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Introduction: Virtual Reality mediated virtual embodiment training (VR-VET) 
is designed to reduce chronic pain, yet a neuroimaging marker predictive of 
outcomes or associated with clinical changes in pain has not been validated. This 
study considers four candidate EEG metrics that are associated with cognitive 
states of mental imagery, chronic pain intensity, and stress states. VR-VET with 
EEG enables measurement of these metrics and collection of kinematic data. 
Kinematic data serves as an indicator of functional movement. In a healthy 
population, this study assessed neuroimaging markers for cognitive processes 
involved in VET or pain perception.

Methods: EEG was collected in 16 healthy individuals during VR-VET. Candidate 
EEG metrics were computed. Position data for each hand was used to calculate 
smoothness of movement within each activity. EEG metrics and smoothness 
were compared between the breathwork activity and activities with active 
movement of arms.

Results: Relative global alpha was significantly different in all VET activities 
compared to breathwork (p < 0.001). Specifically, relative posterior alpha power 
(p < 0.001) and relative mu (p = 0.026) were significantly lower in all active 
conditions. Smoothness of the active arm varied across VET activities and was 
reduced compared to breathwork (p < 0.001).

Discussion: Neuroimaging markers are feasible to investigate VET mechanisms 
during movement. Relative global alpha is sensitive to VET states and may 
be related to motor imagery tasks or visual attention, making it a relevant EEG 
metric in the study of VET.
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1 Introduction

On a cognitive level, various processes and corresponding pathways characterize our 
experience of pain, but chronic pain in particular goes beyond nociception (Apkarian et al., 
2012). Several psychological phenomena and behavioral symptoms accompany the clinical 
status of chronic pain, with perception, cognition, attention, emotion, learning, memory, and 
motivation affected (Simons et al., 2014). A central aspect of somatic pain perception is 
mediated by body representation and can be influenced by surrogate and virtual interactions 
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(Beccherle and Scandola, 2024). Non-pharmacological interventions 
can target a particular psychological process, and neuroimaging 
methods like electroencephalography (EEG) may potentially detect 
patterns of brain activity associated with motor imagery and body 
representation (Pamplona et  al., 2022). One such intervention is 
virtual embodiment training (VET).

VET centers on embodiment, comprising body ownership, self-
location, and self-agency, in a virtual environment. When an 
individual embodies an avatar, meaning they perceive their virtual 
body to be their own, feel they are located in their virtual body, and 
feel they have control over their virtual body, various visualizations 
can act on their perception to change their memory of pain (Kilteni 
et al., 2012). Early evidence suggests improved pain outcomes in the 
use of VET for back pain rehabilitation (Bordeleau et al., 2022), as well 
as improved functional movement in patients with movement-related 
shoulder pain (De La Campa et al., 2023). More recently, a clinical trial 
demonstrated improved lower back function and lowered pain 
intensity after eight sessions of VET (Saby et al., 2024). While VET has 
been shown to improve pain management in unresolved chronic pain 
conditions, the mechanisms explaining its efficacy are 
incompletely studied.

As an intervention for chronic pain, VET acts on pain perception 
systems, as well as on cognitive states of mental imagery and planning. 
A clear signature of motor cognitive processes is alpha oscillation 
desynchronization in sensorimotor regions engaged by VET. The mu 
rhythm comprises alpha oscillations over the sensorimotor cortices, 
undergoing event-related desynchronization (i.e., mu suppression) 
during the observation or execution of movement, as well as in pain 
perception and empathy (Hobson and Bishop, 2017). In one study, 
pain-induced suppression of mu was observed, along with a 
suppression of alpha and low beta oscillations in sensorimotor and 
visual cortical areas (Ploner et  al., 2006). In another study, 
sensorimotor alpha was suppressed in anticipation of pain, with the 
extent of suppression predicting the subjective perception of pain 
intensity (Babiloni et al., 2006). Accordingly, cortical alpha rhythms 
have been targeted in mindfulness therapy to redirect somatosensory 
attention away from chronic pain (Kerr et  al., 2013). Alpha 
desynchronization has also been observed over sensorimotor areas 
during movement preparation in both motor imagery and motor 
tasks, marking a shift from rest to cognitive planning (Pfurtscheller 
and Neuper, 1997).

Collectively, previous research implicates the alpha frequency 
range (8–12 Hz) in both pain perception and mental imagery and 
planning, prompting our exploration of four alpha measures 
associated with cognitive states of mental imagery (absolute mu 
power) (Yin et al., 2016), chronic pain intensity (global relative alpha, 
absolute frontal alpha) (Jensen et al., 2013), and stress states (frontal 
alpha asymmetry) (Zhang et al., 2018). Thus, our study considers the 
fitness of these candidate EEG metrics to investigate cognitive 
processes engaged in VET or pain perception in a virtual reality 
application for VET (VR-VET). The program is a collection of 
activities that actively engage the upper limbs and visualize the limb 
movement through mirroring of the avatar limb; it also includes 
mindfulness activities as a coping mechanism, which serves as a 
non-movement contrast condition. Concurrent EEG and VR touch 
controller-based kinematic data was used to characterize the neural 
correlates and behavior associated with the program. The hypothesis 
that motor imagery and pain-associated brain activity metrics would 

be modulated in VR-VET was tested in a healthy young adult sample 
to initially demonstrate the feasibility of the experimental design and 
analysis prior to investigation in a clinical population.

2 Methods

2.1 Participants

A total of 25 participants (10 women; 2 left-handed) were 
recruited from Santa Clara University for the pilot phase of this study 
(Supplementary Table 1). They were between the ages of 18 to 30, 
variable in gender, race, and ethnicity, and fluent in English. 
Participant inclusion criteria included comfort tolerance and proper 
fit of corrective lenses in VR. Exclusion criteria included a head 
circumference greater than 58 cm, major neurological disease, 
traumatic brain/head injury, motor impairments, hair extensions, lack 
of COVID vaccination, respiratory/eye infection symptoms, lice, and 
stimulation sickness. All participants initially met the study screening 
criteria (without chronic pain or mobility impairments) and 
participated in KVET™ Virtual Embodiment Training. This study 
was approved by the institutional review board of Santa Clara 
University (approval number: 21-10-1696). We  obtained written 
informed consent from each participant prior to enrollment.

2.2 Procedure

Participants completed two sessions of a KarunaHOME upper 
extremity coaching program on a Meta Quest 2 virtual reality (VR) 
headset with touch controllers. The first session was a trial run, 
followed by a simultaneous VR-EEG experimental session. They 
performed a series of activities designed to exercise their range of 
motion and promote neuromotor function. VET activities varied in 
which arm was used and whether virtual mirroring was applied 
(Figure 1). Activities included Calibration, Lotus Toss (LT), Connect 
the Dots (CTD), Mirroring (M), and Starry Night (SN).

Calibration assesses a participant’s effective range of motion and 
calibrates the following exercises. Participants keep their arm fully 
extended as they move it through a gem path. Both arms are used to 
execute simple movements. Lotus Toss presents mirrored movements 
for cognitive and physical retraining. Participants grab and release 
lotus flowers ipsilaterally or contralaterally (i.e., mirrored motion). In 
the activity, right and left arms are used alternately. This is considered 
a simple movement since it is one straight motion. Connect the Dots 
recruits multiplanar motion in complex patterns. Participants 
continuously drag a paintbrush with their nondominant arm through 
numbered targets to form uniplanar or multiplanar shapes. The arm 
consequently reaches and twists to execute complex movements. 
Mirroring involves mirrored movements to decrease resistance in 
exercising the non-dominant arm. Participants shoot a laser beam 
through fiery targets using their dominant arm to control the 
contralateral nondominant virtual arm. This is a simple movement of 
pointing. Starry Night exercises multiplanar motion similar to 
Connect the Dots. Participants continuously direct a wand through 
numbered stars to create multiplanar constellations with their 
non-dominant arm. These are complex movements in three-
dimensional space. The total program length was 20 minutes. Between 
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each upper extremity exercise, participants completed a guided 
breathing exercise (BAVG) that did not expressly engage the upper 
extremities. The guided breathing exercise is a meditation activity 
staggered throughout the sequence to relax the nervous system and 
mind. Participants inhale as a purple flower opens and exhale as it 
closes. Arms are not actively engaged and rather rest at the 
participants’ sides. As the shoulders rise and fall in the breathing cycle, 
the VR controllers move in concert. This residual movement is what 
is captured by the position tracking that is input to the 
smoothness calculation.

Additionally, participants completed a pain sensitivity 
questionnaire (PSQ) in which they assessed their level of pain in a 
variety of imagined situations on a 10-point scale (0 = no pain, 
10 = worst pain imaginable) (Ruscheweyh et al., 2012; Ruscheweyh 
et al., 2009).

2.3 EEG recordings

EEG was collected from ANT Neuro’s saline-based 24-channel 
waveguard™ net (Supplementary Figure 1) and eego™ 24 amplifier. 
Electrodes were positioned in accordance with the International 10/20 
System and impedances were kept below 30 kΩ. After a preliminary 
impedance check, data was recorded and streamed for the length of 
the training program at a sampling rate of 500 Hz. EEG signals were 
amplified and digitized.

2.4 EEG data processing and analysis

One participant experienced motion sickness and did not 
complete the sessions, while another had unsuitable impedances due 
to hair extensions. Moreover, data from two participants did not 
upload to the Karuna server. Data from five other participants was 
rejected due to intolerable amplitudes across EEG channels. Thus, 
with 9 participants excluded from the analysis, 16 participants’ data 
was analyzed (7 women; one left-handed) (Supplementary Table 1).

EEG data was processed and analyzed using MNE library tools 
(Figure 2). Raw EEG data was time-synchronized with kinematic data 
and processed in MNE-Python. Bandpass (1–70 Hz) and notch filters 
(60 Hz) were applied to the merged data. Channels with impedances 

above 30 kΩ were rejected. Additionally, T9 and T10 were rejected 
across all participants due to consistently poor contact with the head. 
Next, amplitude-based rejection was applied to the data. For every 
channel, a second (comprising 500 data points) was marked as bad 
(i.e., contaminated) if the minimum and/or maximum data point 
exceeded 3 standard deviations of the mean. Central and frontal 
channels were prioritized, foundational to the calculation of candidate 
metrics. If a dataset was contaminated for 30% or more of its total 
seconds across these 11 channels, then it was excluded from the 
analysis. Datasets with central and frontal channel data below this 
threshold were included. Parietal, temporal, and posterior channels 
were rejected from a dataset if they were contaminated for 40% or 
more of the total seconds. Commonly bad seconds were dropped 
across all channels, corresponding to various activity segments 
(Supplementary Table 2).

Power spectral density analysis followed. Frequency bands were 
defined as follows: delta (1-4 Hz), theta (4–8 Hz), alpha (8–12 Hz), 
beta (12–30 Hz), and gamma (30–50 Hz). Candidate EEG metrics 
were calculated by VET activity using SciPy library functions. Relative 
global alpha was computed as the ratio of alpha power averaged across 
all channels to the total power (1–50 Hz) averaged across all channels. 
Absolute frontal alpha was computed as the average of alpha power 
across all frontal channels. Frontal alpha asymmetry was computed as 
the log quotient of alpha power between F8 (right) and F7 (left) 
channels (Yin et al., 2016). Absolute mu power was computed as the 
average of alpha power across channels C3 and C4.

In addition to the candidate EEG metrics, all other relative global 
bandpowers (delta, theta, beta, and gamma) were computed. To assess 
the contribution of regional alpha rhythms to relative global alpha, 
relative frontal alpha (Fp1/Fp2), relative mu (C3/C4), and relative 
posterior alpha (O1/O2) were computed. Regional relative alphas were 
calculated similarly to relative global alpha but limited to the channels 
defined for each region.

2.5 Kinematic data processing and analysis

Kinematic data was simultaneously recorded from the Meta Quest 
2 and uploaded to the Karuna server. The processing pipeline was built 
with pandas and math python libraries (Figure 2). VET activities were 
segmented. Time and VR touch controller positions were extracted to 

FIGURE 1

KarunaHOME VET activities. Select activities of the VET program used in this study. Each activity represented a different combination of parameters 
based on active arm(s), simple or complex movements, and application of mirroring visualization. Each activity listed, except breathing, was done by 
the participant for one trial of three minutes. Breathing alternated between activities for one-minute trials.
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compute velocity. For each activity and each VR controller (right and 
left), velocity was calculated by applying the root mean square of xyz 
positions from each moment (72 Hz). Any instances of NaN and 
infinity values were removed from the movement data. Then, a fast 
Fourier transform magnitude spectrum of the data was computed (nfft 
function), followed by normalization. Low-pass filtering (10 Hz) and 
amplitude threshold (0.05) was applied to remove high-frequency 
noise. Finally, smoothness of both right and left arm movements was 
calculated for each activity using the spectral arc length method, 
which is calculated by the Euclidean distance between each pair of 
consecutive points in the frequency-magnitude space. The final metric 
is a negative value, such that more negative values represent greater 
smoothness (Balasubramanian et al., 2015).

2.6 Statistical analysis

Differences between breathwork and VET activities were tested 
through multivariate GLM for EEG metrics, regional relative alphas, 
relative global bandpowers, and smoothness. All variables, except 
frontal alpha asymmetry, were log-transformed due to high skewness 
and kurtosis in the original data. Each model tested for the main effects 
of age, sex, and activity. A bivariate correlative analysis between PSQ 
and EEG metrics for breathwork was conducted with a nonparametric 
Spearman rho coefficient because the PSQ scores were not normally 
distributed. No significant association was found between PSQ and the 
EEG metrics for breathwork (Supplementary Table 6).

3 Results

EEG metrics and Smoothness metrics by activity are reported in 
Supplementary Table 3.

The model for the main effect of activity, controlling for sex and 
age, was significant in the multivariate general linear model for 
candidate EEG metrics (F = 3.206, η2 = 0.151, p < 0.001). Significant 
between-subjects effects of VET activity emerged for relative global 
alpha (F = 7.777, η2 = 0.299, p < 0.001), absolute frontal alpha 
(F = 3.145, η2 = 0.147, p = 0.019), and absolute mu power (F = 2.538, 
η2 = 0.122, p = 0.047). There was not a significant effect of VET activity 
for frontal alpha asymmetry. Only relative global alpha was lower in 
VET activities compared to breathwork, indicating alpha power 
association with VET (Figure 3A, LT, M, SN p < 0.001, CTD p = 0.001). 
Absolute mu and frontal alpha were singularly lower during mirroring 
as compared to breathwork (Figures  3B, p = 0.002, Figure  3D, 
p = 0.034). Additionally, relative global alpha (F = 14.981, η2 = 0.170, 
p < 0.001) and absolute frontal alpha (F = 29.205, η2 = 0.286, p < 0.001) 
displayed significant intersubject variability (Figure 3C).

The next model evaluated regional relative alpha aggregated over 
select channels as described in Methods. Activity (F = 3.528, 
η2 = 0.174, p < 0.001), sex (F = 3.235, η2 = 0.128, p = 0.028), and age 
(F = 6.145, η2 = 0.226, p < 0.001) showed significant main effects. All 
VET activities compared to breathwork were significantly lower for 
both relative mu (F = 3.963, η2 = 0.189, p = 0.006) and relative 
posterior alpha (F = 8.530, η2 = 0.334, p < 0.001) 
(Supplementary Table 4). Relative frontal alpha was not associated 
with activity. Additionally, relative mu decreased slightly with age 
(β = −0.040, η2 = 0.070, p = 0.026).

In a separate model, all frequency bands (delta, theta, alpha, beta, 
gamma) were examined to better understand the specificity of the 
alpha band. A significant effect of activity (F = 3.247, η2 = 0.187, 
p < 0.001) was reported for relative global delta (F = 3.136, η2 = 0.147, 
p = 0.019), relative global alpha (F = 7.777, η2 = 0.299, p < 0.001), 
relative global beta (F = 4.392, η2 = 0.213, p = 0.001), and relative 
global gamma (F = 2.849, η2 = 0.135, p = 0.030). Relative global theta 
was not significantly associated with activity. Only relative global 

FIGURE 2

Processing pipeline for EEG and kinematic data. PSD = power spectral density, FFT = fast Fourier transform.
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alpha was significantly lower in all VET activities compared to 
breathwork (p < 0.001) (Supplementary Table 5). Age was significantly 
associated with the EEG metrics (F = 12.555, η2 = 0.476, p < 0.001). 
Delta (β = 0.015, η2 = 0.145, p < 0.001) and theta (β = 0.025, η2 = 0.075, 
p = 0.010) frequency bands (1–8 Hz) were positively associated with 
age, while beta (β = −0.056, η2 = 0.288, p < 0.001) and gamma 
(β = −0.083, η2 = 0.385, p < 0.001) frequency bands (12–50 Hz) were 
negatively associated with age. A main effect of sex was also significant 
(F = 11.842, η2 = 0.462, p < 0.001). The female group was associated 
with higher relative power in delta (β = 0.083, η2 = 0.173, p < 0.001) 
and theta (β = 0.114, η2 = 0.075, p = 0.017) frequency bands and lower 
relative power in beta (β = −0.230, η2 = 0.220, p < 0.001) and gamma 
(β = −0.266, η2 = 0.385, p < 0.001) bands. The relative global alpha had 
no significant association with age or sex.

Smoothness ranged on average from −8.22 +/− 2.97 to −47.25 
+/− 32.66 (Figure 4). In the model (right hand: F = 9.040, η2 = 0.462, 
p < 0.001; left hand: F = 10.660, η2 = 0.467, p < 0.001), smoothness was 
significantly associated with activity (right hand: F = 12.577, η2 = 0.408, 
p < 0.001; left hand: F = 15.963, η2 = 0.467, p < 0.001). Right-hand 
smoothness was lower in all VET activities compared to breathwork 
(p < 0.001). Left-hand smoothness difference compared to breathwork 
varied by activity (CTD p < 0.001, LT p = 0.024, M p = 0.031, SN 
p = 0.002).

Pain sensitivity, as indexed by PSQ score, ranged from 2.72 to 5.93 
on a 10-point scale (Supplementary Table 6), accurately characterizing 
the healthy study population.

4 Discussion

This study demonstrated the feasibility of four neuroimaging 
markers to investigate VET mechanisms under the challenge of free 
movement in VR. Relative global alpha was sufficiently sensitive to 
differentiate VET state from non-embodied visualization (Figure 3A). 
The global measure was driven primarily by posterior alpha and 
secondarily by mu (alpha in the sensorimotor region). These findings 
indicate that avatar visualization during motor planning is associated 
with mu desynchronization in contrast to a non-motor visually guided 
task. While metrics associated with stress (frontal asymmetry) or pain 
sensitivity (absolute frontal alpha) were not linked to VET in this 
experiment with healthy, young adults, the metrics were accurately 
measured under these conditions and may be  included in future 
studies with a study group of chronic pain patients.

4.1 Motor imagery as a biomarker

The thesis of virtual embodiment training for chronic pain 
management is that synchronizing a user’s movement with adaptive 
representations of the movement (such as a digital avatar) will change 
the perception of one’s ability to do the movement. The repetitive 
visual stimuli of non-painful synchronized movement effectively 
produce new sensorimotor memories as was demonstrated in early 
mirror box experiments for phantom limb pain (Ramachandran and 

FIGURE 3

EEG Metrics by VET Activity. (A) Relative global alpha, (B) absolute frontal alpha, and (C) frontal alpha asymmetry, and (D) absolute mu power. Negative 
values for frontal alpha asymmetry denote rightward activation (mean +/− 1 stdev). Statistics performed by mixed GLM, comparing breathwork to 
active conditions (*p < 0.05, **p < 0.01, ***p < 0.001). LT = Lotus Toss, CTD = Connect the Dots, M = Mirroring, SN = Starry Night, BAVG = Breathwork.
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Rogers-Ramachandran, 1996). Pain is mediated by numerous 
cognitive processes of which few are modifiable by behavioral 
interventions (Apkarian et al., 2012). The memory of pain is one of 
those targeted dimensions.

Thus, effectively engaging motor imagery leads to decreased pain 
perception (Saby et  al., 2024; Matamala-Gomez et  al., 2019; 
Vassantachart et al., 2022; Trujillo et al., 2020). Since motor imagery and 
planning have a unique and robust neuroimaging signature in mu 
desynchronization, it is a candidate biomarker for intervention 
mechanism or as a prediction of responsiveness to VET. In this 
foundational study of VET in a healthy population, global alpha 
desynchronization differentiated unambiguously between tasks that 
engaged movement of limbs with an avatar representation and embodied 
activities that lacked these two characteristics. It did not differentiate 
between tasks with and without mirroring (contralateral representation 
of avatar limb). This suggests that global alpha may serve as a general 
measure of motor imagery. Yet, sensorimotor and posterior alpha may 
be more precise biomarkers that measure user engagement with VET.

Relative global alpha effect was seen in relative mu and posterior 
alpha rhythms, but the frontal alpha rhythm did not display the same 
sensitivity to movement. Sensorimotor (mu) and visual (posterior) 
systems were engaged in embodiment, as individuals visualized stimuli 
and their own limbs in the virtual environment while exercising 
sensorimotor control of the avatar. Motor imagery and planning of the 
upper limb would be most closely oriented to C3/4. Consistent mu 
desynchronization in VET underscores the active exercise of motor 
imagery, which may be guided by visually tracking the movement of 
the avatar. This effect in alpha is associated with goal-directed tasks and 
learning more broadly (Yin et al., 2016), which suggests that the VET 
is effectively forming new somatic memories of the affected limb. In a 
population with chronic pain, a reasonable hypothesis to test is that 
somatic memories formed during VET reduce pain perception (Simons 
et al., 2014; Beccherle and Scandola, 2024; Mayaud et al., 2019).

Higher amplitudes of posterior alpha manifest as the default mode 
rhythm of the awake brain during eyes-closed, resting conditions 

(Garcia-Rill, 2015). When eyes are open, posterior alpha 
desynchronizes. Posterior alpha power was lower during VET activities 
than during breathwork, which lacked any body representations in 
virtual avatars. This effect does not exclude general task-related 
modulations of alpha. This suggests that the VET conditions required 
greater spatial attentional engagement compared to breathwork, likely 
based on the complexity of the task (Jensen, 2024). In other words, 
alpha desynchronization during activity reflected a shift in visual 
attention to active tasks and the corresponding allocation of mental 
resources to effectively respond to the embodied stimuli.

4.2 Limitations

A key limitation of our study was data loss due to motion, 
introducing motion-related noise and artifacts. To maintain the integrity 
of data, rigorous thresholds were applied to EEG signals, leading to the 
rejection of hundreds of seconds of data. Further, with active conditions 
routinely occurring in 3-min blocks and breathing segments in 1-min 
blocks, candidate metrics were not time-locked, but averaged over long 
periods. Thus, specific events within the activities could not 
be  differentiated in analysis. Another limitation was the healthy 
population assessed, lacking a comparative pain population. Pain 
sensitivity characterization was limited to the PSQ, which relies on self-
assessment of pain perception that is remembered or imagined. At this 
point, in the absence of data from chronic pain patients, only hypotheses 
can be derived regarding the relevance of these metrics to chronic pain.

4.3 Future directions

VR-VET is a unique and valuable non-pharmacological 
intervention, leveraging embodied visualizations and movements to 
encourage physical exercise and effectively modify pain perception 
(Adamovich et al., 2009; Rodriguez et al., 2023). While motion is an 

FIGURE 4

Smoothness by VET Activity. More negative values denote greater smoothness (mean +/− 1 stdev). Statistics performed by mixed GLM, comparing breathwork 
to active conditions (*p < 0.05, **p < 0.01, ***p < 0.001). LT = Lotus Toss, CTD = Connect the Dots, M = Mirroring, SN = Starry Night, BAVG = Breathwork.
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inherent element of embodiment, it impacts the quality of EEG data. 
However, future studies may implement an event-related analysis that 
rejects short epochs of data and preserves many clean and time-
locked segments. Therefore, within each embodiment activity, 
tailored in complexity and laterality of motion, individual tasks can 
be analyzed to further elucidate mechanisms of VET.

In addition to the four candidate metrics proposed here, peak 
alpha frequency (PAF) would be  a likely trait predictor of pain 
sensitivity. Future studies with an eyes-closed condition would 
be  suitable to measure PAF, which is inversely related to pain 
sensitivity (Furman et al., 2018; McLain et al., 2022).

Next, steps will be to conduct a study with a clinical population of 
upper limb chronic pain to understand whether these metrics are 
modulated by or predictive of responses to VR-VET. A variety of 
possible activities demonstrate the versatility and therapeutic power 
of VET to promote and restore functional movement of non-dominant, 
injured, or phantom limbs (Bordeleau et al., 2022; Vassantachart et al., 
2022; Chau et al., 2020). Moreover, smoothness—accurately calculated 
and sensitive to a range of 3D motions—can potentially serve as a 
measure of functional recovery and a useful adjunct to range of motion 
metrics by capturing hesitations and inaccuracies to perform avoidant 
or protective movements (De La Campa et al., 2023; Saby et al., 2024). 
Potentially, EEG-based biomarkers may be strongly correlated with 
kinematic measures of functionality.

4.4 Conclusion

The four neuroimaging markers of pain perception under 
investigation (relative global alpha, absolute mu power, absolute frontal 
alpha, and frontal alpha asymmetry) were robustly measured during 
movement, with relative global alpha in particular sensitive to VR-VET 
states. Concurrent EEG recordings enabled the exploration of these 
markers as neural correlates of VET, demonstrating that relative mu 
and relative posterior alpha power were selectively suppressed during 
motor imagery. This finding provides evidence that motor imagery 
may be a mechanism to alter perception by mediating new somatic 
memories of movement.
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