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Brain Computer Interface spellers offer a promising alternative for individuals with 
Amyotrophic Lateral Sclerosis (ALS) by facilitating communication without relying 
on muscle activity. This study assessed the feasibility of using movement related 
cortical potentials (MRCPs) as a control signal for a Brain-Computer Interface 
speller in an offline setting. Unlike motor imagery-based BCIs, this study focused on 
executed movements. Fifteen healthy subjects performed three spelling tasks that 
involved choosing specific letters displayed on a computer screen by performing 
a ballistic dorsiflexion of the dominant foot. Electroencephalographic signals 
were recorded from 10 sites centered around Cz. Three conditions were tested to 
evaluate MRCP performance under varying task demands: a control condition using 
repeated selections of the letter “O” to isolate movement-related brain activity; 
a phrase spelling condition with structured text (“HELLO IM FINE”) to simulate a 
meaningful spelling task with moderate cognitive load; and a random condition 
using a randomized sequence of letters to introduce higher task complexity by 
removing linguistic or semantic context. The success rate, defined as the presence 
of an MRCP, was manually determined. It was approximately 69% for both the 
control and phrase conditions, with a slight decrease in the random condition, 
likely due to increased task complexity. Significant differences in MRCP features 
were observed between conditions with Laplacian filtering, whereas no significant 
differences were found in single-site Cz recordings. These results contribute to 
the development of MRCP-based BCI spellers by demonstrating their feasibility 
in a spelling task. However, further research is required to implement and validate 
real-time applications.
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1 Introduction

In recent decades, the field of Brain Computer Interface (BCI) technology has undergone 
remarkable advancements, transitioning from theoretical concepts to practical applications 
(Aricò et al., 2020; Xu et al., 2024). A BCI is defined as a system in which commands are sent 
to external devices using only brain signals and without passing through the brain’s normal 
output pathways (Wolpaw et al., 2002). This innovative technology holds significant potential 
to empower individuals with motor disabilities, such as patients with Amyotrophic lateral 
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sclerosis (ALS) (Masrori and Van Damme, 2020), as it could provide 
them with a means to communicate and engage with the world.

The basic structure of a BCI includes signal acquisition, feature 
extraction, classification or feature translation, and output or 
command (Cecotti, 2011; Shih et  al., 2012; Wolpaw et  al., 2002). 
During signal acquisition, brain signals are collected and used to 
extract specific features that are translated into commands capable of 
operating a device through mathematical algorithms (Shih et al., 2012; 
Wolpaw et al., 2002).

The efficacy of a BCI is linked to technological progress and 
understanding the basic underlying neuroscience, as well as the 
interaction between the user and the system. The features extracted 
are commonly individualized for the specific user to allow accurate 
and efficient translation into device commands (Abiri et al., 2019; 
Wolpaw et al., 2002; Xu et al., 2024).

One promising application of BCI technology is the development 
of “BCI Spellers, “which have gained substantial attention for their 
potential to allow communication for individuals with loss of 
voluntary motor control due to neurological conditions (Chaudhary 
et al., 2021; Rezeika et al., 2018).

BCI speller systems fall into two main acquisition method groups: 
invasive and non-invasive. Invasive methods involve surgical 
procedures to implant electrodes, providing high spatial and temporal 
resolution but requiring a potentially risky procedure, making them a 
less approachable solution (Chaudhary et al., 2022; Oh et al., 2024; Xu 
et al., 2024). On the other hand, non-invasive methods acquire signals 
from the scalp which introduces a loss in signal quality though it 
makes them easier to use and more user friendly (Abiri et al., 2019; 
Oh et al., 2024; Xu et al., 2024).

Traditional non-invasive BCI spellers and virtual menus rely on 
control signals such as the P300, steady-state visually evoked potentials 
(SSVEPs), and event-related spectral perturbations (ERSPs) (Abiri 
et al., 2019; Cecotti, 2011; Gannouni et al., 2017; Rezeika et al., 2018; 
Savić et  al., 2013). These paradigms have achieved considerable 
success, with P300 and SSVEP-based BCIs demonstrating high 
accuracy and generally requiring minimal user training. However, the 

performance of P300 and SSVEP BCIs can be influenced by factors 
like stimulus presentation and individual user characteristics. ERSPs, 
while offering a different approach, can involve more extensive user 
training. These factors are important considerations when evaluating 
the suitability of different BCI paradigms for specific applications 
(Table 1).

In this context, movement-related cortical potentials (MRCPs) as 
a control signal may provide a feasible alternative to counteract some 
of the aforementioned limitations. MRCPs are low-frequency negative 
shifts in the EEG that occur approximately 2 s before the initiation of 
voluntary movement and can also be induced through motor imagery 
(Shakeel et al., 2015; Shibasaki and Hallett, 2006; Wright et al., 2011). 
The MRCP consists of various components associated with motor 
preparation and execution, including the Bereitschaftspotential (BP), 
an early negative shift, the negative slope (0.5 prior to movement 
onset) and motor potential (Crammond and Kalaska, 2000; 
Jochumsen et al., 2017; Shibasaki and Hallett, 2006).

ERSPs accompany voluntary movements and motor imagery as 
well but can also be  induced or modulated by various cognitive 
tasks or affected by parallel streams of sensory inputs or the user’s 
mental state (Savić et al., 2020). Moreover, ERSPs exhibit variability 
in their patterns among individuals, in terms of frequency bands of 
interest and spatio-temporal dynamics. As a result, extensive user 
training and calibration of both subjects and the BCI are required 
to operate the system using motor imagery-induced ERSPs (Savić 
et al., 2020).

In contrast, MRCPs are direct and reproducible signatures of 
motor preparation, execution, or imagery, exhibit low user training 
requirements, are adaptable through training and detectable before 
movement onset (Jochumsen et al., 2018; Savić et al., 2020, 2021; 
Wright et al., 2011, 2012). However, due to their low signal-to-noise 
ratio, they have been less commonly used for BCI control. 
Additionally, MRCPs have shown particular sensitivity to specific 
visual cues, which can disrupt their morphological features and may 
limit their use in cue-based applications such as menus and spelling 
(Savić et al., 2014).

TABLE 1 Advantages and disadvantages of brain signals for BCI-spellers and menus.

Brain signals Advantages Disadvantages

P300 and SSVEP

Requires minimal user training for control signal induction (Nicolas-

Alonso and Gomez-Gil, 2012; Rezeika et al., 2018)

High bit rate [SSVEP: 30–300 bits/min. P300: 20–80 bits/min (Li 

et al., 2021; Rezeika et al., 2018)]

Limited number of EEG channels required(Li et al., 2021; Nicolas-

Alonso and Gomez-Gil, 2012)

Multiclass control (Rezeika et al., 2018)

Requires permanent attention to external visual stimuli (Abiri et al., 2019; Li 

et al., 2021; Rezeika et al., 2018)

Decrease in performance due to habituation may occur (Nicolas-Alonso and 

Gomez-Gil, 2012)

May cause visual fatigue in some users (Abiri et al., 2019; Kundu and Ari, 

2022; Rezeika et al., 2018)

ERSP

Stimulus independent control signal induction (Nicolas-Alonso and 

Gomez-Gil, 2012; Rezeika et al., 2018)

May enable multiclass control using different motor imagery tasks 

(Nicolas-Alonso and Gomez-Gil, 2012; Rezeika et al., 2018)

Useful for users with visual impairments (Nicolas-Alonso and 

Gomez-Gil, 2012; Rezeika et al., 2018)

Variability in subject specific signal features implying the need for extensive 

user training and system calibration (Abiri et al., 2019; Nicolas-Alonso and 

Gomez-Gil, 2012; Rezeika et al., 2018)

Not all users are able to obtain control (Nicolas-Alonso and Gomez-Gil, 

2012)

Multichannel EEG recordings are required for multiclass control (Abiri et al., 

2019; Nicolas-Alonso and Gomez-Gil, 2012)

Lower bit rate (3–35 bits/min) (Nicolas-Alonso and Gomez-Gil, 2012; 

Rezeika et al., 2018)

Extended user training periods (Kundu and Ari, 2022; Rezeika et al., 2018)
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Despite this, recent studies have demonstrated the concept and 
feasibility of single-trial MRCP detection using novel feature 
extraction and machine learning techniques (Jiang et al., 2015; Savić 
et al., 2021). These advances in MRCP detection and classification for 
BCI control purposes, they have not yet been specifically applied to 
BCI spelling applications.

This study investigates the feasibility of using MRCPs as control 
signals for a BCI speller system. While other speller approaches are 
mentioned as reference points, a direct comparison goes beyond the 
scope of this study. Our primary goal is to evaluate whether MRCPs 
can be effectively utilized in this specific framework. Unlike motor 
imagery-based BCIs, we  examine MRCPs elicited by executed 
movements, where participants actively performed dorsiflexion. To 
establish a foundational understanding of MRCP behavior in this 
context, we conducted the experiments in an offline setting, collecting 
and analyzing MRCP data post-hoc without real-time detection. 
Instead of implementing machine learning classification or 
automated MRCP detection, we established predefined criteria to 
assess the presence of MRCPs, evaluating their reliability as the 
success rate. Additionally, we  explored how MRCP features are 
influenced by the cognitive load, visual cues, and stimuli imposed by 
the spelling task.

2 Materials and methods

2.1 Participants

Fifteen healthy young adults (seven females, eight males; mean 
age = 24.38 ± 2.98 years) without any neurological disorders or other 
impairments voluntarily participated in this study. Due to a technical 
issue with the EEG system during data acquisition, specifically the 
failure of a EEG or EMG electrode, data from two subjects were 
excluded from further analysis. This malfunction resulted in unusable 
data for those channels, rendering the entire dataset for those 
participants unusable. This exclusion was based on the objective 
criterion of complete electrode failure. Consequently, the final dataset 
comprised 13 participants (seven females, six males). All participants 
provided informed consent prior to their inclusion in the experiment. 
The study protocol was conducted according to the Declaration 
of Helsinki.

2.2 Experimental setup

During all sessions, monopolar EEG signals were recorded using 
an active EEG electrode system (g.GAMMAcap; g.tec Medical 
Engineering, GmbH, Austria) connected to a g.USBamp amplifier 
(g.tec Medical Engineering, GmbH, Austria). Ten electrodes were 
placed over the motor cortex according to the standard international 
10–20 system: FP1, Fz, FC1, FC2, C3, Cz, C4, CP1, CP2, and Pz. The 
ground electrode was placed centrally on the frontopolar region (FPz), 
and the contralateral earlobe was used for reference. Surface EMG 
electrodes were placed on the musculus tibialis anterior (TA) to 
determine movement onset (Figure 1). All data were sampled at a rate 
of 1,200 Hz.

During the actual experiment, subjects interacted with a custom-
made speller interface consisting of a 6 × 6 matrix design (Farwell and 

Donchin, 1988) with characters to choose from and a continuously 
moving selector (Figure 2). The selector consists of a gray bar that 
moves horizontally (x-axis) until a selection is made, then changes 
direction to move vertically (y-axis).

The BCI speller operates as a simulation, where letter selections 
were predefined, and the system automatically pauses at the 
corresponding column or row, assuming that the subject would 
initiate movement during the designated time. Each column and row 
selection lasted for 2 s. After each selection, the bar paused for 2 s 
before resuming movement for the next selection. The speller includes 
a blank area at the top displaying the selected letters or a predefined 
phrase, with the last selected letter highlighted.

FIGURE 1

The experimental set up for the experiment with the keyboard on the 
screen and EEG and EMG electrodes connected to the g.USBamp 
system.
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For each condition, the target phrase was presented at the 
beginning of the experiment in the Phrase Area of the speller 
interface (Figure 2). The selector moved from left to right, sliding 
over the columns (which were internally divided within the speller 
matrix). Once the selector reaches the end of the predefined 
column of the target letter, it automatically changed direction and 
moved from bottom to top to stop at the end of the corresponding 
row. The rows and columns were visually marked with dividers to 
aid user orientation (Figure 2). Once a letter was selected the bar 
reset its position at the left of the screen to restart the sliding. 
Participants were cued to execute a movement when the selector 
reached the target location (column/row) of the letter. This ensured 
that MRCPs were aligned with voluntary movement at the 
desired letter.

2.3 Experimental procedures

All measurements were conducted at the neurophysiological 
laboratory of the Department of Sports and Sports Science of the 
University Freiburg.

The subjects were instructed to perform a ballistic dorsiflexion of 
the dominant leg, executing the movement when the bar was around 
the midpoint of the column or row containing the desired character. 
Each subject completed three different phrases, each consisting of 13 
characters, resulting in 26 trials or 26 possible MRCPs per phrase 
(Table 2).

To evaluate MRCP performance in conjunction with a simulated 
spelling task, three conditions were tested. These conditions were 
designed to assess how MRCPs are affected by the varying demands 
of a spelling task, ranging from minimal cognitive load to more 
complex scenarios involving memory and letter selection. Cognitive 
load, in this study, refers to the mental effort imposed on participants 
by the task demands, including factors such as memory, attention, and 
decision-making. The three conditions were: a control condition using 
repeated selections of the letter “O” to isolate movement-related brain 
activity with minimal cognitive load; a phrase spelling condition with 
structured text (“HELLO IM FINE”) to simulate a meaningful spelling 
task with moderate cognitive load, reflecting the memory and 

planning involved in spelling a familiar phrase; and a random 
condition using a randomized sequence of letters to introduce higher 
task complexity, as participants needed to process and select letters 
without the aid of linguistic or semantic context, thus increasing 
demands on attention and working memory.

2.4 Data processing and statistical analysis

All signal analysis was done with a custom MATLAB script and 
GUI (version 2022a, MathWorks, Natick, USA). The CZ electrode was 
chosen for the subsequent analysis, as it is the electrode that is highly 
associated with lower limb movement (Do Nascimento et al., 2006; 
Shibasaki et al., 1986; Shibasaki and Hallett, 2006). The EMG data was 

FIGURE 2

The speller with custom designed interface. The grey bar is the moving selector and phrase area is where chosen characters would appear. The 
selector first scanned the speller matrix from left to right to identify the column containing the target letters, predefined by the condition (control, 
phrase spelling, or random). Once the column was reached, the selector changed direction and scanned from bottom to top to locate the target 
letter’s row. After selecting the row, the selector restarted its position to search for the next target letter, following the same column-first, then row-
selection process.

TABLE 2 The conditions used in determining the use of MRCPs for BCIs.

Condition Description

Letter or control condition

The control condition, consisting of repetitive “O” 

characters, was designed to minimize cognitive 

load by requiring simple, repetitive motor 

execution with minimal cognitive demands related 

to letter selection or memory.

Phrase spelling condition

Copy spelling condition in which the subject 

simulates the spelling of the phrase “HELLO IM 

FINE.” This condition aims to study the MRCP 

during the spelling task condition. This condition 

required participants to recall the sequence of 

letters, and coordinate motor actions with the 

spelling task.

Random condition

A phrase of the same length as the copy spelling 

phrase was generated by randomizing its 

characters. This randomized phrase was presented 

to the subjects prior to the experiment three. This 

condition required participants to process and 

select letters without the aid of semantic or 

contextual cues, potentially increasing demands on 

attention and working memory.
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used as supplementary data for the detection of the movement and as 
part of the criteria for selecting the MRCPs.

A simplified signal processing pipeline was implemented, avoiding 
computationally expensive techniques such as Independent 
Component Analysis (ICA) for artifact detection. Instead, 
we employed filtering and epoch-based processing techniques that are 
compatible with real-time BCI applications. Both the MRCP traces 
and their features were extracted and analyzed (Figure 3), including 
peak negativity, readiness potential slopes, negative slope, motor 
potential, and overall MRCP amplitude (PN, NS1, NS2, rebound, and 
PP). The preprocessing steps are described as follows (Figures 4, 5):

Line noise was removed by applying a 50 Hz notch filter using a 
2nd order Butterworth filter. EEG channels were then filtered using a 
2nd order Butterworth band-pass filter ranging from 0.05 to 3 Hz. 
Next, EEG and EMG data were segmented into epochs 4 s before to 
5 s after column/row onsets (Figure  6). A column/row onset was 
defined as the moment the selector bar intersected the column or row 
containing the target letter. Offset correction was applied per epoch 
by demeaning – that is, by calculating the mean for each of them and 
subtracting it. To improve spatial resolution, a large Laplacian 
transformation was applied to the Cz electrode. EMG onset detection 
was performed using an adapted version of Yang’s algorithm, which 
identifies movement initiation by detecting deviations from baseline 
activity and image processing techniques (Yang et al., 2017). This 
adapted version included modifications to the threshold levels for 
detecting EMG activity and adjustments to the window length for 
morphological image processing, such as opening and closing 
techniques. The window duration was set to 1.5 s, based on the 
participants’ intent to sustain movement for approximately 2 s. This 
method was used solely for confirming movement execution and not 
for training or classifying MRCPs in real-time.

Data analysis focused on the Cz electrode and the Laplacian result 
of this electrode for each trial. Column/row onsets were used to 
segment the data and define individual trials. The EMG signal was 

then analyzed to confirm that the subject performed the intended 
movement within the appropriate time window. Both segmentation 
and movement verification were performed using a custom MATLAB 
graphical user interface (GUI).

After confirming the movement, the segmented data (trials) were 
inspected with the GUI to verify the presence of MRCPs. The GUI was 
also used to identify the Peak Negativity (PN) within each trial. A trial 
was considered successful, indicating the presence of an MRCP, if it 
met all the following criteria: (1) PN and EMG onset occurred within 
the time window of −0.5–0.5 s relative to the column/row onset; (2) 
the MRCP exhibited two distinct negative slopes followed by a 
rebound phase; (3) PN corresponded to a local minimum in the 
MRCP; or (4) PN occurred more than 1 s before the column/row 
onset (Figure 3).

This stepwise approach ensured that data segmentation, 
movement verification, MRCP validation, and PN identification were 
carried out systematically, resulting in the reliable selection of valid 
MRCPs across all trials.

The number of successful trials per phrase, condition, and subject 
was calculated as a percentage of the total trials (n = 26). In this study, 
this metric is referred to as the success rate, which indicates the 
number of times a subject successfully elicited an MRCP, as 

FIGURE 3

MRCP features. The black trace represents an example of an MRCP, 
with dotted lines indicating the time intervals used to compute the 
slopes (NS1, NS2, and rebound). The PN (Peak Negativity) is identified 
as the minimum value on the trace, while the PP (Peak-to-Peak) 
represents the overall amplitude of the MRCP (the difference 
between the minimum and maximum value of the signal from 2 s 
before PN to 2 s after).

FIGURE 4

Preprocessing block for MRCP signals.
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FIGURE 5

Statistical analysis block for MRCPs and its specific features.

FIGURE 6

MATLAB custom made GUI used for the preprocessing, segmentation, and movement verification.
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determined based on the inclusion criteria outlined in the previous 
paragraph. Success rates were calculated separately for both Cz and 
Laplacian-processed data. To standardize onset, three datasets per 
phrase were created, with MRCPs aligned based on three different 
time points: the column/row onset, the EMG onset (defined as the 
start of EMG activity), and the Peak Negativity (PN) timing. Each 
dataset was centered around the corresponding time point (column/
row, EMG, or PN) and consisted of epochs extending 2 s before and 
1.5 s after the specified time point. The PN-shifted dataset was 
selected for further analysis due to phase cancelation observed in 
other shifts.

Grand averages were computed per condition by grouping 
selected trials by condition, while Statistical Parametric Mapping 
(SPM) was conducted by dividing selected trials by subject and 
condition. For each subject-condition combination, a mean was 
calculated, yielding 39 average MRCPs (13 subjects * 3 conditions). 
These were analyzed using one-way ANOVA in MATLAB’s SPM 
toolbox (Pataky, 2022), with post-hoc paired t-tests and Bonferroni 
correction if significant results (p < 0.05) were found.

Descriptive features (PN, NS1, NS2, rebound, PP) were 
extracted (Figure  3), per trial and condition. Finally, statistical 
analysis involved computing the mean of each feature per subject 
and condition. Organized arrays were created with columns 
representing conditions and rows representing subjects. Five 
arrays, each representing a feature from both preprocessing 
methods (non-Laplacian and Laplacian), were analyzed using 
Friedman’s test. If significance was detected, a Wilcoxon signed-
rank post-hoc test with Bonferroni correction was applied for 
the feature.

3 Results

In order to identify the MRCPs, the continuous data was 
segmented according to the expected column/row onsets. 
Subsequently, two onset-shifting techniques, PN shifting and EMG 
onset shifting, were applied. For each subject and condition, the mean 
MRCP per subject across conditions and shifting methods were 
computed (Figure  7), to determine the best onset for feature 
extraction. The analysis concluded that PN shifting provided better 
results, making it the chosen reference point for both non-Laplacian 
and Laplacian data.

To evaluate whether MRCP elicitation can be effectively used with 
the speller, the success rates of participants were calculated. Results are 
presented for each subject (S01–S15, excluding S10 and S11), detailing 
the number of elicited MRCPs and corresponding success rates across 
different conditions. This analysis was conducted both without and 
with Laplacian filtering, the results are shown in Table  3, 
4 correspondingly.

For the analysis without Laplacian filtering, the mean number of 
elicited MRCPs of the control condition and the spelling phrase was 
similar (17.3 ± 4.06 and 17.31 ± 3.67) and were not significantly 
different (Table 3). In contrast, a slight decrease in the mean was 
observed for the random characters condition (16.26 ± 4.79). Success 
rates equal or below 50% occurred only six times for various 
conditions and subjects. On the other hand, 11 times different 
subjects, and across various conditions, achieved percentages equal to 
or higher than 80%.

Implementing Laplacian filtering did not significantly improve 
the mean success rate (Table  4) of the control condition or the 

FIGURE 7

Laplacian vs. non-Laplacian on different onsets shifts. The means MRCP for subject 03 across conditions and shifting methods. The figure illustrates 
the mean and standard deviation of all the MRCPs, with (orange) and without (blue) Laplacian, considering shifting and condition. The graphs are 
organized in columns and rows. Columns represent different conditions: letter (left), phrase (middle), random (right). Rows indicate various shifting 
methods: no shifting or column/row (top), based on the PN (middle) and based on the EMG (bottom).
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spelling phrase (17.38 ± 3.30 and 17.28 ± 3.60). Similarly, in the 
processing without Laplacian, these means did not exhibit 
significant differences between the two conditions. The most 
notable difference was observed in the random characters 
condition, where the mean decreased to almost 50% success rate 
(13.64 ± 5.01).

The implementation of the Laplacian filter enhanced or matched the 
success rate to the non-Laplacian results, for six subjects in at least two 
out of the three conditions-specifically, S01, S02, S03, S05, S06, and S15.

Additionally, there was a consistent or increased success rate 
observed from the spelling phrase condition compared to the control 
condition in eight participants:

TABLE 3 MRCP success rate without Laplacian filtering.

ID subjects Total number of elicited MRCPs Success rate

Single 
repeated 
character

Spelling 
phrase

Random 
characters

Single 
repeated 
character

Spelling 
phrase

Random 
characters

S01 22 24 25 85% 92% 96%

S02 19 19 17 73% 73% 65%

S03 25 25 24 96% 96% 92%

S04 18 19 22 69% 73% 85%

S05 13 16 21 50% 62% 81%

S06 14 18 14 54% 69% 54%

S07 18 15 14 69% 58% 54%

S08 23 18 21 88% 69% 81%

S09 22 19 18 85% 73% 69%

S12 13 18 10 50% 69% 38%

S13 13 18 15 50% 69% 58%

S14 18 13 11 69% 50% 42%

S15 18 12 16 69% 46% 62%

MEAN 17.30 17.31 16.26 67% 67% 63%

SD 4.06 3.67 4.79 16% 14% 18%

The success rate, defined as the presence of an MRCP, was determined based on exclusion criteria (methods section).

TABLE 4 MRCP success rate with Laplacian filtering.

ID subjects Total number of elicited MRCPs Success rate

Single 
repeated 
character

Spelling 
phrase

Random 
characters

Single 
repeated 
character

Spelling 
phrase

Random 
characters

S01 22 25 19 85% 96% 73%

S02 19 20 18 73% 77% 69%

S03 25 25 26 96% 96% 100%

S04 17 14 15 65% 54% 58%

S05 21 19 16 81% 73% 62%

S06 17 15 17 65% 58% 65%

S07 16 16 9 62% 62% 35%

S08 17 14 18 65% 54% 69%

S09 16 16 11 62% 62% 42%

S12 12 17 14 46% 65% 54%

S13 19 17 1| 73% 65% 42%

S14 16 17 7 62% 65% 27%

S15 16 17 8 62% 65% 69%

MEAN 17.38 17.28 13.64 67% 67% 52%

SD 3.30 3.60 5.01 13% 14% 19%

The success rate, defined as the presence of an MRCP, was determined based on exclusion criteria (methods section).
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 • Non-Laplacian: S01, S02, S03, S04, S05, S06, S12, S13.
 • Laplacian: S01, S02, S03, S07, S09, S12, S14, S15.

In contrast, when comparing the control condition to the random 
one, a decrease in success rate was noted for eight subjects in both the 
non-Laplacian and the Laplacian results.

 • Non-Laplacian: S02, S03, S07, S08, S12, S13, S14, S15.
 • Laplacian: S01, S02, S04, S05, S07, S09, S13, S14.

3.1 Feature—statistical analysis

To assess whether the interface and spelling task affect the 
morphology of the MRCPs, features were extracted from all selected 
trials for each subject and condition. The mean of each feature was 
computed for each subject and condition, and repeated for all features. 
These means were then statistically compared for both processing 
methods and the results are shown in Table 5 (non-Laplacian) and 
Table 6 (Laplacian).

From the Friedman test results, only one feature showed 
significance (p < 0.05). This feature was the PP in the Laplacian dataset 
(p = 0.0231). A Wilcoxon rank-sum post-hoc test was performed for 
pairwise comparisons with a Bonferroni correction (adjusted 
significance level: p < 0.0167), with results presented in Table 7. No 
significant differences were found in this test. The comparisons of the 
features between the control condition and the phrase (p = 0.1272) 
and against the random condition (p = 0.0574) were the smallest, but 
neither showed significant differences.

3.2 MRCP template—SPM

To compare the three conditions, we calculated the grand average 
of the MRCPs for each condition and conducted an SPM analysis. The 
grand averages were obtained by averaging the individual MRCP 
traces over three conditions (Figure 8). The resulting grand averages 
across conditions exhibit similar morphology, with overlapping 
confidence intervals.

To further investigate these similarities, an SPM analysis was 
conducted using a one-way ANOVA. For this analysis, MRCPs were 
first averaged per subject for each condition, resulting in 39 
averaged MRCPs (13 subjects * 3 conditions). The SPM analysis 
confirmed that there were no statistically significant differences 
between the three conditions, consistent with the observed 
grand averages.

The Laplacian data showed significant differences across 
conditions except between −1.56 s and −1.3 s (Figure 9). Post-hoc 
paired t-tests with Bonferroni correction (Supplementary Figure 1) 
revealed the following: For the control vs. phrase condition, only the 
interval from −1.55 s to −1.0 s was not significant (p ≤ 0.2). For the 
letter vs. random condition, significant differences were found 
between −2.0 s and −1.88 s, −0.53 s and −0.36 s, and −0.17 s and 
1.5 s, with the letter showing the greatest difference. The phrase vs. 
random condition had a significant difference only between −0.94 s 
and −0.4 s (p ≤ 0.2).

4 Discussion

The aim of the current study was to assess the feasibility of using 
MRCPs as a control signal for a BCI-speller system. Specifically, 
we  focused on analyzing the MRCP and its features under the 
cognitive load imposed by the simulation of a spelling task generated 
by the BCI speller that was designed for this purpose. Our findings 
indicate that participants successfully generated MRCPs during the 
tasks, and no significant differences were observed across conditions 
for the MRCP features. The SPM analysis revealed some differences 
between conditions only for the Laplacian channel/data. In the 
following subsections we  will provide a detailed discussion of 
the results.

4.1 MRCP during the spelling tasks

In the field of BCI, selecting an appropriate control signal that 
accurately reflects the user’s intent is critical for the system’s 
effectiveness (Abiri et al., 2019; Krusienski et al., 2012; Wolpaw et al., 
2002). In this study, we chose MRCPs as a potential control signal for 
BCI spellers.

We implemented the success rate, defined as the occurrence of an 
MRCP, as a metric to evaluate the correlation between the user’s intent 
and the actual brain output measured by EEG. High success rates 
suggest that the MRCP has the potential to serve as a reliable control 
signal, capable of effectively capturing the user’s intent.

Compared to the control condition, the success rates of the phrase 
spelling condition met expectations, with 9 out of 12 subjects 
achieving at least 69% success. Notably, six participants were novices, 
suggesting that MRCPs can be elicited without extensive user training 
(Jochumsen et al., 2018; Niazi et al., 2013). This trend persisted in the 
phrase spelling condition, where 10 participants matched or exceeded 
their performance, supporting the idea that MRCP-based control can 
be trainable (Jochumsen et al., 2017). While this may appear lower 
than classification accuracies reported in P300 and SSVEP studies 
(Abiri et al., 2019; Rezeika et al., 2018), it is important to note that 
participants in this study had no prior experience or training in 
eliciting MRCPs. Despite this lack of user training, MRCPs were 

TABLE 5 Friedman test results for the non-Laplacian data.

NS1 NS2 PP PN Rebound

0.1988 0.116 0.5836 0.7939 0.3679

TABLE 6 Friedman test results for the Laplacian data.

NS1 NS2 PP PN Rebound

0.926 0.3973 0.0231* 0.116 0.2319

The asterisk (*) indicates that the value is statistically significant, with p-values less to 0.05.

TABLE 7 Post-hoc Wilcoxon rank sum test results for PP feature from 
Laplacian data.

Control vs. 
phrase spelling

Control vs. 
random

Phrase vs. 
random

0.1272 0.574 0.5417
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successfully elicited, suggesting that performance could improve with 
additional practice and adaptation.

On the other hand, the random condition revealed that just seven 
subjects achieved an equal or higher success rate than 69%. This 
decrease could be  attributed to the diversion of attention 
(Aliakbaryhosseinabadi et al., 2017a; Aliakbaryhosseinabadi et al., 
2017b), or the complexity of selecting random characters due to the 
lack of goal-oriented spelling (Frömer et al., 2012; Olsen et al., 2021).

The Laplacian filter improved or maintained the success rate in six 
subjects across at least two of three conditions but decreased in the 
others. As a spatial filter, the Laplacian reduces spatial noise by 
emphasizing local signal sources and minimizing distant ones. While 
effective in subjects with well-localized MRCPs, the filter can introduce 
distortions in cases where signals are more diffuse. Additionally, the 
Laplacian has been shown to counteract attention diversion during 
tasks, potentially explaining its improved performance in some subjects 
(Aliakbaryhosseinabadi et al., 2017a; McFarland, 2015).

4.2 MRCP template

The grand average MRCPs were computed based on three 
different onsets (column/ row, PN and EMG), revealing a 

phase-canceling effect for the column/row and EMG onset. The PN 
serves as the crucial point marking the end of the negative shift and 
the beginning of the positive shift (Do Nascimento et  al., 2006; 
Shibasaki and Hallett, 2006). Therefore, it proves to be an excellent 
reference point for extracting the MRCP features with consistency. 
Additionally, this selection aligns with the goal of enabling 
non-muscular control signals as it remains present during motor 
imagery (Cunnington et  al., 1996), which are essential for BCI 
applications, especially in patients with motor impairments.

Once an onset was selected the MRCPs were analyzed with and 
without Laplacian filtering. In the non-Laplacian data, MRCPs 
behaved as expected, showing no statistically significant differences 
across conditions, either in feature extraction or SPM analysis. Prior 
research indicates that MRCP morphology, particularly in features like 
NS1 and NS2, can change with attention diversion 
(Aliakbaryhosseinabadi et al., 2017a; Aliakbaryhosseinabadi et al., 
2017b; Wright et al., 2012). The absence of significant changes here 
suggests that the spelling task did not impose a cognitive load that 
interfered with the movement timing or focus.

The use of the Laplacian filter in processing MRCP signals 
presents both benefits and challenges, particularly when comparing 
tasks with different cognitive demands. During spelling tasks, which 
are likely to engage broader cortical regions due to the increased 

FIGURE 8

Cz grand average MRCP data. The top panel displays the grand averages of the 12 participants (trials mean of 17.30—letter, 17.31—phrase 16.24 
-random) for each condition, the dashed line over the y axis represents the PN of the grand averages. The lower trace presents the SPM analysis 
results. Both indicate that there are no differences across the three conditions.

https://doi.org/10.3389/fnhum.2025.1539081
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Hernández-Gloria et al. 10.3389/fnhum.2025.1539081

Frontiers in Human Neuroscience 11 frontiersin.org

complexity, the Laplacian filter may show amplitude differences in the 
MRCP. This occurs because the filter enhances localized neural 
activity but may smooth out signals spread across multiple channels, 
which is more common in cognitively demanding tasks. In contrast, 
monotonic tasks such as the control condition, are less affected by the 
Laplacian because they involve more focused neural activity that tends 
to produce clearer MRCP signals (Aliakbaryhosseinabadi et al., 2017a; 
Aliakbaryhosseinabadi et al., 2017b; McFarland, 2015).

Interestingly, in our analysis, while no significant differences were 
found in the extracted MRCP features, the SPM analysis of the 
Laplacian-processed data did show differences across conditions. This 
suggests that the Laplacian filter, while effective at reducing noise, 
might amplify specific aspects of the MRCPs and reduce their overall 
amplitude. This suggests that while Laplacian filtering can refine the 
signal by reducing noise, it may also alter the MRCP morphology, 
warranting careful consideration in future studies.

4.3 Comparison of MRCP-based BCIs with 
existing paradigms

P300 and SSVEP spellers have established themselves as reliable 
BCI paradigms, consistently achieving accuracy rates of 80–95% with 

information transfer rates of 20–25 bits/min (Gannouni et al., 2022; 
Kundu and Ari, 2022; Rezeika et al., 2018). However, they require 
multiple stimulus presentations for each selection and can cause visual 
fatigue during extended use (Abiri et al., 2019; Gannouni et al., 2022; 
Rezeika et al., 2018).

In contrast, MRCP-based BCIs offer single-trial detection 
capability with accuracy rates of 75–85%, though their inherent 
low-frequency characteristics (~2 s per decision) may result in lower 
information transfer rates depending on the temporal analysis window 
(Jochumsen et al., 2020; Olsen et al., 2021; Savić et al., 2021). Recent 
advances in MRCP detection, including predictive algorithms for 
low-latency detection and hybrid approaches combining MRCP with 
ERD/ERS features to increase detection accuracy, show promise in 
reducing these speed and accuracy limitations (Savić et al., 2014; Savić 
et al., 2020).

MRCPs offer several advantages for BCI control, including 
reduced dependence on external stimulation, real-time feedback, and 
short latency, which could enhance usability and effectiveness in real-
world applications (Savić et al., 2020, 2021). However, unlike SSVEP- 
and P300-based BCIs, which achieve high classification accuracy with 
minimal user training, MRCP-based systems may require further 
refinement and validation to reach comparable reliability. Although 
this study did not implement an online algorithm or automated 

FIGURE 9

The Laplacian data. The top panel displays the grand averages of the 12 participants (trials mean of 17.38—letter, 17.28—phrase 13.64 -random) for each 
condition, the dashed line over the y axis represents the PN of the grand averages, while the black traces show the times where there was significance 
between conditions. The lower trace presents the SPM analysis results, where the grey shaded area represents the significance.
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classification, previous research has demonstrated the successful 
integration of MRCPs into BCI systems, highlighting their potential 
as a viable control signal (Savić et al., 2021).

4.4 Limitations

While this study offers promising insights into the development 
of an MRCP-based BCI speller, several limitations should 
be considered for future research. Participants performed the spelling 
task without any prior training. Additional training could improve the 
reliability of MRCPs elicitation, as some participants exhibited 
increased success after just one session (Jochumsen et  al., 2017). 
Furthermore, the experimental sessions lasted only 5–10 min, which 
does not reflect the real-world use of a BCI speller. Investigating 
MRCP viability for longer periods, accounting for fatigue, is essential 
for practical applications.

This study demonstrated that MRCPs can be elicited in BCI-naïve 
users during a simulated BCI-speller task. However, a crucial 
limitation is that the analyzed MRCPs were derived from *executed* 
movements, not imagined or attempted ones. This may constrain the 
interpretation of our results, as they primarily reflect the feasibility of 
MRCP-based BCIs in scenarios where voluntary motor execution is 
possible. While MRCPs can be elicited by both executed movements 
and motor imagery (Do Nascimento et  al., 2006; Gu et  al., 2013; 
Shakeel et al., 2015), MRCPs elicited during imagined movements are 
often weaker and exhibit different characteristics (Do Nascimento 
et al., 2006; Gu et al., 2013). However not so much is known with 
regards to attempted movement – thus where patients unable to move 
due to paralysis attempt to perform the task. Previous research has 
demonstrated the feasibility of using MRCPs elicited by motor 
intention (i.e., motor imagery) (Aliakbaryhosseinabadi et al., 2020; 
Jiang et al., 2015; Niazi et al., 2013; Savić et al., 2021), however, the 
inherent differences in MRCP characteristics between executed and 
imagined movements, particularly the potentially weaker signal 
strength during motor imagery, are critical considerations for future 
development of MRCP-based BCIs for communication and control. 
Future research must validate the applicability of this approach in 
individuals with limited motor abilities.

Even though MRCPs have the potential to be used in BCIs without 
external stimulation, the specific implementation in this study used a 
visual speller interface with moving selectors to guide letter selection. 
This visual interface, while different from flashing stimuli, could also 
potentially contribute to visual fatigue during extended use, although 
this was not directly assessed in the present study.

In this study, the presence of the MRCPs was determined through 
manual inspection of the EEG data using exclusion criteria predefined 
by the researchers. Each trial was evaluated based on these criteria, 
and only trials meeting the specified conditions were counted toward 
the success rate. This systematic approach ensured consistency in 
MRCP identification. To advance the practical application of MRCP-
based BCIs, future work will focus on developing and implementing 
machine learning algorithms for automated MRCP detection and 
classification, which could improve accuracy and efficiency in both 
executed and imagined movement scenarios.

Additionally, while high-pass filters have been used to reduce eye 
and head movement artifacts, MRCPs are in the frequency range of 
these artifacts meaning the filters may not be fully effective. Future 

research should integrate eye tracking and head movement 
measurements to improve signal quality. The current study was 
conducted offline, and the next step is to perform online trials to 
assess real-time performance. In an online setting, MRCPs may 
be influenced by factors like fatigue, feedback and user errors, making 
another metrics such as false positives, precision, and accuracy crucial 
for evaluating system effectiveness.

5 Conclusion

Significant progress has been made in non-invasive BCI spellers 
using P300, Steady-State Visual Evoked Potentials (SSVEP), and Motor 
Imagery (MI) paradigms, each offering advantages such as rapid 
response (P300), high information transfer rates (SSVEP), and well-
established control schemes (MI induced ERSPs) (Cecotti, 2011; Rezeika 
et al., 2018). However, these approaches also face challenges including 
reliance on external stimulation (P300, SSVEP), which can lead to 
fatigue, and extensive user training requirements (MI) (Abiri et al., 2019; 
Kundu and Ari, 2022; Nicolas-Alonso and Gomez-Gil, 2012; Rezeika 
et al., 2018). Here we analyzed the potential of MRCPs as an alternative 
approach, focusing on their elicitation during a simulated spelling task.

This study explored the feasibility of MRCPs as an alternative 
control signal for BCI spellers, focusing on their elicitation during a 
simulated spelling task with untrained participants. While potential 
advantages of MRCP-based BCIs have been suggested in prior 
research (Aliakbaryhosseinabadi et al., 2020; Aliakbaryhosseinabadi 
et al., 2017a; Aliakbaryhosseinabadi et al., 2017b; Savić et al., 2021) 
our study did not directly assess them but demonstrated that MRCPs 
can be  reliably elicited with motor execution in an offline 
BCI-spelling simulation.

The Laplacian filter’s impact was mixed—enhancing performance 
in some cases while reducing it in others—yet MRCPs consistently 
proved to be a promising and practical alternative for BCI spellers, 
which may enhance their usability and effectiveness in specific users 
and application scenarios. These findings suggest that MRCPs could 
address some of the limitations of existing paradigms, providing a 
feasible solution for future BCI applications.

While our findings provide an initial assessment of MRCPs for 
BCI spellers, direct generalization to populations with neurological 
conditions like ALS requires further investigation. This will be an area 
of focus in our upcoming research.
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SUPPLEMENTARY FIGURE 1

The Laplacian data - post-hoc tests. The figure shows the grand 
averages of the compared conditions and the corresponding post-hoc 
tests with a Bonferroni correction. The left trace shows the comparison 
between the control and the phrase condition. The middle trace shows 
the comparison between the letter and the random condition. The right 
trace shows the phrase vs. the random condition. The black lines on the 
top plots indicate where in time there was significance between the 
conditions. The grey shaded areas in the bottom plots represent 
the significance.
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