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Introduction: A 3T MRI scanner delivers enhanced image quality and SNR,

minimizing artifacts to provide superior high-resolution brain images compared

to a 1.5T MRI. Thus, making it vitally important for diagnosing complex

neurological conditions. However, its higher cost of acquisition and operation,

increased sensitivity to image distortions, greater noise levels, and limited

accessibility in many healthcare settings present notable challenges. These

factors impact heterogeneity in MRI neuroimaging data on account of the

uneven distribution of 1.5T and 3T MRI scanners across healthcare institutions.

Methods: In our study, we investigated the efficacy of three deep learning-based

super-resolution techniques to enhance 1.5T MRI images, aiming to achieve

quality analogous to 3T scans. These synthetic and “upgraded” 1.5T images

were compared and assessed against their 3T counterparts using a range of

image quality assessment metrics. Specifically, we employed metrics such as the

Structural Similarity Index Measure (SSIM), Peak Signal-to-Noise Ratio (PSNR),

Learned Perceptual Image Patch Similarity (LPIPS), and Intensity Differences in

Pixels (IDP) to evaluate the similitude and visual quality of the enhanced images.

Results: According to our experimental results it has been exhibited that

among the three evaluated deep learning-based super-resolution techniques,

the Transformer Enhanced Generative Adversarial Network (TCGAN) significantly

outperformed the others. To reduce pixel differences, enhance image sharpness,

and preserve essential anatomical details TCGAN performed efficaciously.

Discussion: This approach presents TCGAN offers a cost-effective and widely

accessible alternative for generating high-quality images without the need for

expensive, high-field MRI scans and leads to inconsistencies and complicate

data comparison and harmonization challenges across studies utilizing various

scanners.
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1 Introduction

Magnetic resonance imaging (MRI) is widely used in
neuroimaging due to its non-invasive nature, excellent soft tissue
contrast, and painless procedure. While 1.5T MRI is the current
clinical standard, 3T MRI is gaining popularity for providing
clearer images, increased spatial resolution, decreased scan time,
higher detection of pathologies particularly small pathologies,
better delineation of small structures of the brain and better gray-
white matter contrast, which aids brain tissue segmentation, better
delineation of small structures of the brain etc. Despite the growing
availability of 3T MRI, most clinical scanners in the U.S. remain
1.5T.1,2 Though 3T MRI offers higher resolution, it cannot be
used in certain cases, such as patients with metallic implants,
those with heat sensitivity, and pregnant women. It is also less
suitable for areas prone to artifacts and certain imaging like cardiac
or abdominal scans (Graves, 2022). Upgrading 1.5T images to
3T quality could significantly improve diagnosis and treatment
decisions but replacing all 1.5T systems with 3T is expensive and
complex. This scenario leads to unresolved heterogeneity in MRI
neuroimaging data from the disparate distribution of 1.5T and
3T MRI scanners across healthcare settings, which in turn creates
major hurdles when pooling data from different MRI centers.
For example, challenges due to differences in field strength can
increase the disparity in detecting small structures and neurological
pathologies. More importantly in longitudinal follow ups of cases
and comparison with prior studies to detect changes over the
time. This difference in imaging quality can create inconsistencies,
complicating data comparison and integration from studies
utilizing varying scanner types, particularly in longitudinal imaging
efforts, such as the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) (Pomponio et al., 2020). Further complicating matters, the
lack of standardization in image acquisition protocols and post-
processing techniques raises questions about the reliability of
conclusions drawn from studies using mixed field strengths.

To leverage the strengths of both 1.5T and 3T MRI, the
generation of super-resolution images from 1.5T scans that
approach the quality of 3T images is essential. Recent advancements
in deep learning, particularly convolutional neural networks
(CNNs), have enabled high-resolution image generation from
lower-resolution MRI scans, harmonizing studies with mixed
field strengths. While Pham et al. showed that Super-Resolution
Convolutional Neural Network (SRCNN) (Pham et al., 2017)
effectively enhances low-resolution brain images using high-
resolution patches, Chen et al. (2018) introduced a GAN-
guided 3D network that produced high-quality images six times
faster for degraded images. Studies by Soltanmohammadi and
Faroughi (2023) indicated that Super-Resolution GAN (SRGAN)
and Efficient Sub-pixel CNN (ESPCN) outperform SRCNN in
generating non-medical high-resolution images. On similar lines,
Liao et al. (2022) demonstrated that SRGAN, ESPCN, and UNet
architectures excel in enhancing brain MR images acquired from
ADNI 1 dataset, which includes 47 subjects. More recently,

1 https://healthimaging.com/topics/medical-imaging/diagnostic-
screening/why-15tmri-leading-pack

2 https://healthimaging.com/topics/medical-imaging/diagnostic-
imaging/15t-mrifriend-physician-and-patient-alike

Li et al. (2022) used a Transformer-Enhanced GAN (TCGAN)
integrated with Transformer architecture in generator to generate
synthetic images of T1- (T1w) and T2-weighted (T2w) images and
reported on its superior performance compared to other CNN
and GAN methods. Interpolation methods, including bicubic and
Lanczos interpolation, remain effective alternatives for resolution
enhancement, as shown by Shelomentseva (2023) and Jahnavi
et al. (2024). However, in contrast to deep learning methods,
while interpolation methods offer quick and less computationally
demanding solutions, the resultant images suffer from blurred
edges and a lack of detail. Also, while traditional methods are
readily available and easily applied to any image, deep learning
techniques excel in critical clinical applications by handling noise
and complexity in low-field MRI scans. Currently, there is no
consensus regarding the optimal method for super-resolution tasks,
the choice between these methods depends on the specific context,
balancing the need for image quality against resource availability
and technical capabilities. Although deep learning models can
generate high-resolution images, it is essential to quantify these
improvements and assess their applicability for clinical goals. For
instance, the impact of mixed MRI field strengths on radiomics
(Savadjiev et al., 2019) is complex, affecting feature extraction,
data integration, and clinical applicability. Hodneland et al. found
that a significant proportion of extracted radiomic features were
statistically associated with specific MRI protocols, with features
being influenced by up to 62% due to differences in field
strength for certain cancers (Hodneland et al., 2024). Additionally,
Ammari et al. demonstrated that 10 out of 15 analyzed radiomic
features showed significant differences between 1.5T and 3T MRI
scans (Ammari et al., 2021). Addressing these challenges through
standardization and normalization methods is crucial for ensuring
that radiomics can fully realize its potential as a powerful tool
in diagnostic and prognostic applications across diverse imaging
environments.

Several image quality assessment metrics are employed in MRI
applications; however, they come with limitations, particularly in
the context of radiomics (Kastryulin et al., 2023). Full-reference
image quality metrics are critical tools in evaluating the quality of
images by comparing them to a known distortion-free reference
image. They are widely used in various imaging applications,
including MRI, as they provide quantitative assessments of how
closely a degraded image resembles an ideal version. Some
of the commonly used full-reference image quality metrics
include well-established metrics such as Structural Similarity
Index Measure (SSIM), Peak Signal-to-Noise Ratio (PSNR) and
Learned Perceptual Image Patch Similarity (LPIPS). While full-
reference metrics are fundamental for assessing image quality, the
metrics generally focus on global features and may overlook local
variations critical for medical images, where localized pathology
may be significant such as radiomics. Additionally, there are more
advanced image quality metrics such as universal image quality
index (UIQ), visual information fidelity (VIF), visual signal-to-
noise ratio (VSNR) etc. (Pedersen and Hardeberg, 2012), that also
account for local variations that are warranted for use in radiomics
applications, where the accuracy of feature extraction is vital for
clinical decision-making.

To address some of the limitations in the current literature, in
this study, we evaluated three deep learning based super-resolution
(SR) models (TCGAN, SRGAN, ESPCN) and two interpolation
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TABLE 1 Subject count by manufacturer.

Manufacturer name #Number of subjects

Siemens-Siemens 99

GE –GE 32

Philips-Philips 32

Cross manufacturers 37

methods (Bicubic and Lanczos) to generate synthetic 3T T1-
weighted brain images from 1.5T T1-weighted scans using unique
3T-1.5T image pairs obtained from the same group of patients
in the ADNI dataset. Our goal was to determine how well these
models could enhance the image quality of 1.5T images to match
typical 3T scanner outputs. Also, we employed well-established
metrics such as Structural Similarity Index Measure (SSIM), Peak
Signal-to-Noise Ratio (PSNR) and Learned Perceptual Image Patch
Similarity (LPIPS) to measure the fidelity and visual quality of the
generated 3T images. Additionally, we present a novel metric for
image quality assessment, namely “Intensity Differences in Pixels
(IDP)” to assess both the local and global variations and evaluate its
performance in differentiating the performance of the 5 SR models.

2 Materials and methods

2.1 Image acquisition

In this study, we utilized data from the publicly available
ADNI (IDA, 2025) database. We focused on a subset of 163
participants who had both 1.5T and 3T T1-weight MRI scans,
allowing for a quantitative comparison between the synthetic 3T
images generated from the 1.5T scans and the real 3T scans. Only
subjects scanned using three major MRI manufacturers namely GE,
SIEMENS, and Philips were considered (Table 1). Supplementary
Table 1 provides all vendor-specific acquisition parameters. No
cases with cross- manufacturer data were used for generating
synthesized 1.5T images in comparison with 3T images. This
decision was made due to signal-to-noise ratio (SNR) and contrast-
to-noise ratio (CNR) differences between MRI field strengths,
specifically between 1.5T and 3T, without addressing the broader
variations in image reconstruction methods used by different
MRI manufacturers (Kushol et al., 2023). Each manufacturer uses
unique algorithms and parameters to reconstruct images, which
can introduce variability in image appearance and quality beyond
the differences due to field strength alone. To ensure consistency
across datasets and to prevent confounding variables related to field
strength and noise processing, we excluded cases where images
were acquired at 1.5T from GE/Siemens and 3T from Philips, as
well as the reverse scenario where 1.5T images came from Philips
and 3T from GE/Siemens.

We trained the Super Resolution (SR) models using the
ADNI 1 dataset, which contains 14,080 axial T1 images. Due to
differences in the acquisition processes between 1.5T and 3T MRI
scans, misalignment was common, with anatomical structures not
perfectly overlapping. Such misalignment can introduce significant
errors and inconsistencies when comparing or combining data
from these two sources. To mitigate this issue and ensure accurate

analysis, we realigned the 1.5T images to match the orientation of
the 3T images. This alignment process was crucial for performing
precise, slice-by-slice comparisons and for ensuring that the
evaluation of the SR models was based on correctly corresponding
anatomical regions in both image sets. The realignment was
achieved using Statistical Parametric Mapping (SPM) 12 software
(Penny et al., 2011).

In all cases, the image alignment using the SPM software
resulted in 1.5T images with consistent anatomic correspondence
to the 3T image pair. All 200 subject pairs were visually inspected
to confirm accurate alignment. In cases where initial misalignment
was observed, the realignment procedure was iteratively repeated
for the affected pairs until the 1.5T images were correctly aligned
with the 3T scans (Figure 1).

2.2 Super resolution models

The processed 1.5T T1-weight images were then used as
inputs for three distinct super-resolution (SR) models and two
interpolation methods, each designed to improve the spatial
resolution of the medical images. By applying these advanced
SR techniques, the goal is to capture finer anatomical details,
potentially enhancing diagnostic accuracy and delivering more
precise visual information for clinical assessments, all without the
need for higher field strength re-scanning.

2.2.1 Bicubic interpolation
Bicubic interpolation (Keys, 1981) resamples images by

estimating new pixel values from a 4× 4 grid of neighboring pixels,
resulting in smoother and sharper visuals than simpler methods.
It’s commonly used in fields like medical imaging due to its balance
of quality and efficiency (Gavade and Sane, 2014). The synthesis
formula for bicubic interpolation is as follows:

P
(
x, y

)
=

i = 3∑
i = 0

j = 3∑
j = 0

aijxiyj

Here, P(x, y) = the interpolated values of (x, y) point and
aij = coefficients determined by the cubic interpolation formula.

2.2.2 Lanczos Interpolation
Lanczos interpolation (Duchon, 1979) Lanczos interpolation

delivers sharp, high-quality images with minimal artifacts, ideal
for precision tasks like scientific imaging. It resamples by
evaluating pixels within a defined grid, balancing image quality and
computational load for advanced image processing.

The interpolation formula for Lanczos is:

S (x) =
bxc+a∑

i = bxc−a+1

siL(x− i)

Where "a" represents the window size, L (x - i) is the Lanczos
kernel, and S(x) is the interpolated value at position x. Lanczos
is powerful for its ability to balance sharpness and smoothness,
making it a preferred method for many advanced image processing
applications (Turkowski, 1990).
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FIGURE 1

Reorientation of 1.5T images to match the 3T pair. A representative axial slice from the 3T scan is shown in (A). The 1.5T slice pair is shown before (B)
and after (C) reorientation.

2.2.3 Efficient sub-pixel convolutional neural
network

A specialized neural network architecture (Shi et al., 2016) uses
a pixel-shuffling technique to convert low-resolution feature maps
into high-resolution images efficiently. This sub-pixel convolution
method minimizes computational costs while delivering high-
quality results, making it ideal for applications in medical imaging,
security, and computer vision (DDI, 2018).

The ESPCN architecture (Figure 2) employs low- and high-
resolution image pairs during training with a loss function, often
based on Mean Squared Error, to enhance image reconstruction
accuracy. This efficient design makes ESPCN well-suited for
applications such as real-time video processing and medical
imaging on resource-constrained devices.

2.2.4 Super resolution generative adversarial
network

A deep learning-based model (Ledig et al., 2017) that
utilizes adversarial training to convert low-resolution images
into high-resolution, realistic outputs. It comprises two main
components: the Generator, which creates the upscaled images,
and the Discriminator, which assesses their quality against
real high-resolution images. This adversarial interplay enables
the Generator to produce increasingly lifelike results through
continuous feedback.

SRGAN’s (Figure 3), generator utilizes convolutional layers
to extract details from low-resolution images, with batch
normalization stabilizing training and residual blocks preserving
key features. The Discriminator assesses authenticity through its
convolutional layers and batch normalization, enhanced by Leaky
ReLU activation functions. Adversarial learning during training
drives the Generator to produce realistic high-resolution images,
making SRGAN effective for video upscaling and medical imaging
applications.

2.2.5 TCGAN: transformer-enhanced GAN
TCGAN builds upon the principles of Generative Adversarial

Networks (GANs) and comprises three key components:
a transformer generator, a CNN-based generator, and a
discriminator. The two generators are arranged in series to
enhance performance and capabilities.

The TCGAN architecture (Figure 4) uses a hybrid generator
combining transformer and CNN-based U-Net models

(Vaswani, 2017), with attention mechanisms (Ronneberger
et al., 2015) for capturing global information, enhancing synthesis
quality. The Patch GAN discriminator evaluates image patches,
promoting realistic, high-resolution image generation through
adversarial training.

2.3 Assessment metrics

The synthesized 3T images generated by the above SR models
were evaluated using several quantitative metrics.

2.3.1 PSNR
PSNR is a key metric in image processing used to assess the

quality of reconstructed or compressed images by comparing them
to the original reference. It measures the ratio of maximum signal
strength to noise introduced during compression, with higher
values indicating better quality and less distortion. Expressed in
decibels (dB), PSNR provides a quantitative measure to evaluate the
performance of super-resolution models. The formula for PSNR is
given as:

PSNR = 20log10(Maxf /
√
MSE)

Here Maxf represents the maximum possible pixel value of
the original image. For example, in an 8-bit grayscale image,
Max_f would be 255 (the highest pixel value). MSE is the mean
squared error between the original image and the synthetic (or
reconstructed) image. MSE is calculated by averaging the squared
differences between corresponding pixels of the two images.

2.3.2 Structural Similarity Index
The Structural Similarity Index (SSIM) (Wang et al., 2004) is

more aligned with human perception, as it accounts for the human
visual system’s sensitivity to structural features, brightness, and
contrast. SSIM compares two images by evaluating three primary
components:

• Luminance: The overall brightness or intensity of the pixels.
• Contrast: The difference between the darkest and brightest

areas of the image.
• Structure: The spatial arrangement of pixel patterns, which

represents the structural details in the image:

SSIM
(
x, y

)
= l(x, y)α.c(x, y)β.s(x, y)γ
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FIGURE 2

ESPCN architecture.

FIGURE 3

SRGAN architecture.

FIGURE 4

TCGAN architecture.

Here, x and y are the two images being compared. l(x, y) measures
luminance similarity between the two images. c(x, y) measures
contrast similarity. s(x, y) measures structural similarity. α, β,
and γ are weighting factors that control the importance of each
component. A higher SSIM indicates greater similarity between the
synthetic and original images.

2.3.3 Learned perceptual image patch similarity
An advanced metric (Zhang et al., 2018) measures perceptual

similarity between images by analyzing visual patterns and
textures, rather than relying on pixel-based comparisons like PSNR
and SSIM. Leveraging deep neural networks trained on image
recognition, LPIPS assesses images based on how they appear to

the human eye, capturing subtle perceptual details that traditional
metrics may miss.

Lower LPIPS scores indicate higher perceptual similarity
between generated and real images, meaning they look more alike
to human eyes. LPIPS is valuable for assessing image quality in tasks
like super-resolution, where visual perception is crucial.

2.3.4 Intensity differences in pixels
This metric, developed specifically for this study, is designed

to accurately assess the variations in pixel intensities between the
synthesized 3T images and the original 3T images. By focusing on
pixel-level intensity differences, it provides a detailed comparison
of how closely the generated images replicate the actual 3T scans.
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FIGURE 5

LPIPS loss is computed after extracting features and deeply embedding the images.

The goal is to capture discrepancies in intensity values, allowing
for a thorough evaluation of image quality and ensuring that
subtle differences between the synthesized and original images are
quantified. This approach offers a comprehensive understanding of
the accuracy and effectiveness of the synthesis process.

Q
(
i, j
)
= 1 if

∣∣∣Poriginal(i,j) − Psynthesized(i,j)

∣∣∣
Poriginal(i,j)

> ψ

IDP =
N∑
i

Q
(
i, j
)
/N;ψ = 0%, 10%, 20%, 25%, 50%, 75%

The IDP metric (Pham et al., 2017), (Chen et al., 2018)
involves counting the number of pixels with varying levels of
intensity differences between the synthetic and original 3T images,
categorized into > 0%, > 10%, > 20%, > 50%, and > 75%
differences. Then take the percentage of pixels with difference,
determined by the five different thresholds, respectively, over the
total pixel number.

2.4 Performance comparison

We have conducted pairwise comparison using paired test for
each pair of SR models. The difference by each benchmark index
and the associated 95% confidence interval was estimated using a
mixed effect model.

We have identified two anchor points to determine the clinical
significance: (1) The benchmark index between original 1.5 T
and original 3 T. The benchmark index from SR models must
be statistically significantly smaller than the baseline index. (2)
The IDP between two repeated 1.5T scans in 9 subjects. The IDP

between SR 3T and original 3T was expected to be higher than this
baseline IDP, but closer the better.

3 Results

The trends of SSIM, LPIPS and PSNR showed no significant
improvement in Figures 6–8 but superiority of TCGAN model has
been shown in 163 patients according to p < 0.001 (Supplementary
Table 2).

However, a significant improvement in the Intensity Difference
in Pixels (IDP) was observed with TCGAN (Transformer Enhanced
GAN), SRGAN (Super-Resolution Generative Adversarial
Network) and ESPCN (Efficient Sub-Pixel Convolutional
Neural Network) compared to Bicubic, Lanczos, and the
original comparison methods. TCGAN achieved the best
performance among the SR methods evaluated (p < 0.001)
(Supplementary Table 2).

Figure 9 presents the average IDP across 163 patients,
combining data from all three vendors in a single chart. For further
analysis, Figure 10 provides the IDP for each vendor separately.
This analysis demonstrates that, irrespective of the vendor source,
TCGAN consistently reduces the total number of pixels showing
intensity-level differences when compared to the original images.
To obtain these results, we calculated the pixel intensity difference
for each image slice, averaged these values across all slices for each
subject, and then averaged these results across all subjects. This
approach highlights TCGAN’s effectiveness in generating synthetic
images that closely align with the intensity distribution of original
images, as shown in Figure 9. Pairwise comparisons using GEE
model showed the statistical superiority of TCGAN compared to
other methods (p < 0.001) (Supplementary Table 2).
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FIGURE 6

Average LPIPS across 163 Patient shows negligible differences between original 1.5T vs. 3T and synthetic 1.5T vs. 3T comparisons. Here,
Lpips_3vsTCGAN represents the comparison between TCGAN-generated synthetic images and original 3T images. Similarly, Lpips_3vsSRGAN,
Lpips_3vsSRE, Lpips_3vsBi, and Lpips_3vslan indicate comparisons between original 3T images and their respective methods. Lpips_3vs1.5
compares original 1.5T T1-weighted images with 3T images.
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FIGURE 7

Average PSNR across 163 Patient shows negligible differences between original 1.5T vs. 3T and synthetic 1.5T vs. 3T comparisons. Here,
PSNR_3vsTCGAN represents the comparison between TCGAN-generated synthetic images and original 3T images. Similarly, PSNR_3vsSRGAN,
PSNR_3vsSRE, PSNR_3vsBi, and PSNR_3vslan indicate comparisons between original 3T images and their respective methods. PSNR_3vs1.5
compares original 1.5T T1-weighted images with 3T images.

The dotted line denotes the Intensity Differences in Pixels (IDP)
for a repeat scan, serving as a reference for variability due to
measurement error (Figure 11). The figure contains six bar charts
representing IDP values at different thresholds: 0, 10, 20, 25, 50,
and 75%. These charts compare IDP across several super-resolution
models, each evaluated against high field 3T MRI images to assess
image quality consistency and detail preservation.

Focusing on the 0% IDP threshold in Figure 8, the bar chart
indicates that, in the original comparison between 1.5T and 3T
images, 32% of pixels exhibit non-zero differences, pointing to
notable image disparities. TCGAN’s synthetic images, however,

reduce this difference by 6%, illustrating its effectiveness in
narrowing the visual and structural gaps between low-field (1.5T)
and high-field (3T) MRIs. When considering the 27% repeat
measurement error characteristic of 1.5T MRI scans, the net
improvement of 6% is substantial, especially when considering
the original 11.3% baseline difference between 1.5T and 3T scans.
At other IDP thresholds, TCGAN’s performance continues to
stand out. For instance, at the 75% threshold, where fewer details
are required to match the higher field quality, TCGAN still
manages to decrease the difference by 0.04%. This result highlights
TCGAN’s consistent ability to enhance image quality even under
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Average SSIM across 163 Patient shows negligible differences between original 1.5T vs. 3T and synthetic 1.5T vs. 3T comparisons. Here, SSIM
_3vsTCGAN represents the comparison between TCGAN-generated synthetic images and original 3T images. Similarly, SSIM _3vsSRGAN, SSIM
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FIGURE 9

Average IDP across 163 patient shows negligible differences between original 1.5T vs. 3T and synthetic 1.5T vs. 3T comparisons. Here,
avgidp_3vsTCGAN represents the comparison between TCGAN-generated synthetic images and original 3T images. Similarly, avgidp_3vsSRGAN,
avgidp_3vsSRE, avgidp_3vsBi, and avgidp_3vslan indicate comparisons between original 3T images and their respective methods. avgidp_3vs1.5
compares original 1.5T T1-weighted images with 3T images A, B, and C indicate that 101, 31, and 31 subjects were collected using Siemens, GE, and
Philips manufacturers, respectively.

less stringent comparison conditions, underscoring its robustness
across different levels of image detail. An illustrative example using
axial slices is presented below.

A notable improvement (Figure 12) in IDP metrics was
seen when comparing the original image pair to the image
pair with super resolution 1.5T image. This improvement was
observed on GE, Siemens, and Philips scanners. This improvement
highlights the model’s capability to generate synthetic images
with reduced pixel intensity discrepancies relative to the original
3T scans. The displayed slices serve as representative examples,

demonstrating how TCGAN generated 1.5T images effectively
minimizing distortions and structural inconsistencies compared to
the original 1.5T images.

4 Discussion

Our research demonstrated a substantial improvement
in synthesizing high-quality 3T MRI images from lower-
resolution 1.5T MRI scans through advanced super-resolution
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Average IDP across 163 patients, comparing original 1.5T vs. 3T images and synthetic 1.5T vs. 3T images. The IDP is shown in three manufacturers
-specific charts. For all manufacturers, the IDP reveals significant differences when using the TCGAN method. Here, avgidp_3vsTCGAN represents
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FIGURE 11

IDP across all SR models.
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FIGURE 12

Three pairs of images acquired from the 3 patients imaged across 3 different vendors (Siemens/Philips/GE), have been analyzed to show the
differences in intensity levels between 3T and 1.5T (original/super resolution) image pairs (cyan colored points). Pair A represents a sample image
pair from Siemens Scanner. The left image of the pair shows the number of pixels with at least a 1 gray level difference in intensity between 3T and
1.5T (IDP = 2,698 pixels) and the right image of the pair shows the number of pixels with at least a 1 gray level difference in intensity between 3T and
super resolution image (IDP = 1,899 pixels). Pair B and C represent the samples from Philips and GE Scanners, respectively. By design, a lower IDP
represents a closer match between the image pairs. Here in all cases, the image pair with the super resolution 1.5T showed a reduction in IDP
compared to the original pair.

(SR) techniques, especially using the Transformer-Enhanced
Generative Adversarial Network (TCGAN). To harmonize image
quality, we examined two primary approaches: interpolation and
super-resolution (SR). Interpolation estimates pixel values by
averaging nearby pixels, offering a simple and computationally
light method suited to real-time applications where speed
is prioritized over fine detail. Conversely, SR employs deep
neural networks to generate high-resolution images from low-
resolution inputs, creating a refined output with enhanced
structural and textural detail. This approach is optimal for
applications where high image quality is essential, as it can
recover fine details and reduce artifacts common in low-
resolution images. Our findings highlight that SR methods
provide superior image quality and detail, making it preferable
when precision is critical.

Among SR methods, as per the IDP analysis, TCGAN
outperformed all its counterparts. Our findings demonstrate
TCGAN’s superior ability to improve image fidelity, providing

a more uniform and reliable representation across varying field
strengths and scan conditions, and enhancing the utility of
1.5T scans in clinical settings. While we do not have a direct
comparison, Turkowski (1990) generated synthetic CT images
from PET images using TCGAN, demonstrating TCGAN’s superior
accuracy compared to other GAN-based methods. They further
validated its performance across three additional datasets, showing
significant improvements in error minimization when comparing
synthetic images to the originals. The improved performance
of TCGAN may be attributed to its strength from utilizing a
combination of a CNN and transformer architecture. Incorporating
a transformer generator enhances the GAN’s image synthesis
capacity. The transformer overcomes the limitations of CNN,
which has a restricted local field of view, by attending to a
wider region, thus identifying correlations between the target
region and surrounding areas. Also, the patch-based Discriminator
and combination of three loss functions help in capturing
intricate details and nuances within the MRI images, thereby
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effectively reducing pixel differences and enhancing overall image
quality. By generating synthetic images that closely mimic
the characteristics of 3T image quality, TCGAN addresses the
limitations of lower-resolution data, allowing for a more detailed
visualization of anatomical structures and pathologies (Graves,
2022).

In our work, we also assessed the efficacy of various SR
methods, utilizing full-reference image quality metrics such as
Structural Similarity Index (SSIM) and Peak Signal-to-Noise
Ratio (PSNR), along with the Learned Perceptual Image Patch
Similarity (LPIPS) metric to understand perceptual similarity
between synthesized images and high-quality 3T MRI scans.
Interestingly, these traditional metrics showed no significant
difference across the SR methods when compared to original 3T
images. While SSIM and PSNR are widely used for assessing
image quality, they often fall short in capturing subtle perceptual
differences crucial in clinical contexts. SSIM, though effective
at evaluating structural information, can miss fine variations
in texture and detail—elements vital for accurately identifying
nuanced diagnostic features. PSNR, similarly, lacks sensitivity
to subtle distortions, especially in cases where low-level image
noise significantly impacts diagnosis. As expected, our developed
Intensity Difference in Pixels (IDP) metric, designed specifically
to address the limitations of traditional metrics by focusing on
subtle textural and structural distinctions critical for diagnostic
applications showed differences between the deep learning
versus interpolation methods of achieving super-resolution. Using
IDP metric, we report that the average number of pixel
intensity differences has been reduced significantly using TCGAN
synthesized images. Also, for 10, 20, 25, 50, and 75% it was
shown that TCGAN not only reduced the average number of pixels
with intensity differences, but it also showed that the difference
in value is much lower in comparison to other SR methods.
In summary, TCGAN closely imitates the original 3T image
quality compared to other SR methods namely, SRGAN, ESPCN,
Bicubic and Lanczos.

Czobit and Samavi (2024) shows that CycleGan performed well
to improve the quality of synthetic images, but this study does
not utilize the same patient or the same scanner for 1.5T and
3T images when evaluating the performance of synthetic images.
Additionally, it only considers 10 slices per patient, resulting in a
total of 350 slices for 3T and 160 slices for 1.5T. In contrast, our
study utilizes the same patient, same scanner 1.5T and 3T images
for our evaluation. In addition, we have considered all 170 slices
for 200 patients and calculated the average IDP for each patient,
demonstrating the robustness of our approach. Furthermore, we
performed rigorous quality control, removing cases with artifacts
to ensure data integrity. Unlike this study, we also established a
baseline by analyzing same-patient, same-day, same-scanner 1.5T
scans to determine the acceptable IDP variation.

5 Conclusion and future work

Our research demonstrated a notable improvement in
synthesizing high-quality 3T MRI images from lower-resolution
1.5T scans, particularly using the Transformer Enhanced
Generative Adversarial Network (TCGAN). TCGAN enabled

us to produce images closely resembling direct 3T MRI scans.
Interestingly, interpolation methods performed comparable
to SR methods except TCGAN for 1.5T-3T harmonization in
our dataset. This observation may stem from the fact that the
analyzed 1.5T-3T pair were acquired by the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) to facilitate direct comparisons
between the two different magnetic field strengths. This unique
dataset allows us to assess the variations in image quality,
detail, and diagnostic utility that arise from the differing field
strengths. Paired-imaging studies such as ours using real world
data are warranted.

Some of the limitations of our study are:

1. The effectiveness of TCGAN is dependent on the quality
of the input data, as significant noise or artifacts in the
lower-resolution 1.5T scans may be propagated into the
synthesized 3T images, limiting the technique’s overall
performance. We also performed quality control on all
MRI images in our dataset, removing artifacts such
as motion, ringing etc. Additionally, we applied bias
correction to address inhomogeneity and ensured that the
dataset does not contain any artifacts related issues.

2. We only considered data from the same manufacturers, as
cross- manufacturer evaluation yielded suboptimal results
for different imaging protocols. However, our lab is also
working on manufacturer-based data harmonization.

3. In a sub-analysis, we observed a decline in IDP
performance metrics when generating synthetic images
across vendors, highlighting the model’s sensitivity to
vendor-specific acquisition characteristics. To further
assess potential hallucinated artifacts and improve
synthetic image generation, we plan to conduct texture-
based analyses in future work, assessing the robustness
and reliability of synthetic image generation in minimizing
these artifacts.

While the super-resolution images generated through TCGAN
demonstrate promising improvements, rigorous validation is
required. Our future goal is to validate the effectiveness of super-
resolution images generated by TCGAN for use in radiomics
and other downstream tasks. Radiomics plays a crucial role in
clinical applications like risk stratification and treatment response
prediction by extracting quantitative features from medical images.
To ensure the practical utility of these synthetic images, we need
to confirm that they accurately preserve the quantitative features
vital for radiomic analyses. This validation process will focus
on evaluating the performance of TCGAN-enhanced images in
key clinical areas, including diagnosis, treatment planning, and
disease monitoring.

In conclusion, the main contribution of this paper is that SR
techniques can help in harmonizing the image quality differences
between 1.5T and 3T scans. In this effort, TCGAN shows superior
performance compared to other SR techniques. While further
validation using large sample size and real-world data is warranted,
our results support the idea that the implementation of SR based
harmonization in MRI imaging offers substantial benefits for
quantitative imaging techniques such as radiomics by improving
image quality consistency. This improvement can in turn lead
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to enhancing feature consistency and increasing the robustness
of predictive models. These improvements are vital for accurate
disease diagnosis and treatment planning, ultimately leading to
better clinical outcomes.
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