
was revealed in Theta, Beta and Gamma bands, linking frontal, central 
and parietal areas, where a decreased PLI pattern was found in the 
Alpha band, linking frontal, parietal and occipital regions with a 
rightward predilection.

4 Discussion

This study has established an innovative analytical framework, 
which relies on a multi-dimensional EEG feature set determined by 
the optimal time window length. By integrating ensemble learning 
models with feature selection algorithms, the framework aims to 
extract EEG features that contribute most significantly to the 
classification accuracy of pediatric SCZ and exhibit the most 
pronounced differences, thereby providing deeper insights into the 
brain functional mechanisms of pediatric SCZ patients. The main 
findings are as follows: (1) Satisfactory classification performance is 
achieved through incorporating multidimensional EEG features with 
ensemble learning models, and reaches the best performance using 
the CatBoost model under 4-s time window (classification 
accuracy = 99.60%). (2) Based on the analysis of the optimal feature 
subset corresponding to the highest accuracy, we  investigate the 
spatio-spectral distribution and find pediatric SCZ is characterized as 
a complex dysconnectivity pattern mainly in the alpha, beta and 
gamma bands. This dysconnectivity pattern is accompanied by 
abnormal distributions of relative power and fuzzy entropy features in 
specific frequency bands. These findings will be  discussed in 
detail below.

FIGURE 1

Classification accuracy of four ensemble learning models under different time windows.
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4.1 Classification performance of Pediatric 
SCZ

Due to the high temporal resolution of EEG signals, the 
corresponding time window length for feature extraction would 
inevitably influence the performance of the machine learning 
framework. The determination of optimal time window length has 
long been a popular research topic in recent SCZ classification 
studies. However, complex findings were reported in determining the 
optimal time window length. For instance, Shen et al. introduced a 
deep learning framework to identify SCZ using the same publicly 
available dataset (Shen et  al., 2023). Specifically, EEG dynamic 
functional connectivity features were extracted with different time-
window lengths (i.e., 2, 5, 10, 30 s) before a 3D convolutional neural 
network. They reported that a monotonic increasing trend of 
classification performance was obtained with the increase of time 
window length (from 80.13% in a 2-s window to 97.74% in a 30-s 
window) (Shen et al., 2023). However, a relatively short time window 

(1 s with 50% overlapping) was used on the same dataset to compute 
the effective FC features and achieved a satisfactory classification 
accuracy of 91.69% (Phang et  al., 2020). The short time window 
(0.1–0.6 s post stimulus onset) was also adopted in a recent study and 
led to a classification performance of 95.15%. In exploring the 
influence of EEG time window on the classification performance of 
pediatric SCZ, we  reveal the crucial role of time window length 
through rigorous experimental design and multi-dimensional EEG 
feature extraction. We found that the classification performance was 
saturated when the time window length was higher than 2 s and 
reached the best performance at 4 s (accuracy = 99.21%). The 
discrepancies could stem from the following two aspects: feature 
extraction methods and experimental design (resting-state vs. task 
design). Collectively, these studies underscore the criticality of time 
window selection in EEG signal processing and highlight the 
importance of optimizing time window length for improving 
classification performance.

The satisfactory recognition accuracy achieved in this study with 
a 4-s time window is attributed to the combined application of the 
CatBoost ensemble learning algorithm and feature selection 
algorithm. As an advanced ensemble learning method, the CatBoost 
algorithm excels in handling high-dimensional data and imbalanced 
datasets. The findings in this study reaffirm its effectiveness in complex 
EEG signal analysis. Meanwhile, the introduction of the feature 
selection algorithm, by eliminating redundant and irrelevant features, 
retains the most discriminative EEG features, thereby significantly 
enhancing classifier performance. This finding aligns with other 
research, which similarly achieved a significant improvement in SCZ 
patient classification accuracy through Bayesian optimization for 

FIGURE 2

Classification accuracy during the RFE-based feature selection process.

TABLE 1  Model performance results of the four ensemble learning 
models.

Models Accuracy Precision Recall F1 score

RF 96.27 ± 1.88 98.73 ± 1.43 93.15 ± 3.98 95.81 ± 2.27

XGBoost 97.54 ± 1.09 97.26 ± 2.32 97.43 ± 1.66 97.32 ± 1.26

CatBoost 99.21 ± 0.50 99.30 ± 0.86 98.98 ± 0.83 99.14 ± 0.54

LightGBM 98.02 ± 0.89 98.50 ± 1.11 97.22 ± 2.26 97.83 ± 1.01

Values are mean ± standard deviation. Bold indicates best performance.
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selecting the best machine learning model and hyperparameters 
(Keihani et al., 2022). Notably, this study complements the research 
by Soria et al. They compared different machine learning systems and 
found that the ensemble learning algorithm performed well in SCZ 

classification with an accuracy of 94% (Soria et al., 2023). Therefore, 
these findings not only provide powerful technical support for the 
early diagnosis and treatment of SCZ but also offer new research ideas 
and methodological guidance for future EEG signal analysis in mental 
disorders, which may benefit the future development of automatic 
diagnosis systems. Of note, we have also compared the classification 
performance of the current work with several most recent studies 
using the same publicly available dataset (Table 3). In comparison with 
these previous studies, where fine-tuning neural network structure 
was utilized on single-domain EEG features, a lightweight ensemble 
learning model was adopted that delivers satisfactory performance 
(2nd best). We believe the rich information embedded in the EEG 
signals could be extracted from multiple domains that would lead to 
a comprehensive understanding of the etiology of pediatric SCZ.

TABLE 2  Feature distribution of the optimal feature subset.

Feature 
type

Delta Theta Alpha Beta Gamma Total

RP 6 5 14 11 12 48

FuzEn 0 6 10 10 14 40

PLI 6 20 30 43 25 124

Total 12 31 54 64 51 212

FIGURE 3

Topographic maps of relative power (RP) for five EEG rhythms in (a) HC and (b) pediatric SCZ groups. The red dots indicate the channels selected in 
the optimal feature subset.

FIGURE 4

Topographic maps of fuzzy entropy (FuzEn) for five frequency bands in (a) HC and (b) pediatric SCZ groups. The red dots indicate the channels 
selected in the optimal feature subset.
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4.2 Spatio-spectral distribution of the Most 
discriminative features

In order to explore the characteristics of EEG signals in pediatric 
SCZ patients, this study introduced a data-driven framework through 
incorporating ensemble learning models and a feature selection 
approach. Compared to the previous studies with complex deep learning 
or neural network structures, the framework provides direct 
correspondence with EEG characteristics with interpretable 
neurophysiological meanings. Specifically, pediatric SCZ patients exhibit 
complex alteration patterns across different frequency bands (i.e., an 
increase in delta, theta, and beta bands, while a decrease in alpha and 
gamma bands). This finding was in line with previous studies (Iglesias-
Tejedor et al., 2022; Light et al., 2006; Zhang et al., 2021). This power 
change pattern is particularly prominent in the temporal and occipital 
regions, suggesting that these regions may play crucial roles in the 
pathological process of SCZ. Given the important role of the temporal 

region in memory, emotion and auditory processing and the occipital 
regions in visual processing, these alterations may represent a disrupted 
brain dynamic oscillation that may lead to the well-known hallucination 
and delusion symptoms. Moreover, a universal decrease pattern was 
revealed in fuzzy entropy in theta, alpha, beta, and gamma bands, 
indicating a less complex and unpredictable nature of EEG signals in 
patients. This finding was in line with a recent work, where Molina and 
colleagues reported deficits in spectral entropy modulation in patients 
with chronic and first-episode SCZ (Molina et al., 2020). In terms of 
brain network alterations/reorganization, the current work employed 
advanced methods to conduct in-depth research on functional 
connectivity across the whole brain in SCZ patients. Specifically, a 
widely-used PLI was adopted here to estimate the functional connectivity 
for its superiority in attenuating the influence of EEG volume conduction 
and common sources (Stam et  al., 2007), leading to the intrinsic 
functional interactions. Among the most discriminative features, over 
half of them are PLI features (124 out of 212), indicating that SCZ is 

FIGURE 5

Topological distribution of the PLI features and the spatial distribution pie plot over five frequency bands. Red edges indicate that the PLI values for 
pediatric SCZ are higher than those for the HC group, while blue edges represent that the PLI values for pediatric SCZ are lower than those for the HC 
group.

TABLE 3  Comparison of the best performance in the current work and recent studies in SCZ classification using the same dataset.

References Features + Models Accuracy Sensitivity Specificity

Aslan and Akin (2020) STFT + VGG-16 CNN 95 95.37 94.68

Phang et al. (2020)
PDC + Multi-domain 

connectome CNN
91.69 ± 4.67 91.11 ± 8.31 89.64 ± 9.48

Sairamya et al. (2022)
DWT + relaxed local neighbor 

difference pattern + ANN
100 – –

Shen et al. (2023) Dynamic FC + 3D CNN 97.74 ± 1.15 96.91 ± 2.76 98.53 ± 1.97

Current work
Multidimensional EEG features 

(RP, FuzEn, PLI) + CatBoost
99.21 ± 0.50 98.98 ± 0.83 99.43 ± 0.62

STFT, short-time Fourier transform; CNN, convolutional neural network; PDC, partial directed coherence; DWT, discrete wavelet transform; ANN, artificial neural network; FC, functional 
connectivity; RP, relative power; FuzEn, fuzzy entropy; PLI, phase lag index.
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related to aberrant connectivity between distinct brain regions rather 
than abnormalities within the separate regions themselves. Moreover, 
we found a complex and widespread dysconnectivity pattern across five 
frequency bands in pediatric SCZ patients. It is noteworthy that the 
results of this study are highly consistent with those of previous brain 
connectome studies (Koshiyama et al., 2020). Contemporary theories 
suggest SCZ as a disorder of brain dysconnectivity or a disorder of brain 
network organization (Sheffield and Barch, 2016; Bassett et al., 2012). 
Our observations therefore extend previous studies of chronic and/or 
first-episode SCZ in adults to pediatric SCZ and provide further 
evidence for the notion of SCZ as a disconnection syndrome. 
Collectively, through a comprehensive analysis of relative power, fuzzy 
entropy, and functional connectivity features of EEG signals in SCZ 
patients, this study has revealed functional connectivity reorganization 
across brain regions and frequency bands, as well as abnormal 
distributions of relative power and fuzzy entropy features in specific 
frequency bands. These findings not only provide important clues for 
understanding the neurophysiological basis of pediatric SCZ but also 
offer potential biomarkers for future diagnosis and treatment.

4.3 Future considerations

Some issues should be considered when interpreting our findings. 
First, a widely-used publicly available dataset was used in the current 
work that includes 84 participants (pediatric SCZ/HC = 45/39). The 
relatively small sample size and the inclusion of only male participants 
may limit the generalizability and reproducibility of our findings. 
Evidence of gender differences in the brain and neurocognitive function 
in SCZ has long been recognized (Mendrek and Mancini-Marie, 2016). 
We  opted for this choice to maximize the number of existing 
classification studies with which our results could be directly compared 
without the need to consider the influences of clinical and demographic 
differences between different datasets. Nevertheless, further studies with 
a larger independent study sample and the inclusion of both genders are 
recommended to confirm our observations. Second, a heterogeneous 
group of patients was recruited in the current work that includes infant 
SCZ, schizotypal and schizoaffective disorders. It is noteworthy that the 
heterogeneous phenotype of SCZ patients might be a potential influence 
in extracting EEG features that contribute to classification due to 
divergent neurophysiological mechanisms. Future research should delve 
deeper into the brain function characteristics of pediatric SCZ subtypes 
to provide more specialized strategies to assist in automatic diagnosis.

5 Conclusion

This study proposes an analytical framework that leverages 
multidimensional EEG features combined with ensemble learning 
models and feature selection algorithms, to identify the most 
discriminative EEG features between the pediatric SCZ and HC groups, 
ultimately revealing unique brain functional alterations in pediatric SCZ 
patients. The results indicated that the CatBoost algorithm achieved a 
99.21% accuracy in identifying pediatric SCZ patients. Additionally, 212 
most discriminative features were screened from a total of 760 features, 
constituting a key subset for pediatric SCZ recognition. Further analysis 
of the optimal feature subset revealed that pediatric SCZ patients 
exhibited complex dysconnectivity architecture accompanied by 

abnormal distributions of relative power and fuzzy entropy features in 
specific frequency bands. The findings of this study not only improved 
the accuracy of pediatric SCZ identification but also provided potential 
biomarkers for the automatic diagnosis of pediatric SCZ.
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