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Motor imagery (MI) in combination with neurofeedback (NF) has emerged as 
a promising approach in motor neurorehabilitation, facilitating brain activity 
modulation and promoting motor learning. Although MI-NF has been demonstrated 
to enhance motor performance and cortical plasticity, its efficacy varies considerably 
across individuals. Various context factors have been identified as influencing 
neurophysiological outcomes in motor execution and MI, however, their specific 
impact on event-related desynchronization (ERD), a key neurophysiological 
marker in NF, remains insufficiently understood. Previous research suggested 
that declarative interference following MI-NF may serve as a context factor 
hindering the progression of ERD. Yet, no significant changes in ERD within 
the mu and beta (8–30 Hz) frequency bands were observed across blocks in 
either a declarative interference or a control condition. This raises the question 
of whether the absence of ERD modulation could be attributed to the break 
task that was common to both declarative interference and control condition: 
watching nature documentaries immediately after MI blocks. To investigate this, 
we conducted a follow-up study replicating the original methodology while 
collecting new data. We compared NF-MI-ERD between groups with and without 
nature documentaries as a post-MI condition. Participants completed three 
sessions of kinesthetic MI-NF training involving a finger-tapping task over two 
consecutive days, with quiet rest as the post-MI condition (group quiet rest). 
64-channel EEG data were analyzed from 17 healthy participants (8 females, 
18–35 years, M and SD: 25.2 ± 4.2 years). Data were compared to a previously 
recorded dataset (group documentaries), in which 17 participants (10 females, 
23–32 years, M and SD: 25.8 ± 2.5 years) watched nature documentaries after 
MI blocks. The results showed no significant main effects for blocks or group, 
though a session-by-group interaction was observed. Post-hoc tests, however, 
did not reveal significant differences in ERD development between the groups 
across individual blocks. These findings do not provide evidence that nature 
documentaries used as a post-MI condition negatively affect across-block 
development of NF-MI-ERD. This study highlights the importance of exploring 
additional context factors in MI-NF training to better understand their influence 
on ERD development.
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1 Introduction

Motor imagery (MI) is the mental simulation of movements 
without actual muscle activity (Ruffino et al., 2017; Wajda et al., 2021) 
allowing for repetitive practice of motor tasks, even in the absence of 
residual movement. According to the theory of neural simulation of 
action (Jeannerod, 2001), MI involves neural substrates that are also 
active during motor execution, thus making them functionally 
comparable (Gentili et al., 2010; Williams et al., 2011; Hetu et al., 
2013). This overlap makes MI particularly valuable in 
neurorehabilitation, where traditional physical exercises may 
be limited. Therefore, it represents a promising treatment method for 
supporting functional motor recovery, particularly in the 
neurorehabilitation of patients with motor impairments such as stroke 
(Zich et al., 2017; Villa-Berges et al., 2023). MI can be supplemented 
by real-time neurofeedback (NF) (Hwang et al., 2009; Gomez-Pilar 
et  al., 2016), a technique that enables individuals to volitionally 
modulate their brain activity while receiving additional sensory input 
(Onagawa et al., 2023), thereby enhancing MI performance (Neuper 
et al., 2009; Ono et al., 2013). MI-NF is most frequently based on the 
event-related desynchronization (ERD), a decrease in sensory-motor 
power in the alpha and beta frequency ranges, reliably detectable 
when present by electroencephalography (EEG) (Pfurtscheller and 
Neuper, 2006; Morash et al., 2008; Jeon et al., 2011). Numerous studies 
have examined the effects of MI (Ladda et al., 2021) and NF (Onagawa 
et al., 2023) on motor performance. Studies show that MI-NF training 
improves motor function (Pichiorri et al., 2015) and lateralizes ERD 
(Zich et  al., 2017) in stroke survivors. In healthy individuals, it 
enhances sensorimotor cortex activity (Wang et al., 2019) and white 
matter connectivity (Marins et al., 2019).

Despite growing interest in MI-NF, standardized protocols for 
optimizing its effectiveness remain lacking. Research has yet to establish 
clear guidelines regarding session structure, training protocols, and 
feedback mechanisms, leading to inconsistencies across studies (Vernon 
et  al., 2009; Stefano Filho et  al., 2024). Sensorimotor oscillations, 
particularly in the beta band, are shaped by multiple factors such as task 
complexity, cognitive demands, and attentional processes (Kilavik et al., 
2013), all of which influence ERD development and contribute to 
variability in MI-NF outcomes. Beyond methodological inconsistencies, 
variability also arises from individual differences in ERD patterns, which 
have been shown to correlate with brain-computer interface performance 
(Rimbert et al., 2022) and fluctuate across different MI tasks within the 
same individual (Wriessnegger et al., 2020). Various context factors, such 
as the environment and individual cognitive states, likely influence 
motor skill learning, MI-NF effectiveness, and its usability outside of 
laboratory environments (Jeunet et al., 2015; Daeglau et al., 2021a). They 
presumably explain the inter-and intraindividual differences observed 
in study outcomes (Ahn and Jun, 2015), highlighting the need for 
further investigation to develop practical, innovative MI approaches 
(Ladda et  al., 2021). These variations make it difficult to compare 
findings and assess the reliability of MI-NF interventions. Understanding 
how different context factors interact with brain processes in MI-NF 
training is essential for improving its reliability and effectiveness.

Daeglau et  al. (2021b) examined how sleep and declarative 
interference as possible context factors affect MI-NF development 
across blocks. These factors were chosen based on prior findings in 
non-MI-NF studies, where declarative interference after MI practice 
negatively impacted subsequent motor performance (Debarnot et al., 
2012), and sleep played a critical role in motor skill consolidation 
following ME (Brown and Robertson, 2007). Declarative interference 
refers to cognitive tasks that engage declarative memory processes, 
which can overlap with motor learning by competing for the same 
cognitive resources (Gagne and Cohen, 2016), such as working memory 
and attention. In the study by Daeglau et al. (2021b), three experimental 
groups underwent MI-NF training under different conditions: no 
interference (passively watching nature documentaries), immediate 
interference, and late interference. The interference consisted of four 
non-motor tasks designed to challenge declarative memory, including 
a word list recall, an n-back task, a face-name matching task, and a 
modified version of the Paced Auditory Serial Addition Test (PASAT) 
(Gronwall, 1977). While NF enhanced ERD within MI blocks, no 
differences were found between the groups, and the typical increase in 
ERD over MI blocks (Ono et al., 2013; McWhinney et al., 2018; Foldes 
et al., 2020) was absent. As a break and control block, a set of nature 
documentaries was chosen due to their specific characteristics: they 
included atmospheric music, featured no visible human interactions, 
and were narrated by a speaker. These elements were intended to 
minimize social and motor engagement while maintaining a mild 
cognitive load. However, in their discussion, Daeglau et al. (2021b) 
raised concerns that watching nature documentaries might not have 
served as an optimal control task, as they could have induced 
drowsiness or distraction, potentially affecting the results. Supporting 
this notion, Jacquet et al. (2021) found that both prolonged MI task and 
watching a documentary as a control condition increased feelings of 
fatigue. In their study, participants engaged in 50 minutes of MI and 
50 minutes of watching a documentary, with both conditions resulting 
in a significant rise in fatigue from pre-to post-measurement. Although 
this was not a systematic investigation of fatigue induced by watching 
a documentary but rather an incidental finding, it is plausible that a 
similar fatigue effect occurred in Daeglau et al. (2021b), which may 
have influenced ERD. Documentaries are commonly used as a control 
condition in experimental designs assessing motor skills (Bassolino 
et al., 2014; Ruffino et al., 2019; Hilt et al., 2023), but their potential 
influence on ERD within the context of MI-NF training remains 
unclear. Given that ERD is sensitive to cognitive and attentional states, 
understanding the impact of watching nature documentaries 
immediately after performing MI-NF training on future ERD 
development provides valuable insights for this field of research.

The current study builds on the work by Daeglau et al. (2021b) 
and aims to explore whether watching nature documentaries might 
impact ERD development during MI-NF training. In this follow-up 
study, nature documentaries were replaced with quiet rest as the 
post-MI condition. The term post-MI condition refers to the activity 
performed immediately after completing an entire MI block. Quiet 
rest was chosen to minimize the confrontation with further sensory 
and auditory stimuli after MI-NF training and to reduce the associated 
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cognitive load. We collected new data from a quiet rest group and 
compared it to the previously recorded data from the no-interference 
group (here called documentaries group) of the original study, to 
investigate any potential differences in ERD development.

2 Methods

2.1 Participants

Data were collected from 20 healthy participants (9 female, 
18–35 years, M ± SD: 24.9 ± 4.2 years), all right-handed with normal 
or corrected vision, and no neurological or psychiatric conditions. 
Participants had not taken part in previous MI-NF studies and 
provided written informed consent. Handedness was assessed using 
the Edinburgh Handedness Inventory (Oldfield, 1971). To evaluate 
participants’ ability to engage in visual and kinesthetic MI, we used 
the short version of the Kinesthetic and Visual Imagery Questionnaire 
(KVIQ-10), which measures the vividness of both imagery modalities 
separately (Malouin et al., 2007). Three participants were excluded for 
not meeting inclusion criteria (two for signs of depression; one for 
ambiguous handedness), leaving data from 17 participants (8 female, 
18–35 years, M ± SD: 25.2 ± 4.2 years) for analysis. These data was 
compared to 17 previously collected datasets (10 female, 23–32 years, 
M ± SD: 25.8 ± 2.5 years) (Daeglau et al., 2021b).

2.2 Study design

Each participant completed three sessions: One in the 
morning, one in the evening on the same day, and one on the 

following morning (Figure  1). In the first session, participants 
practiced a sequential finger-tapping task for MI, moving each 
finger to touch their thumb at a rate of 1 Hz with both hands. Each 
session started with a 2-min resting-state measurement with eyes 
open, followed by an MI block consisting of three runs. During MI, 
participants were asked to kinesthetically imagine the finger-
tapping task from a first-person perspective, focusing on the 
sensations they would feel if they were physically performing 
the task.

In the first run of the MI block, participants mentally rehearsed 
the finger-tapping task without receiving NF. The EEG data collected 
in the first run were used to train the NF parameters for the second 
run and is therefore referred to as training run (T). In the following 
two NF runs (NF1 and NF2), MI was supported by real-time NF, 
which visualized individual ERD strength.

For the quiet rest group, NF2 was followed by a 10-min quiet rest 
period, during which participants relaxed and focused on a fixation 
point on the screen. For the documentaries group, the overall session 
structure was identical to that of the quiet rest group, except for the 
post-MI condition. Here, NF2 was followed by two 30-min blocks, 
during which participants passively watched a nature documentary. 
The quiet rest period was designed to provide a controlled post-MI 
resting phase, aligning with motor learning research suggesting that 
short post-training waking rest supports skill consolidation 
(Hotermans et al., 2006; Brokaw et al., 2016; Humiston and Wamsley, 
2018). Extending this period to 60 min, as in the documentaries group, 
was deemed impractical due to the potential for boredom 
and disengagement.

The second session of the study replicated the structure of the 
first session. In the third session, participants only completed a 
2-min resting-state measurement and one MI block (three runs: T, 

FIGURE 1

Schematic illustration of the study design visualizing the similarities and differences between the study groups quiet rest (turquoise) and documentaries 
(orange). Each participant completed three sessions with session 1 and 2 on the same day, and session 3 on the following day. The design included a 
resting-state measurement (RS), a training run (T), and two neurofeedback runs (NF). The quiet rest group had a 10-min quiet rest period (QR) after 
NF2, while the documentaries group watched a nature documentary (ND) during a 30-min break and a subsequent 30-min control condition.
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NF1, NF2). Participants were instructed to maintain their regular 
daily routines between sessions, avoiding exhausting exercise 
and naps.

2.3 Experimental procedure

The experiment was controlled using OpenViBE 0.17.1 (Renard 
et al., 2010), which was also used in the original study by Daeglau et al. 
(2021b). The procedure was identical for both the quiet rest and 
documentaries groups. Each 10-min run consisted of 40 trials (20 left-
hand trials, 20 right-hand trials) in pseudorandomized order 
(Figure 2). Each trial began with a 5-s baseline period, followed by a 
3-s preparation cue. During the 5-s MI interval, blue graphics 
appeared on either the left or right side, indicating which hand should 
be used for the MI of the finger-tapping task. Trials were separated by 
an inter-trial interval ranging from 0 to 4 s.

When feedback was provided, a white ball moved along the x-axis 
(representing ERD lateralization) and the y-axis (representing 
contralateral ERD strength) based on two linear discriminant analysis 
classification results. Participants used kinesthetic MI of the finger-
tapping task to steer the ball to the upper left corner for left-hand trials 
and the upper right corner for right-hand trials. They were instructed 
to focus on the fixation symbols, remain relaxed, and minimize 
physical movement.

2.4 Group settings and procedures

Settings and procedures for group quiet rest were matched as 
closely as possible to those of group documentaries in all aspects 
except for the post-MI condition. Both groups followed the same 
experimental procedure, including inclusion criteria, identical 
laboratory environment, pre-experiment assessments (Edinburgh 
Handedness Inventory, KVIQ-10), MI task and structure of MI blocks. 
A standardized instruction sheet was used to ensure consistency in 
explaining the experimental procedure and visualizing the task for 
participants. The sessions for both groups were scheduled at the same 
times of day, and the overall session structure was kept as identical as 
possible. The only systematic difference between groups was the 
post-MI condition and, consequently, the session duration. 
Additionally, data collection for the two groups was conducted by 
different female experimenters.

2.5 Data acquisition

EEG and surface electromyography data were recorded using a 
BrainAmp Amplifier System (Brain Products GmbH, Gilching, 
Germany). EEG settings included a 0.1 μV amplitude resolution, 
500 Hz sampling rate, and 0.016–250 Hz online analogue filter. 
Impedance was reduced to below 10 kΩ. EEG data were collected 

FIGURE 2

Structure of motor imagery (MI) blocks and trials. Each block consisted of three runs: Training (T), neurofeedback 1 (NF1), and neurofeedback 2 (NF2). 
Between runs, common spatial patterns (CSP), classifiers (BaseL, BaseR, LR), and borders were calculated based on the EEG data recorded from the 
previous run. These values were then used for the presentation of neurofeedback in the subsequent run. A trial included a 5-s baseline, a 3-s cue, and 
a 5-s motor imagery interval, which could either be without (MI trial) or with (MI + NF trial) neurofeedback, followed by an inter-trial interval (ITI) 
ranging from 0 to 4 s.
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from 64 sintered Ag/AgCl electrodes arranged in an equidistant layout 
on a customized, infracerebral electrode cap (EasyCap, Herrsching, 
Germany; caps that include electrode positions below the cerebrum), 
with a central frontopolar electrode as ground, a nose-tip reference, 
and two electrodes below the eyes to capture eye movements.

Electromyography data, measuring muscle activity of both hands, 
had impedance reduced to below 100 kΩ. Electrodes were placed over 
the muscle belly and the proximal base of the Flexor digitorum 
superficialis and the Abductor pollicis longus, with clavicle electrodes 
serving as reference and ground. Data acquisition during MI was 
managed with OpenViBE Server 0.17.1, while BrainVision Recorder 
(version 1.20.0506) was used for resting-state recordings.

2.6 Data analysis

Online and offline processing of the EEG and electromyography 
data followed the same protocol and utilized the same software as in 
Daeglau et  al. (2021b), ensuring methodological consistency and 
allowing for a direct comparison between the newly recorded dataset 
and the existing one. The primary distinction between the two groups 
was the altered post-MI condition.

2.6.1 Online processing
Within each MI block, raw EEG data were preprocessed online for 

real-time NF based on ERD over sensorimotor areas in the mu 
(8–12 Hz) and beta (13–30 Hz) bands during MI. Between MI runs, 
Common Spatial Patterns (CSP) analysis, classifier training, and 
border computation were conducted, using the results as baseline and 
threshold values for the NF in subsequent runs. Parameters from the 
training run calibrated NF1, while NF1 data calibrated NF2 (Figure 2).

EEG data from 49 central channels were filtered in the mu and 
beta bands using high-pass (8 Hz, order: 826) and low-pass (30 Hz, 
order: 220) FIR filters. Data were segmented into epochs from 0.5 to 
4.5 s after MI onset, categorized by left-and right-hand movements, 
and epochs containing artifacts were rejected. CSP analysis was 
performed using the EEGLAB toolbox (version 14.1.1.) (Delorme and 
Makeig, 2004) in MATLAB (version 9.3; MathWorks, Natick, 
Massachusetts, USA, RID:SCR_001622). This common approach 
minimizes the impact of volume conduction and allows for an 
optimized extraction of movement-related neural patterns. Given the 
importance of precise feature extraction for MI-NF applications, 
MATLAB’s implementation provided greater control over 
preprocessing steps and feature selection than OpenViBE’s native 
implementation. A CSP analysis pipeline (Ramoser et  al., 2000) 
identified spatial brain patterns correlating with left-and right-hand 
MI by applying spatial filtering that weights electrode contributions 
based on their classification relevance, enhancing feature extraction 
and classification. The two most neurophysiologically plausible CSPs 
for each run (one for left-hand and one for right-hand trials) were 
manually selected based on their ability to maximize the variance 
between movement classes while preserving physiologically 
meaningful patterns over sensorimotor areas. The selected filter 
coefficients were then used for classifier training in OpenViBE.

For the classifier training and border calculation in OpenViBE, 
raw EEG data were spatially filtered using the CSP coefficients and 
temporally filtered with a 4th-order Butterworth filter (8–30 Hz, 
0.5 dB pass band ripple). Data were epoched from 0.5 to 4.5 s after MI 

onset for MI activity and from −7 to −3 s before MI onset for baseline 
activity. The data were divided into 1-s bins with a 0.9375-s overlap 
and logarithmic power of these bins served as features for linear 
discriminant analysis with seven-fold cross-validation (Fisher, 1936). 
Three classifiers controlled the NF ball’s movement: Horizontal 
movement (classifier LR) was controlled by the degree of lateralization, 
the difference between left-and right-hand MI. Vertical movement 
(classifier BaseL and BaseR) was controlled by the difference of 
contralateral activity during MI compared to baseline activity for left-
hand (BaseL) and right-hand (BaseR) trials. Border values, defining 
the display range for on-screen NF, were calculated from cross-
validation results, representing the upper quartiles of the 
three classifiers.

2.6.2 Offline processing
Electromyography data were filtered (high pass FIR, cut-off 25 Hz, 

hamming window, order: 264), noise-cleaned using a wavelet signal 
denoiser toolbox (Daubechies 4 wavelet), and epoched from −9 to 7 s 
relative to MI onset. Trials with movement artifacts were excluded if 
the 250-sample centered moving standard deviation (MSD) exceeded 
the standard deviation by 2.5 times.

Independent component analysis was performed for EEG artifact 
rejection (Delorme and Makeig, 2004). Bad channels were identified 
using the EEGLAB extension trimOutlier 1with an upper and lower 
boundary of two standard deviations from the mean standard 
deviation across all channels and were excluded from further analysis 
(M ± SD of identified channels: 1.37 ± 0.63, range: 0–3 channels). A 
copy of the dataset was low-pass filtered (FIR, 40 Hz, hamming 
window, filter order: 166), down-sampled to 250 Hz and high-pass 
filtered (FIR, 1 Hz, hamming window, order: 414). Data were epoched 
in 1-s segments, and epochs containing artifacts rejected. The 
unmixing matrix derived from this process was applied to the original, 
unfiltered EEG dataset to identify and remove components associated 
with artifacts. ICLabel (Pion-Tonachini et al., 2019) and the Eye-Catch 
approach (Bigdely-Shamlo et  al., 2013) were used to detect 
components associated with eye, muscle, and heart activity. 
Components were then visually inspected, and those identified as 
artifacts were excluded from further analysis.

The corrected data were filtered (low-pass FIR filter, cut-off 
frequency 30 Hz, hamming window, order: 220, Fs = 500 Hz; high-
pass FIR filter, cut-off frequency 8 Hz, hamming window, order: 826, 
Fs = 500 Hz), re-referenced to common average, and interpolated for 
bad channels. Data were then segmented separately for left-and right-
hand trials from −7 to 9 s relative to MI onset, and baseline correction 
was performed from −6 to −4 s. As in online processing, data were 
then reduced to the central 49 channels and CSP analysis was 
performed. In contrast to online processing, CSP were not calculated 
for each run individually but for the three MI runs per MI block 
together. The two most neurophysiologically plausible filters, one for 
left-hand and one for right-hand MI, were selected. For contralateral 
activity, we applied each hand’s CSP filter to its respective EEG data: 
right-hand filter to right-hand EEG and left-hand filter to left-hand 
EEG. For ipsilateral activity, we applied the right-hand filter to left-
hand EEG and the left-hand filter to right-hand EEG.

1 https://sccn.ucsd.edu/wiki/EEGLAB_Extensions
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Following this step, ERD extraction was conducted according 
to the method described by Pfurtscheller and Lopes da Silva (1999). 
Brain activity was averaged across all trials in a run within the MI 
interval for each block and participant. Relative contralateral ERD 
from left-and right-hand trials was averaged. ERD was also 
averaged over both NF runs (NF1 and NF2) within the MI interval 
for further statistical analysis. To ensure that pre-existing variations 
in baseline power did not account for potential differences in 
MI-NF-ERD between groups, we  conducted a baseline power 
comparison. Baseline power was defined as the average EEG 
activity within the -6 s to -4 s interval before MI onset. For each 
participant, baseline power values were averaged within an MI 
block across all trials for both NF runs (NF1 and NF2) to obtain a 
single baseline measure per MI block. The baseline power values 
were then compared between the quiet rest and 
documentaries groups.

2.7 Statistical analyses

Paired t-tests were used to compare training run ERDs (T-MI-
ERD) with averaged NF run ERDs (NF-MI-ERD) to assess the impact 
of NF on MI-ERD, under the assumption that T-MI-ERD would 
be  less negative than NF-MI-ERD (measure 1 > measure 2). A 
repeated measures ANOVA with block as the repeated measures 
factor and NF-MI-ERD as level was used to evaluate across-block 
gains in NF-MI-ERD. To compare NF-MI-ERD between the quiet rest 
and documentaries groups, another repeated measures ANOVA was 
conducted with blocks as repeated measures factor, NF-MI-ERD as 
level, and group as a between-subjects factor. Mauchly’s test (Mauchly, 
1940) was used to assess sphericity, and Greenhouse–Geisser 
corrections were applied when necessary. Interaction effects were 
investigated with independent t-tests comparing NF-MI-ERDs 
between groups within each block. Effect sizes were reported as 
eta-squared (η2) for ANOVAs (90% CI) and Cohen’s d (d) for t-tests 
(95% CI) (Steiger, 2004). The Bonferroni-Holm method was applied 
to correct for multiple comparisons (Holm, 1979). Additionally, a 
baseline power analysis was conducted. The Shapiro–Wilk test was 
used to assess normality, and Levene’s test examined the equality of 
variances. Independent samples t-tests were performed to compare 
baseline power between the quiet rest and documentaries groups 
within the same MI block.

3 Results

3.1 Neurofeedback effect group quiet rest

The effects of NF on MI-ERD within each block were assessed 
using paired t-tests, comparing the means of NF-MI-ERD with those 

of T-MI-ERD (Table 1). The results revealed a significantly stronger 
expression of ERD in all three blocks when MI was supported by NF 
(df = 16, p < 0.001, d > 0.9 for each block), indicating that NF reliably 
enhanced ERD.

The NF-MI-ERD time courses for all participants across each 
block are illustrated in Figure 3. The characteristic desynchronization 
of brain activity during MI was observed consistently across all 
participants and blocks (Figure 3A).

To further assess the development of NF-related ERD gains across 
blocks, a repeated measures ANOVA was conducted. The analysis 
showed no statistically significant changes in NF-MI-ERD over the 
three blocks (F(2,32) = 1.735, p = 0.193, η2 = 0.098). Notably, NF-MI-
ERDs were highly variable, with only two participants showing a 
linear increase in ERD over time, as highlighted by the solid grey lines 
in Figure 3B.

3.2 Comparison of groups quiet rest and 
documentaries

The time courses of NF-MI-ERD for both the quiet rest and 
documentaries groups, along with the distribution of single-subject 
mean NF-MI-ERD values are illustrated in Figure 4. ERD was evident 
in both groups throughout the experiment, with the most pronounced 
differences occurring in block 2 (Figure  4A). However, these 
differences were subtle and did not display a clear trend across the 
blocks. The raincloud plots reveal that the distribution of mean 
NF-MI-ERD values is broader in the documentaries group compared 
to the quiet rest group, indicating greater variability in the ERD 
response across all blocks (Figure 4B).

A baseline power comparison was conducted to test for potential 
differences between groups. Prior to this, the Shapiro–Wilk test 
indicated that baseline power values were normally distributed in both 
groups across all blocks (all p > 0.05) and Levene’s test confirmed that 
variance was homogenous between groups (all p > 0.05). No 
significant differences in baseline power were found within the same 
MI blocks (Block 1: df = 32, p = 0.28 d = −0.377; Block 2: df = 32, 
p = 0.106, d = −0.571; Block 3: df = 32, p = 0.321, d = 0.346). These 
results confirm that baseline EEG activity was comparable 
between groups.

To assess the effect of NF across blocks and compare the two 
groups, a repeated measures ANOVA was conducted. The analysis 
showed no statistically significant main effect of NF across blocks 
(F(2,64) = 1.831, p = 0.169, η2 = 0.010), nor was there a significant 
difference between groups (F(1,32) = 0.055, p = 0.815, η2 = 0.001). 
However, a significant interaction effect between block and group was 
observed, albeit with a small effect size (F(2,64) = 3.526, p = 0.035, 
η2 = 0.019). This interaction was further investigated by post-hoc 
independent t-tests to determine if the NF-MI-ERDs differed between 
groups within each block (Table 2). Bonferroni-Holm corrections for 

TABLE 1 Paired t-tests for comparison of training run ERD (T) and NF runs ERD (NF).

block t df p pholm d 95% CI N MT SDT MNF SDNF

1 5.185 16 <0.001 <0.001 1.258 (0.704, ∞) 17 −8.176 18.510 −29.285 9.589

2 4.041 16 <0.001 <0.001 0.980 (0.479, ∞) 17 −14.168 8.428 −25.939 11.003

3 3.932 16 <0.001 <0.001 0.954 (0.457, ∞) 17 −8.087 16.656 −24.731 10.582
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FIGURE 3

NF-MI-ERD time courses for the quiet rest group. The y-axis represents relative power [%], while the x-axis indicates time [s] (A) and block (B). Panel 
(A) displays individual contralateral NF-MI-ERD time courses for each participant across all blocks, along with the calculated average time course for all 
participants within each block. Panel (B) illustrates the mean contralateral NF-MI-ERD values for each participant (a single value per block) and the 
overall averaged NF-MI-ERD across all participants in each block. The connecting lines highlight changes in NF-MI-ERD means for both individual 
participants and the group across the three blocks.

FIGURE 4

Comparison of NF-MI-ERD results between the quiet rest (turquoise) and documentaries (orange) groups. Panel (A) displays the averaged contralateral 
NF-MI-ERD time courses for both groups across all three blocks. The y-axis represents relative power [%], while the x-axis indicates time [s]. Panel 
(B) illustrates the distribution of single-subject mean contralateral NF-MI-ERD values for both groups across each block, with the x-axis representing 
relative power [%].
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multiple comparisons were applied. No significant differences were 
found between the quiet rest and documentaries groups in any of the 
individual blocks (Block 1: df = 32, p = 0.7, d = 0.325; Block 2: df = 32, 
p = 0.885, d = −0.365; Block 3: df = 32, p = 0.822, d = −0.078).

4 Discussion

This study investigated the development of ERD induced by 
MI-NF training across three blocks. Specifically, it aimed to 
assess how ERD evolves with repeated MI-NF training and 
whether the post-MI condition influences this process. To 
explore these potential contextual effects, we collected new data 
from participants who engaged in MI-NF training followed by 
quiet rest (group quiet rest). This dataset was compared with 
previously recorded data from Daeglau et al. (2021b), in which 
participants watched nature documentaries after MI blocks 
(group documentaries) as both a control and break condition. The 
comparison sought to determine whether the post-MI condition - 
nature documentaries versus quiet rest - impacts the development 
of NF-related ERD across blocks.

We found that NF significantly increased ERD in all three 
blocks for the quiet rest group compared to training runs without 
NF. We investigated whether this enhancement strengthened over 
blocks to indicate an across-block NF gain, but found no 
significant difference, which is consistent with Daeglau et  al. 
(2021b). A direct comparison between the quiet rest and 
documentaries groups revealed no significant differences in 
baseline power and NF-MI-ERD (Figure  4A). Both groups 
demonstrated similar overall trends in ERD, with slight variation 
in the progression of ERD across blocks between groups. While 
a block-by-group interaction effect suggests some variability in 
ERD patterns, post-hoc analyses could not confirm these 
differences. The small effect size (η2 = 0.02) implies that the 
variation between blocks may not represent a practically 
meaningful difference in ERD progression between the two 
groups. This suggests that ERD expression remained stable over 
time, regardless of whether participants engaged in quiet rest or 
watched nature documentaries as a post-MI condition. This 
indicates that altering the post-MI condition did not affect the 
evolution of NF-MI-ERD, suggesting that watching nature 
documentaries was not responsible for the absence of an across-
block NF gain in the original study.

Similar studies with different methodologies have demonstrated 
stronger contralateral ERD (Ono et al., 2013; McWhinney et al., 
2018; Foldes et  al., 2020) and improved brain activity control 
(Wolpaw and McFarland, 2004; McFarland et  al., 2010) in the 
course of MI-NF training. The question remains why no gain in 
ERD was observed in both the original study and our newly 
collected dataset.

4.1 Simplicity of the finger-tapping task

One possible explanation for the observed results is the simplicity 
of the finger-tapping task, which was chosen as the movement 
sequence for MI. Participants were instructed to imagine their thumb 
sequentially touching the index, middle, ring, and little finger at a rate 
of one touch per second. Importantly, the task did not require 
participants to memorize a complex sequence of finger movements. 
Before the first MI block, the task was demonstrated and physically 
practiced until participants felt comfortable with the sequence and the 
required pace of 1 Hz. Due to the simplicity of the task, participants 
learned it quickly. Additionally, during the KVIQ assessment, all 
participants reported an understanding of the difference between 
visual and kinesthetic MI and indicated being capable of applying 
kinesthetic MI. Given this, along with the presence of a typical ERD 
across all participants in all MI blocks, particularly in the first MI 
block (see Figure 3A), we are confident that participants were able to 
perform the kinesthetic MI of the finger tapping task effectively.

Research shows that complex or varied movements can enhance 
motor performance and learning after MI training (Allami et al., 2008; 
Rozand et al., 2016; Ruffino et al., 2017). The finger-tapping task, used 
in various MI-NF studies (Korman et al., 2007; Debarnot et al., 2009; 
Zich et al., 2015), may have allowed participants to quickly transition 
into the automatic phase of motor learning. This would reduce 
cognitive load, potentially diminishing the increase in ERD. As 
Pfurtscheller and Lopes da Silva (1999) reported, ERD is strongest 
when a movement sequence is newly learned but decreases once the 
movement becomes automatic. Similarly, Wolpaw and McFarland 
(2004) showed that brain-computer interface users initially rely on MI 
to generate control-relevant EEG activity, but as their performance 
improves, control becomes more automatic. Although their study 
involved a larger training paradigm with more sessions and trials, the 
underlying principle, that learned motor tasks require less cognitive 
effort and exhibit reduced ERD, might also apply for the present study. 
This could explain the slight trend towards a less strong ERD observed 
when averaging NF-MI-ERD across participants in the quiet rest 
group (Figure 3B).

4.2 Neurofeedback visualization

Additionally, the type of NF used could also have impacted 
ERD development. Studies have shown that more realistic and 
multidimensional NF approaches can promote stronger ERD (Ono 
et al., 2013; Liang et al., 2016; Braun et al., 2016; McWhinney et al., 
2018) compared to two-dimensional, object-based NF. For 
instance, Ono et al. (2013) demonstrated that a three-dimensional 
anatomically congruent NF elicited greater ERD than conventional 
bar-based NF. Similarly, Liang et  al. (2016) found that adding 
multimodal sensory feedback, such as vibrotactile stimulation, 

TABLE 2 Independent t-tests for comparison of blocks between the quiet rest (QR) and the documentaries (D) group.

block t df p pholm d 95% CI N MQR SDQR MD SDD

1 0.948 32 0.350 0.700 0.325 (−4.588, 12.580) 17 −29.285 9.589 −25.289 14.490

2 −1.064 32 0.295 0.885 −0.365 (−17.679, 5.548) 17 −25.939 11.003 −32.005 20.773

3 −0.226 32 0.822 0.822 −0.078 (−12.349, 9.878) 17 −24.731 10.582 −25.966 19.851
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enhanced MI-based NF performance. Braun et al. (2016) showed 
that virtual reality NF improved motor-related brain activity more 
effectively than traditional two-dimensional feedback, while 
McWhinney et  al. (2018) reported that task engagement was 
higher when NF provided richer and more interactive cues. 
Therefore, NF methods that incorporate more complex, dynamic 
feedback or that engage multiple sensory modalities may provide 
richer information and thereby enhance the brain’s ability to 
modulate ERD more effectively. The relatively simplistic NF design 
used in this study, with limited feedback dimensionality, might 
have constrained the participants’ ability to fully engage with the 
task and optimize ERD. Incorporating more challenging MI tasks 
alongside a more sophisticated, multidimensional NF approach 
could potentially improve the development of contralateral ERD 
across blocks, leading to more pronounced changes in brain 
activity over time.

4.3 ERD variability

Another important consideration is the pronounced inter-and 
intra-individual variability in ERD, a well-known phenomenon in MI 
research (Ahn and Jun, 2015; Wriessnegger et al., 2020; Leeuwis et al., 
2021), that could affect MI/MI-NF outcomes. Such differences may 
arise from context factors within and beyond the experimental task, 
including character traits, imagery strategies and capability, task 
engagement, time-variant cognitive factors, brain structure, and 
session structure (Rulleau et al., 2015; Jeunet et al., 2015; Ahn and Jun, 
2015; Rulleau et al., 2018; McWhinney et al., 2018; Lee et al., 2019; 
Saha and Baumert, 2019; Daeglau et al., 2021a; Leeuwis et al., 2021).

Given this variability in ERD responses, we applied CSP filtering 
as a preprocessing step to enhance the spatial specificity of MI-related 
neural activity by maximizing the discriminability of oscillatory 
patterns associated with MI. This is a common approach in MI-NF 
studies (Ramoser et al., 2000) because it optimally extracts the most 
relevant task-related EEG components, reducing volume conduction 
effects and improving the signal-to-noise ratio compared to single-
channel analyses.

In this study, all participants in the quiet rest group exhibited 
detectable NF-MI-ERD in each block, yet substantial variability was 
evident across individuals, although CSP filtering was employed. 
When analyzing averaged values across blocks, the progression of 
ERD was notably inconsistent. Some participants showed a 
reduction in ERD from Block 1 to Block 2, while others displayed 
the opposite trend, with an increase in ERD. Similarly, transitions 
from Block 2 to Block 3 reflected comparable variability. Only two 
participants demonstrated the expected pattern, where NF-MI-ERD 
became progressively more negative from Block 1 to Block 3, 
aligning with the anticipated NF-gain. A similar pattern was 
observed in the documentaries group, where variability in ERD 
expression was even more pronounced (see Figure  4B). In 
particular, Block 2 and Block 3 revealed substantial differences 
between participants, with some exhibiting strong ERD while 
others showed markedly weaker responses.

This pronounced inter-and intra-individual variability 
underscores the complexity of achieving consistent ERD progression 
during MI-NF training and highlights the necessity of individualized 
approaches to optimize training outcomes.

4.4 Limitations

While this study provides valuable insights into ERD development 
during MI-NF training, there are several factors to consider for future 
research. The sample size, though adequate for initial analysis, could 
be expanded to capture more subtle effects. One notable difference 
between the two groups was the length of the post-MI condition. The 
MI blocks were identical in both groups, but the documentaries group 
had a longer post-MI session, with 30 min of passively watching 
nature documentaries used as both a break and control condition, 
whereas the quiet rest group had a 10-min resting-state measurement. 
Despite the shorter session length after the MI blocks in the quiet rest 
group, our results showed no significant differences in ERD 
development between the two groups. This suggests that the length of 
the session following MI-NF may not have a strong impact on ERD 
outcomes in this context.

Furthermore, some limitations should be  considered when 
comparing the two groups. From the study’s inception, we ensured 
that all procedures in the quiet rest group paralleled those of the 
documentaries group as closely as possible. Both groups were 
matched in terms of sample size, age, and gender distribution to 
minimize demographic biases. Additionally, the same NF protocol 
and analysis pipeline were applied to both groups to maintain 
consistency. However, some differences remain. Data collection was 
conducted by two different experimenters, but both were of the 
same gender, allowing us to rule out potential differences in gender-
related experimenter effects (Roc et al., 2019). Additionally, there 
was a time gap between the data collection periods of the two 
groups, which could have introduced slight variations in the 
population from which participants were recruited or laboratory 
conditions. While every effort was made to standardize the 
experimental setup, these factors may have contributed to variability 
in the results and should be  considered when interpreting 
the findings.

5 Conclusion

This study found no evidence that watching nature 
documentaries interfere with ERD development in MI-NF training, 
contrary to previous speculation. Replacing nature documentaries 
with quiet rest as the post-MI condition did not lead to the expected 
MI-NF training gain, which aligns with the findings of Daeglau et al. 
(2021b). However, several other unexplored contextual factors could 
influence NF-MI-ERD outcomes either positively or negatively 
(Daeglau et al., 2021a; Ladda et al., 2021). Future research should not 
only investigate these contextual factors but also consider employing 
more complex movement sequences to better capture the dynamics 
of NF-MI-ERD gains over time. Understanding the functional 
significance of these gains and their relationship to individual 
performance may provide valuable insights into optimizing MI-NF 
training protocols.
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