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Introduction: Research on the influence of transcranial alternating current

stimulation over alpha functional connectivity (FC) is scarce, even when it poses

as a potential treatment for various diseases. This study aimed to investigate

the effects of individual alpha frequency tACS (IAF-tACS) on FC within the

default mode network (DMN) in healthy individuals, particularly following the

triple network model.

Materials and methods: 27 healthy participants were recruited, who

underwent a 20-min IAF-tACS session over parieto-occipital areas and three

magnetoencephalography (MEG) recordings: two pre-stimulation and one post-

stimulation. Participants were randomly assigned to either the stimulation or

sham group. Both dynamic FC (dFC) and static FC (sFC) were evaluated through

the leakage corrected amplitude envelope correlation (AEC-c). Statistical

analyses compared both Pre-Post FC ratio between groups through ratio

t-tests and intragroup FC changes through repeated measures t-tests, with FDR

correction applied to account for multiple comparisons. An additional analysis

simulated the influence of the cortical folding on the effect of tACS over FC.

Results: IAF-tACS significantly decreased sFC in intra- and inter-DMN links in the

stimulation group compared to the sham group, with a special influence over

antero-posterior links between hubs of the DMN. Negative correlations were

found between AEC-c sFC changes and power alterations in posterior DMN

areas, suggesting a complex interaction between cortical folding and electric

field direction. On the other hand, dFC increased in both sham and stimulation

groups, and no between-group differences were found.

Conclusion: Against our initial hypothesis, IAF-tACS reduced sFC in the DMN,

possibly due to phase disparities introduced by cortical gyrification. These

findings suggest that tACS might modulate FC in a more complex manner

than previously thought, highlighting the need for further research into the
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personalized application of neuromodulation techniques, as well as its potential

therapeutic implications for conditions like Alzheimer’s disease.

KEYWORDS

tACS, functional connectivity, magnetoencephalography, cortical folding, individual
alpha frequency

1 Introduction

The brain shows spatio-temporally organized patterns of
activity even when at wakeful rest. During this resting state, the
alpha rhythm (8–12 Hz) becomes the predominant oscillation over
posterior regions (Buzsáki, 2006). The spontaneous emergence of
alpha in resting state, and its correlation with performance, has led
to the hypothesis that alpha reflects a functional inhibitory role that
is key to the allocation of processing resources for environmental
stimuli (Jensen and Mazaheri, 2010). In addition to the alpha
rhythm, resting state is associated with changes in functional
connectivity (FC) understood as statistical relationships between
brain signals over time (Friston, 1994, 2011). These functional
interactions give rise to brain networks that reflect interregional
communication to support cognitive function, forming the so-
called intrinsic connectivity networks, which represent consistent
patterns of strong coupling of the ongoing activity. From the
several stable ICNs identified in the human brain, three are of
particular importance for the understanding of cognitive function
and dysfunction composing what Menon, 2011 proposed to call the
triple network model. Within the triple model network, the default
mode network (DMN) is a key functional network that is active
during resting periods and deactivates during task performance
(Raichle, 2011). The DMN is involved in memory processing
(Menon, 2011) and includes regions such as the medial prefrontal
cortex, middle temporal gyrus, the hippocampus, the posterior
cingulate cortex (PCC) and the precuneus (PCU), the latter
standing out as a hub of the network (Alves et al., 2019; Utevsky
et al., 2014). Disruptions in both the alpha rhythms and the activity
in the DMN have been associated with multiple brain diseases, such
as Alzheimer’s disease or depression (Babiloni et al., 2009; Canuet
et al., 2015; López-Sanz et al., 2016), therefore, their modulation
constitutes a potential therapeutic avenue to explore. Completing
the triple model network, the other two networks include the
central executive network (CEN), involved in externally oriented
attention, and the salience network (SN), mediating between the
DMN and CEN. These two networks show increased activity during
stimulus-driven cognitive and affective information processing,
and are affected by other neurological disorders (Menon, 2011).

Transcranial alternating current stimulation (tACS) is a non-
invasive stimulation technique capable of modulating oscillatory
activity in the brain and inducing neuroplasticity (Chaieb et al.,
2011). Weak alternating electrical currents are applied to the scalp,
reaching the brain, influencing neurons’ membrane potentials and
thus, altering neuronal probability of activation (Elyamany et al.,
2021). As a result, the application of tACS can induce neural
entrainment (i.e., the synchronization of an oscillatory system to
an external driver) at the frequency of stimulation (Liu et al., 2018).

The anatomical and functional complexity of the brain makes
the results of neuromodulation highly dependent on the protocol
employed (Antal et al., 2008), but it has been observed that
entrainment is more likely to occur if the stimulation frequency
matches the frequency of the ongoing oscillation (Vogeti et al.,
2022) and if the anatomy of the target region is taken into account
(Aberra et al., 2020; Cabrera-Álvarez et al., 2023).

Externally applied oscillatory currents can interact with the
endogenous alpha rhythm to enhance or disrupt it (De Koninck
et al., 2023; Liu et al., 2018). In this line, tACS at the individual alpha
frequency (IAF) has been shown to increase the power of alpha
rhythm after stimulation with effects remaining up to 70 min after
the protocol (Kasten et al., 2016; Zaehle et al., 2010). These after-
effects likely involve plastic changes in neuronal circuits (Vossen
et al., 2015).

Beyond these effects, cortical modulation may also influence
FC. While, to the best of our knowledge, no studies have
investigated the effect of tACS on dynamic FC (dFC), recent
research suggests that tACS modulates static FC (sFC) in a
frequency- and network-specific manner, influencing connectivity
over the networks related to the ongoing activity, and increasing
FC around tACS stimulation frequency (Antal and Paulus, 2013).
For instance, occipito-parietal alpha stimulation during resting-
state increases sFC specifically in the alpha band and in the regions
of the DMN (Clancy et al., 2018; Schwab et al., 2019), which were
suggested in the latter to be mediated by changes in alpha power
induced by stimulation (Clancy et al., 2018). In contrast, a 6 Hz
stimulation in resting state–when the brain is typically oscillating
in alpha–decreases sFC in the DMN (Abellaneda-Pérez et al.,
2020), highlighting the variability in tACS effects depending on the
stimulation frequency. These modulations of sFC have been shown
to enhance cognitive performance when increasing interregional
communication through coherence (Helfrich et al., 2014; Kar et al.,
2020; Polanía et al., 2012; Preisig et al., 2021; Tan et al., 2019).
Therefore, tACS has become a promising tool for modulating FC
both in health and disease, and could help in understanding the
nature of both sFC and dFC in an interventionist approach, rather
than just observational.

In this study, we aimed to investigate the influence of a
personalized IAF-tACS protocol on healthy individuals’ dFC and
sFC through MEG recordings. According to the aforementioned
studies, we expected to find an increased sFC in the participants’
DMN after the stimulation, while no direction was assumed for
the changes in dFC due to the lack of literature in the matter. To
get a spatially finer analysis and assess whether the influence of
tACS is restricted to the DMN alone, we evaluated FC alterations
due to tACS under the triple network model (Menon, 2011). We
hypothesized that tACS would have a greater effect over the DMN
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for two reasons: (i) the electric field elicited by parieto-occipital
tACS was stronger in areas belonging to the DMN, and (ii) the
DMN is the most active network under resting conditions. Finally,
we relate changes in FC to changes in power in the areas of interest.

2 Materials and methods

2.1 Study design

The study comprised one tACS session and three
magnetoencephalography (MEG) scans, two before (Pre1 and
Pre2 sessions) and one after the stimulation (Post session). We
firstly recorded the electrophysiological activity of each participant
through two successive 5-min eyes-closed resting-state MEG
recordings, with a 10-min interval between sessions. Two MEG
recordings before the stimulation were included to account for any
possible variability in the individual alpha-peak frequency (IAF) of
the participants. The IAF was derived from each recording using a
fast-preprocessing algorithm described in the “MEG preprocessing
and source reconstruction” section, and then averaged. Statistical
analyses for the current paper were carried out using the Pre2
data as the baseline measure since it was closer in time to the
stimulation and all participants had experienced a similar situation
until that point. Participants were then randomly assigned to either
the real stimulation (stim) or placebo (sham) group, and received
20 min of stimulation at their own IAF with their eyes closed.
Immediately after the stimulation, we performed a third MEG
recording to measure its effects on the participants. We decided to
use a resting-state eyes-closed paradigm given its prominent alpha
activity, and previous work on the same kind of stimulation (Wang
et al., 2022; Zarubin et al., 2020).

2.2 Participants

We recruited 27 (11 female) participants aged between 22
and 55 years from the Center for Cognitive and Computational
Neuroscience (C3N) at the Complutense University of Madrid
(UCM). The study included only right-handed, native Spanish-
speaking participants without any prior neuropsychiatric history
or metallic prostheses that could interfere with neuroimaging and
neuromodulation. This population was selected because we were
first interested in obtaining baseline tACS effects against which
to compare those obtained in subsequent studies with clinical
populations. Additionally, participants with indistinguishable IAF,
i.e., no noticeable prominent peak in the spectra plot, were
excluded. We adhered to current guidelines and safety regulations
throughout the research and obtained informed consent from each
participant before their involvement.

2.3 MEG data acquisition

MEG signals were acquired during 5 min of eyes-closed
resting state at 1 kHz sampling rate, using 306 channels
(102 magnetometers and 204 gradiometers) whole-head Elekta
Neuromag system (Elekta AB, Stockholm, Sweden) located in

a magnetically isolated room (VacuumSchmelze GmbH, Hanau,
Germany). Using a Fastrak 3D digitizer (Polhemus, Colchester,
Vermont), the positions of four head position indicator (HPI)
coils attached to the scalp were defined and the shape of each
participant’s head relative to three anatomical locations (nasion
and both preauricular points) was modeled. An online anti-aliasing
filter [0.1–330 Hz] was applied during the whole session.

2.4 MEG preprocessing and source
reconstruction

The Maxfilter software (v.2.2, correlation threshold = 0.9,
time window = 10 s) was used to remove the environmental
noise in the raw data, using the temporal extension of the signal
space separation (tSSS) method with movement compensation
(Taulu and Simola, 2006). For further analysis, only data from
all magnetometers was considered, given the redundancy in
gradiometer data after tSSS (Garcés et al., 2017). Physiological and
jump artifacts were located using the automatic Fieldtrip software
(Oostenveld et al., 2011) and later reviewed by MEG signal experts.
Lastly, the clean signal was divided into 4 s-segments and eye-
blinks and cardiac artifacts were removed with an independent
component analysis (ICA) based on SOBI (Belouchrani et al.,
1997). All segments with physiological artifacts were discarded.
Preprocessed MEG data was then used to carry out source
localization using a linearly constrained minimum variance
(LCMV) beamformer (Van Veen et al., 1997). Since not all subjects
had available T1 MRIs, a 1 mm resolution template of healthy adults
normalized to the Montreal Neurological Institute (MNI) with a
1 mm voxel size template was used to place the sources inside the
brain in a homogeneous grid of 1 cm. Next, both the template
and the grid were linearly transformed to fit the head shape of
each subject and a local spheres approach was used to define the
leadfields and fit the headshape of each subject in the vicinity
of each sensor. Using the computed leadfield and the average of
all the covariance matrices for each segment, we computed the
spatial filter coefficients, which were used to estimate the source-
space time-series for each source in all segments. A total of 1,210
source positions belonging to 80 regions of interest defined by
the automated anatomical labeling atlas (Tzourio-Mazoyer et al.,
2002) were identified. The remaining sources are not part of cortical
regions defined by the atlas (i.e., white matter, CSF, or subcortical
regions) and thus are not considered as source generators of MEG
signal (Hämäläinen et al., 1993).

To determine the IAF we used a fast-processing algorithm
immediately after the acquisition of the pre1 and Pre2 recordings.
Some steps of the aforementioned preprocessing pipeline were
omitted to obtain the IAF for the following stimulation in
said frequency. Specifically, no tSSS or movement compensation
method was applied, and manual revision of artifacts was skipped
as well. ICA was used to remove physiological artifacts and
contaminated segments were manually removed. The power
spectrum for each magnetometer was calculated using DPSS,
and then averaged. The resulting spectra from occipito-parietal
channels were visually inspected, and the frequency of the power
peak in the alpha band (8–12 Hz) was defined as the IAF. The IAFs
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from sessions Pre1 and Pre2 were averaged to determine the final
frequency for the neuromodulation procedure.

2.5 Neuromodulation

The neuromodulation sessions utilized bipolar tACS with two
conductive rubber electrodes (7 cm × 5 cm) positioned at Cz
(midline central) and Oz (midline occipital), and followed the
same protocol as previous studies that obtained significant effects
over the alpha power (Kasten et al., 2016; Zarubin et al., 2020)
focusing on occipitoparietal areas where relevant hubs of the
DMN network (i.e., precuneus) are located (Alves et al., 2019;
Utevsky et al., 2014). A microprocessor-controlled device, the
NeuroConn DC-StimulatorPlus (Neurocare, Ilmenau, Germany)
was used for delivering alternating current. The electrodes were
covered with sponges soaked in saline solution. For the stim group,
stimulation at the IAF was applied during a 20-min session with a
current intensity of 3 mA peak-to-peak. In contrast, participants
in the sham group were only exposed to stimulation during the
fade-in and fade-out periods, each lasting 30 s. Figure 1 shows the
maximum elicited electric field as simulated with ROAST (Huang
et al., 2019) and an example of the setting in a participant. After
completing the stimulation and recording protocols, participants
responded to a questionnaire on potential adverse effects of tACS
(Brunoni et al., 2011).

2.6 Functional connectivity

FC was estimated after zero-phase filtering the data in the
IAF± 2 Hz frequency band through a finite impulse response filter

with an order of 1,800, designed with a Hamming window. Figure 2
depicts the calculation process of FC parameters in this study.

2.6.1 Static functional connectivity
Amplitude-derived connectivity was calculated through the

amplitude envelope correlation with leakage correction [AEC-c
(O’Neill et al., 2015)] between the time series of each pair of
the 1,210 cortical sources. After orthogonalization, making it
insensitive to volume conduction, the absolute value of the Pearson
correlation between the time series’ envelopes was used. AEC-c was
chosen because of its reliability, and within and between subject
consistency (Colclough et al., 2016). This sFC parameter ranges
from 0 to 1, that is, no connectivity to full connectivity.

We calculated AEC-c in each of the defined signal segments,
and then averaged over those, obtaining the so-called static
FC (sFC), resulting in connectivity matrices of dimension 1,210
sources × 1,210 sources per participant. These matrices were
then reduced to 40 ROIs × 40 ROIs by grouping sources and
averaging their FC according to their position in the automated
anatomical labeling atlas (Tzourio-Mazoyer et al., 2002), resulting
in 1,210 cortical sources distributed across 40 regions of interest
(80 unilateral regions grouped in bilateral analogs).

2.6.2 Dynamic functional connectivity
We assessed dynamic FC (dFC) through the entropy of the FC

timecourses of AEC-c, following the same methodology applied
in Carrasco-Gómez et al. (2024). Starting from the unaveraged
AEC-c connectivity matrices, of dimensions 1,210 sources × 1,210
sources × 50 segments, the entropy of each of those FC time series
was calculated by means of histograms with linearly spaced bins.

Firstly, we determined the number of bins for the creation of
optimal histograms in our dataset, following the guidelines exposed
by Knuth (2019) for each of the pairwise source connectivity terms

FIGURE 1

tACS maximal electric field distribution and example of the setting in a patient. Electric field distribution was estimated with ROAST, a software
toolbox for MATLAB focused on simulation of electric fields on brain volumes through transcranial electrical stimulation. Red and blue patches
represent the sponge electrodes positions over the participant’s scalp.
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FIGURE 2

Depiction of the methods used in this study. (A) Description of the procedure to calculate the static AEC-c, including the signal filtering, envelope
extraction through the Hilbert transform, and correlation between envelopes. (B) Description of the procedure to calculate the entropy for each
source pair timecourse. We used a histogram with 11 bins to calculate Shannon entropy. This resulted in a value of entropy for each source pair and
participant S(AEC), representing their dFC.

time series in all our participants. We decided to use the median
of the resulting calculations, and obtained an optimal number of
11 bins. Then, and to ensure comparability between the subjects’
dFC matrices, we defined the minimum and maximum values for
the binning procedure as the minimum and maximum value of
the AEC-c at each of the pairwise connectivity terms across all
participants. Finally, following the optimal binning procedure, the
Shannon entropy was calculated (Shannon, 1948):

S (AEC) = −

i = 1∑
nbins

p (AECi) × Ln(p(AECi))

Where S is the entropy operator, AEC is our time series of
connectivity strengths, p(AECi) is the probability for connectivity
strength to fall under bin i, Ln is the natural logarithm and nbins
is the total number of bins. The resulting entropy matrices were
symmetric and included one value of entropy for each of the 1,210
sources × 1,210 sources pairwise connectivity terms. Each of these
values represents the level of dynamicity of the connectivity term
over time. In other words, each connectivity term was assigned
a value which portrays how variant the FC was over time, with
higher values indicating a higher variability and vice versa. Finally,
and equally as for sFC parameters, the connectivity matrices were
reduced to matrices of dimensions 40 ROIs× 40 ROIs.

2.7 Statistical analyses

Initially, demographic characteristics were evaluated, using an
independent sample t-test to compare age and IAF, as well as a chi-
square test to compare sex proportion between each of the groups.
We also performed a baseline (Pre2) comparison of FC at the DMN
between the stim and sham groups.

To evaluate the influence of the stimulation protocol on sFC
and dFC, we performed two types of t-tests: (1) independent
samples t-tests to compare the FC changes in stim versus sham
groups, using a measure of their FC ratio of change; (2) repeated
measures t-test to evaluate the change in FC between the Pre2 and
Post per experimental group.

For the former, FC ratio of change was calculated by dividing
the FC of the Post session of each subject by that of the Pre2 session.
Next, we calculated the logarithm of the ratio to eliminate the
statistical asymmetry of ratios and obtain statistical distributions
centered in 0, where negative values represent decreases and
positive values represent increases over recording sessions:

FCratio = log(
FCPost

FCPre2
)

As a clarification, all analyses were performed comparing stim vs.
sham groups, and Post vs. Pre2 stages, so that a positive Cohen’s d
or t-statistic would represent increased FC values in the stim group
or Post stage.

Firstly, we evaluated the FC between the three networks in
the model proposed by Menon (2011): DMN, SN and CEN. To
do so, we calculated the aforementioned statistical comparisons
for each of the networks intraconnectivity (DMN-DMN, SN-
SN, CEN-CEN), and the pairwise connectivity between each
of the networks (DMN-SN, DMN-CEN, SN-CEN). The set of
tests were FDR corrected with a q = 0.1 to compensate for
the multiple comparisons (Benjamini and Hochberg, 1995). The
regions included in each of these networks can be found in
Supplementary Table 1.

Secondly, to evaluate which areas of the DMN drive the
differences in connectivity change between the stim and sham
groups, we conducted post-hoc t-tests comparing the FC ratio at
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each link between any two areas belonging to the DMN. Given the
high number of comparisons, post hoc results were FDR corrected
with a q of 0.1 as well.

Lastly, we aimed to study the relationship between the FC ratios
and simultaneous alterations in relative power given the previously
suggested capacity of tACS to alter power (Cabrera-Álvarez et al.,
2023). To do this, we performed a Pearson’s correlation between
the FC ratio of those DMN links that showed significant differences
in the stim-sham comparison after FDR correction, and the ratio of
IAF± 2 Hz relative power of the regions that make up the link (e.g.,
supposing the ACC-PCC link’s ratio showed significant differences
between groups, the FC ratio would be correlated with the power
ratio of both the ACC and PCC), independently. This analysis was
carried out separately for the stim and sham groups, and their
rhos were compared through a z-test on Fisher z-transformed
correlation coefficients (Hinkle et al., 1988).

All calculations were performed in MATLAB 2021b.

2.8 Simulation of tACS phase-shifts
effects on FC

We performed an ad-hoc theoretical analysis to investigate
the potential effects of cortical morphology over FC modulation.
Given our current stimulation protocol and cortical folding, the
neurons of certain regions may receive the stimulation in anti-
phase fashion, as the electric field direction may result anti-parallel
to some cortical columns (i.e., hyperpolarizing) and parallel to
others (Cabrera-Álvarez et al., 2023), as shown in Figure 6. To
evaluate the effect of these phase disparities over sFC, we simulated
two MEG signals through filtered white noise and calculated their
initial connectivity through AEC. Afterward, we added a sinusoidal
stimulus to each of them with different phase shifts and calculated
again AEC. This procedure was repeated 100 times.

A repeated measures t-test was performed to compare the
connectivity values between the cases of no-stimulation, sinusoid
stimulation with 0 phase shift, and sinusoid stimulation with
π phase shift. Supplementary Material 1 explains the complete
methodology for the simulation process.

3 Results

3.1 Sample demographics and adverse
tACS effects

Sample demographics and variables of interest used in this
study are shown in Table 1, and baseline FC and reported tACS
effects are depicted in Supplementary Table 2. No statistically
significant differences were observed between the groups either in
demographics or tACS adverse aftereffects, or in baseline FC.

3.2 DMN’s sFC decreases through tACS

To assess the effect of tACS on the DMN’s FC, and evaluate
whether this effect was exclusive to this network, we performed

TABLE 1 Sample demographics.

Stim Sham Stat p-value

Age 33.4± 8.4 32.2± 9.0 0.3940 0.7302

Sex 9M/5F 6M/6F 0.5403 0.4623

IAF 10.3± 0.9 10.5± 1.3 −0.5741 0.5713

The differences in each of the demographic variables are shown in the two rightmost
columns, displaying the t-statistic or chi-square statistic for continuous and categorical
variables, respectively, and p-value. IAF, individual alpha frequency.

independent samples ratio t-tests comparing FC change between
the stim and sham groups guided by the triple network model
(Menon, 2011). Then, we conducted repeated measures t-tests to
evaluate statistically the change from Pre2 to Post stimulation for
each group. FC was thus evaluated in six different relationships:
DMN-DMN, DMN-SN, DMN-CEN, CEN-CEN, CEN-SN and SN-
SN. FDR correction (q = 0.1, ncomparisons = 36) yielded a critical
p-value of 0.0086. Figure 3 shows the results for these analyses.

Regarding sFC changes, independent samples t-tests found
significant decreases of sFC between sham and stim groups for
the DMN-DMN and DMN-SN spatial relationship, as shown in
Figure 3: DMN-DMN [t-stat = −2.8614, d-Cohen = −1.1257,
p-value = 0.0086], DMN-SN [t-stat =−3.3155, d-Cohen =−1.3043,
p-value = 0.0029]. Decreases of sFC between DMN-CEN,
while initially significant, did not survive FDR correction
[t-stat =−2.0967, d-Cohen =−0.8249, p-value = 0.0467]. Repeated-
measures t-test showed significant sFC reductions between Pre2
and Post sessions in the stim group: DMN-DMN [t-stat =−3.9109,
d-Cohen =−0.6383, p-value = 0.0018], DMN-SN [t-test =−4.7026,
d-Cohen = −0.6507, p-value = 0.0004]. The rest of the tests were
non-significant, and a complete report on all statistical tests can be
found in Supplementary Table 3.

While independent samples ratio t-tests did not reveal
between-group differences in dFC in any of the intra- or
internetwork comparisons, repeated-measures t-tests found
significant pre-post increases in both sham and stim groups.
The sham group only showed a significant increase in the intra
DMN link (DMN-DMN: [t-stat = 3.2022, d-Cohen = 0.6615,
p-value = 0.0084]), whereas the stim group showed significant
intra- and inter-DMN increases (DMN-DMN: [t-stat = 3.4317,
d-Cohen = 0.4755, p-value = 0.0045]; DMN-CEN: [t-stat = 3.8618,
d-Cohen = 0.4771, p-value = 0.0020]; DMN-SN: [t-stat = 3.5583,
d-Cohen = 0.4825, p-value = 0.0035]). The remaining comparisons
were nonsignificant or did not survive FDR correction, as shown in
Supplementary Table 3. Since no between-group differences were
detected for dFC, no post-hoc analyses were performed for this
measure in the next sections.

3.3 tACS prominently decreases sFC
between posterior-posterior and
antero-posterior hub links of the DMN

Additional post hoc statistical tests were performed to
identify the links between the DMN areas, defined as including
the following AAL regions (Raichle, 2015): superior frontal
gyrus (SFG), gyrus rectus (Rectus), hippocampus (Hip), anterior
cingulate cortex (ACC), posterior cingulate cortex (PCC), inferior
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FIGURE 3

tACS reduces DMN’s connectivity. Violin plots show the Post/Pre2 FC ratio among the triple network, with orange violin plots corresponding to the
stim group and the gray ones to the sham group. Single asterisk (*) and brackets below the graphs indicate significant between-group differences in
the FC ratio, while double asterisks (**) above each violin plot indicate significant intra-group pre/post differences. The brain render at the bottom of
the figure displays the networks included in this analysis: default mode network (DMN) in red, central executive network (CEN) in blue, and salience
network (SN) in yellow.

parietal gyrus (IPG), and the precuneus (PCU) driving the between-
group results presented in the previous section. Given the high
number of comparisons (ncomparisons = 28), results were FDR-
corrected with a q = 0.1, which yielded a critical p-value of 0.0244.

Out of the 28 possible links, 7 showed statistically significant
differences after FDR correction using AEC-c including Hip-
ACC, IPG-IPG, PCC-PCC, PCU-Rectus, PCU-PCC, PCU-ACC,
and PCU-PCU, as shown in Figure 4. These differences were in
the same direction as reported previously (i.e., a decrease in the
FC of the stim group). Supplementary Table 4 includes a complete
statistical report for the 28 possible links.

3.4 tACS-induced sFC change of
posterior areas correlates with power
change

To understand the relationship between sFC and
power changes elicited by the stimulation, we performed

a post hoc analysis correlating the AEC-c value of the
significant links reported in the previous section and the
relative power of the IAF ± 2 Hz of each area involved.
This represented 11 Pearson’s correlations per group,
as self-connections (e.g., PCU-PCU) involved one test,
while inter-regional connections (e.g., PCU-PCC) involved
two.

While no significant correlations were found in the sham
group, significant negative correlations between FC and normalized
power in the stim group were obtained in two out of
the seven links studied: PCU-PCU and PCU-PCC correlating
with both regions relative power (Figure 5). Nevertheless, the
only case that exhibited a significantly different correlation
pattern between stim and sham groups was that between the
PCC-PCU’s sFC and the normalized power of the PCU [z-
stat = −2.3703, p-value = 0.0178]. Importantly, no differences
in the relative power in the IAF ± 2 Hz band were found
between the stim and sham groups in any of the studied
regions.
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FIGURE 4

DMN links show a significant decrease in connectivity after tACS. Ratio t-tests revealed 8 DMN links showing a significant AEC-c reduction when
comparing stim and sham groups. Of those, 7 AEC-c links still showed significance after FDR correction (q = 0.1). Links significant after FDR
correction are indicated in blue, while those that lost significance are indicated in gray.

3.5 Simulating tACS-induced phase
disparities explain the reductions of FC

As stated in the introduction, while we expected to observe an
increase in sFC after the stimulation protocol, the results showed
a generalized decrease in sFC in the stim group. To understand
further these results, we studied the potential interaction of
cortical morphology with the stimulation protocol. Given the brain
cortical folding, the neurons of certain regions may receive the
stimulation in anti-phase, as the electric field direction may result
antiparallel to some cortical columns (i.e., hyper-polarizing effect)
and parallel to others (Cabrera-Álvarez et al., 2023; see Figure 6).
Therefore, we performed a theoretical experiment by introducing
phase disparities in two simulated MEG signals and measuring the
resulting sFC through AEC.

We found that any phase shift between the stimuli deviating
from 0 or 2π phase produced a decrease in AEC connectivity,
as shown in Figure 7. Specifically, a significant difference in
AEC values [t-stat = 7.3485, p-value < 0.0001] emerged when
comparing the cases of no stimulation and anti-phase stimulation
(phase = π). No significant differences were found when comparing
connectivity in the case of no stimulation and stimulation with in-
phase sinusoids EC [t-stat = −1.9688, p-value = 0.0805], even if it
was close to statistical significance.

4 Discussion

In this study, we assessed the influence of a parieto-occipital
IAF-tACS protocol on dynamic and static FC, measured by
MEG, by comparing pre-stimulation, post-stimulation and ratio
of both sessions of the stim and sham groups. The stim group

showed a significant sFC reduction, spanning intra- and inter-
DMN links, which affected the DMN-SN connectivity as well as
the connectivity between posterior and antero-posterior hubs of
the DMN. Importantly, the sFC ratio between DMN posterior
regions also showed a negative correlation with their relative
power ratio. Regarding dFC, the opposite pattern emerged, with an
enhancement over sessions. The stim group showed a significant
increase in dFC over intra- and inter-DMN links, although
no statistically significant differences were found between the
groups. Overall, these results complement previous literature by
assessing the influence of personalized tACS on FC in healthy
participants, as well as expand previous knowledge on the
differences between sFC and dFC.

Our results reflect a widespread sFC reduction, spanning
both intra- and inter-DMN connections under the triple network
model. More specifically, both the connectivity among the nodes
of the DMN and the connectivity between the DMN and the SN
showed reductions in the stim group compared to the sham group.
Additionally, the significant pre-post decreases of sFC in the stim
group in those same links, with no significant changes in the sham
group, strongly support that these changes were induced by the
application of tACS. Interestingly, these results indicate that tACS
had a stronger influence on the connectivity of the DMN than
in the other networks of the model. This event is congruent with
the stimulation protocol applied, which exerted maximum induced
currents over the PCU and PCC that are important posterior hubs
of the DMN. It also fits well with previous literature, which claim
that IAF-tACS during resting state affects the ongoing alpha activity
at the DMN (Cabrera-Álvarez et al., 2023; Clancy et al., 2022; Liu
et al., 2018). At the same time, we find that the increased influence
of tACS over the DMN-SN link compared to the DMN-CEN link
is coherent with the triple network model, due to the increased
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FIGURE 5

Negative correlations between AEC-c FC ratio in posterior areas and IAF ± 2 Hz relative power. Significant correlations between AEC-c and relative
power in the stim group (orange) were found in posterior regions, while these correlations were nonsignificant in the sham group (black). However,
only the correlation between the PCC-PCU and the IAF ± 2 Hz relative power at the PCU was able to significantly differentiate between the stim and
sham groups, as indicated by a single asterisk (*).

activity correlation between the DMN and the SN than between
DMN and CEN in both resting and task conditions (Menon, 2011).

Relevantly, the reductions in sFC between the PCU-ACC and
PCU-PCC, revealed by the DMN connectivity post hoc analyses,
are of special interest in the context of Alzheimer’s disease (AD).
Specifically, an early rise in sFC between these areas is found
in individuals at risk of disease development due to their family
history (García-Colomo et al., 2024; Ramírez-Toraño et al., 2021).
Moreover, the whole DMN is affected in the disease as its function,
metabolic activity and structure become altered through the course
of the disease (Badhwar et al., 2017). Some of these regions, such
as the PCU, behave as hubs of the network and become vulnerable
to the progression of the disease (Stam, 2014). In particular, these
regions show increased excitability and connectivity in the earliest
stages of Aβ accumulation, which intensifies the severity of the
disease (López-Sanz et al., 2017; Maestú et al., 2021; Ranasinghe
et al., 2022). Therefore, reducing or limiting the initial increase
in neuronal excitability and connectivity through a non-invasive
technique (such as tACS) could pose as a potential preventive
treatment in prodromal stages of AD. Further investigation in

this direction is needed, as well as in the cognitive effects of the
proposed tACS protocol.

The results obtained in this study do not support our
hypothesis of enhanced sFC after tACS, which was based on
previous literature (Clancy et al., 2018; Schwab et al., 2019;
Van Schouwenburg et al., 2017). However, a plausible explanation
for our divergent results could stem from the lack of comparability
in the field (Bikson et al., 2018), due to the use of different
stimulation protocols, spatial targets, or means to measure the
stimulation effects. Thus, for example, the study performed by
Schwab et al. (2019) reported an increase in alpha functional
static connectivity, calculated through imaginary coherence, for
occipitoparietal in-phase tACS when compared to anti-phase
and jittered-phase tACS. However, because a sham group was
not included in their study our results do not stem from the
same baseline conditions. Additionally, their tACS protocol was
administered through HD-tACS, where the stimulation electrodes
are surrounded by returning electrodes in an effort to focalize
the elicited electric field. This is especially relevant, as the phase
differences induced in the neural populations in the cortex would
be highly dissimilar between protocols. This is the same case as in
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FIGURE 6

Orthogonal components of the electric field with respect to the white-matter surface. (A) Electrode location and electric field magnitude over the
brain. (B,C) show the direction of both the electric field given the protocol (B) and the direction of the normal component to white matter surface in
the folded cortex (C). (D) Distribution of orthogonal components of the electric field in the visual cortex. A sample of vectors is shown indicating
both the direction of the electric field and the normal component to the surface. The surface color indicates the magnitude of the orthogonal
component (red-depolarizing, blue-hyperpolarizing). (E) Distribution of magnitudes of the orthogonal components of the electric field for the visual
cortex. Note that in the same region coexist positive and negative values, and therefore, anti-phase stimulation effects.

Clancy et al. (2018), which applied HD-tACS to occipito-parietal
areas using the IAF as stimulation frequency, and additionally used
Granger causality, a different sFC parameter than ours, to measure
changes in connectivity. In the work by of Van Schouwenburg
et al. (2017), both increases and decreases in FC were observed
in different areas of the brain, and a second study by the same
group could not replicate the results found in the first one (Van
Schouwenburg et al., 2018). Finally, other studies based on fMRI-
FC show inconclusive results, with some finding increases in sFC
after tACS (Bächinger et al., 2017; Mondino et al., 2020) and other
finding sFC reductions (Abellaneda-Pérez et al., 2020; Gundlach
et al., 2020). Additionally, it is important to remark that some other
conditions of our study might have played a role in our divergent
results. These include a higher tACS intensity than in most previous
work, which could be particularly relevant given possible non-
linear effects of tACS intensity (Batsikadze et al., 2013), participants’
advanced age, or the specific method we used to address changes
over FC by calculating FC ratios. In conclusion, there is a need
for replication studies and a standardization of the stimulation
protocols to evaluate the effects of tACS on sFC.

On the other hand, we hypothesize that the reductions in
sFC found in this study might be explained by the interaction
between the electric field direction and the position of pyramidal
neurons along the folded cortex. Where the electric field direction
is aligned parallel to the body axis of pyramidal cells, depolarization
will be elicited. Inversely, where the alignment is antiparallel,
hyperpolarization occurs. This introduces phase disparities in the
stimulation induced and its intensity (Figure 6). To illustrate
the possible effects of these phase disparities over sFC, we

performed an ad-hoc analysis simulating the influence of tACS
over physiological MEG signals. We found that any phase shift
between the stimulatory sinusoids deviating from 0 or 2π phase
produced a decrease in AEC connectivity, as shown in Figure 7. The
phase difference between the stimulatory sinusoid waves modifies
the envelopes differently, reaching a maximum misalignment of
the original physiologic signals’ envelopes when the phase shift is
that of π, consequently reducing their AEC. The interpretation
of these simulation results should be considered with caution as
many assumptions have been made. For instance, we have assumed
a straightforward behavior and influence of tACS as sinusoidal
signals over neuronal physiological signals, and considered white
noise as a plausible proxy for neuronal activity. Nevertheless, we
consider that this theoretical experiment adds to the understanding
of the results obtained in this study.

For a better understanding of the electrophysiological
phenomena underlying the use of tACS, we conducted an
additional study on the joint behavior of sFC and power in the
DMN links with significant changes after tACS. This revealed a
consistent pattern of negative correlations between the change
of sFC in the PCU-PCC link, and power change in these two
regions for the stim group. Only the correlation with the PCU’s
power ratio distinguished the behavior between the sham and stim
groups, possibly explained by the fact that the precuneus is a hub
region directly modulated by our stimulation protocol, or due to
the reduced statistical power provided by our sample. Aligned
with the previous explanation for the sFC reductions, tACS could
introduce non-uniform phase distributions in the cortex, favoring
a misalignment of envelopes, but still entraining the activity of
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FIGURE 7

Results of the simulation of the effect of phase shifts tACS influence on sFC. (A) Physiological signals being stimulated with in-phase stimulation
(top), and with anti-phase stimulation (bottom). (B) Relation between AEC and the phase difference between stimulation sinusoids. Significant
reductions between anti-phase stimulation and initial connectivity were found and are indicated by an asterisk. Ns, non-significant.

the neuronal populations in the same stimulation frequency. This
would consequently increase the activity within the IAF frequency
range, increasing power (Cabrera-Álvarez et al., 2023; Zaehle et al.,
2010) but reducing sFC as shown previously.

Finally, it is also important to comment on the different
behavior observed when studying the effects of tACS on dFC. Our
results reveal an increase in the intra-DMN dFC both in the sham
and stim groups. However, the stim group also showed pre-post
increases in inter-DMN links, following a similar trend to that
observed in the sFC changes, but extending the alterations to the
DMN-CEN link as well. This event might be explained by the fact
that sFC dismisses relevant information throughout the averaging
of connectivity features over time which, along with the opposite

direction of dFC changes compared to sFC, supports the inclusion
of dFC parameters in future electrophysiological studies.

Nevertheless, our experimental design did not allow us to
ascertain whether there exists an effect of tACS on dFC or not,
as no between-group differences were found. This might have
happened due to the reduced sample size and the fact that dFC
changes shared the same direction in both groups, and all we can
do is consider the different possibilities behind these results. The
absence of literature on tACS and dFC in this field did not facilitate
the building of hypotheses, and hindered the interpretation of the
study outcomes. The observed changes could stem from a common
origin in both groups, such as the placebo-effect or tiredness. On
the other hand, these results might reflect a differential effect of

Frontiers in Human Neuroscience 11 frontiersin.org

https://doi.org/10.3389/fnhum.2025.1534321
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-19-1534321 May 9, 2025 Time: 17:32 # 12

Carrasco-Gómez et al. 10.3389/fnhum.2025.1534321

neuromodulation, and the observed increases of dFC in the stim
could be explained by the induced decrease in sFC observed in this
same group, while the increases of dFC in the sham group would
originate from other sources, which is supported by the intragroup
increases of dFC over more areas in the stim group than in the
sham group. As a last possibility, we notice a common pattern of
changes in dFC in both groups, with more pronounced increases
in the links involving the DMN, then in the SN, and finally in
the CEN, following the logic exposed in a previous paragraph.
These increases are more pronounced in the stim group, reaching
significance in additional areas, possibly reflecting a potentiation
effect of tACS on the default effect of the experiment. Future studies
should address this question, either by increasing the sample size,
or through the application of techniques that allow for the study
of dFC at a lower time-scale, such as EEG microstates or Hidden
Markov Models (HMMs).

Some limitations of the present experiment must be noted.
Firstly, while comparable to previous studies in the field, the sample
size of our experiment was modest. This limited the possibility
of introducing potential confounding variables as covariates.
Nevertheless, no significant differences in any of the demographic
variables between the sham and stim groups were observed. Future
studies should consider larger sample sizes to increase statistical
power. Importantly, even though physiological relative IAF± 2 Hz
power was not used as a covariate, since there were no significant
differences in relative power between groups, the possibility for
power to constitute a confounding factor in our study is slim.
Secondly, the temporal length of the protocol could have induced
fatigue in the participants, influencing the results in terms of power
and FC (Ishii et al., 2013), and changing IAF between the Pre
recording sessions and during the stimulation. Additionally, our
tACS protocol was not phase-tuned to the brain oscillations, which
could have had an impact on FC.

Our investigation lacks behavioral evaluation and consequently
did not address the cognitive relevance of the findings. Also,
the current literature presents elevated variability in the
methods and stimulation used, yielding non-comparable
results between studies. Therefore, future research should
focus on standardizing methodologies, replicating previous
results, including neuropsychological assessments, combining
electrophysiological and fMRI measurements, as well as using
personalized anatomical targeting to reduce inter-subject
variability (Mikkonen et al., 2020; Miranda et al., 2018). The use of
computational modeling to systematically simulate and study the
differences between stimulation protocols would also contribute
to knowledge convergence and experiment reproducibility in
the field.

5 Conclusion

To conclude, this is, to the best of our knowledge, the first
study assessing both dynamic and static FC changes induced by
personalized IAF-tACS with MEG in healthy participants. Our
results suggest that IAF-tACS over occipito-parietal areas reduced
sFC, specifically over intra- and inter-DMN links. Based on our
simulations, we hypothesize that this effect is mediated by the
alternating in-phase and anti-phase neuromodulation that tACS

produces in oppositely oriented cortices, which might lead to the
reduction of amplitude-based synchrony. Future studies should
address this possibility. Additionally, we find that the changes
in sFC between posterior areas negatively correlated with power
increases in the same frequency band. Lastly, our analyses revealed
a significant pre-post increase in dFC over intra- and inter-DMN
links in both groups, with no statistically significant between-
group differences. Our findings highlight a potential treatment for
functional connectivity reduction, potentially beneficial for AD,
and expand the knowledge of the possible influence of brain folding
on the individual effects of tACS.
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