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Introduction: Transcutaneous auricular vagus nerve stimulation (taVNS) is a

promising technique for modulating vagal a�erent fibers non-invasively and has

shown therapeutic potential in neurological, cognitive, and a�ective disorders.

While previous research highlights its e�cacy, the safety profile of taVNS has

been less extensively examined.

Methods: This study therefore aimed to systematically investigate side e�ects

of taVNS in a large pooled dataset consisting of n = 488 participants, utilizing a

standardized questionnaire to assess ten reported side e�ects. Analyses included

e�ects of stimulation type (interval vs. continuous), stimulation duration,

stimulation intensity and participant characteristics (age and gender) as potential

modulators.

Results: The findings support the safety of taVNS, with minimal and mild side

e�ects reported across participants (M = 1.86, SD = 1.36). Although participants

receiving sham stimulation were 32.4% less likely to report unpleasant feelings

compared to participants receiving taVNS, this e�ect was driven primarily by low-

end ratings (specifically, a rating of 1, indicating not at all when experiencing

the corresponding side e�ect), thus suggesting limited clinical relevance. Interval

stimulation notably reduced the likelihood of some side e�ects, particularly for

neck pain, dizziness and unpleasant feelings, suggesting potential for optimizing

taVNS protocols. Stimulation intensity and duration showed few statistically

significant, but clinically minimal (i.e., very small) e�ects.

Conclusion: Overall, these findings demonstrate a favorable safety profile of

taVNS, with mostly mild and transient e�ects, supporting its use as a suitable

non-invasive tool in both research and clinical applications.
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1 Introduction

The vagal afferent system constitutes a broad network of sensory neural fibers that

serve as primary routes by which the brain receives information about bodily processes.

These vagal fibers connect to central brain regions including noradrenergic, GABAergic

and cholinergic transmission (Yuan and Silberstein, 2016). This anatomical peculiarity has

inspired numerous studies to test whether a stimulation of the vagus nerve may thus be

a useful adjunct to the treatment of disorders, that are associated with a dysregulation in

these transmitter systems, including neurological (e.g., epilepsy), neurocognitive (e.g., mild

cognitive impairment) as well as affective and anxiety disorders (for review see Groves and

Brown, 2005). Historically, invasive techniques such as implanted vagus nerve stimulation
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(VNS) were commonly used, despite their risks and potential

side effects (Révész et al., 2016). However, with advancements

in technology and patient care, there is increasing interest in

non-invasive methods that offer greater safety, reduced risks, and

improved tolerability. By stimulating the vagus nerve through the

ear on the cymba conchae—an area exclusively innervated by the

auricular branch of the vagus nerve (Ellrich, 2011), transcutaneous

auricular vagus nerve stimulation (taVNS) presents a promising

non-invasive alternative to invasive VNS. This offers the potential

to provide similar therapeutic benefits without the need for invasive

surgery or its associated complications (Ben-Menachem et al.,

2015). Indeed, taVNS has been shown to provide benefits, similar

to VNS, for the treatment of a wide range of clinical disorders,

such as chronic pain (Napadow et al., 2012), depression (Fang

et al., 2016) and pharmacoresistant epilepsy (Rong et al., 2014;

Aihua et al., 2014; Bauer et al., 2016). Furthermore, taVNS has

also shown promising results on various psychological processes

in healthy individuals, including cognitive control (e.g., Rufener

et al., 2018; Fischer et al., 2018; Maraver et al., 2020), learning

and memory (e.g., Jacobs et al., 2015; Szeska et al., 2020; Giraudier

et al., 2020; Ventura-Bort et al., 2021; Ventura-Bort and Weymar,

2024), interoception (e.g., Villani et al., 2019; Richter et al., 2021;

Ventura-Bort and Weymar, 2024) and motivation (e.g., Neuser

et al., 2020).

In light of the promising effects of taVNS, recent studies

have focused on identifying the optimal stimulation parameters

to enhance its efficacy. As researchers continue to fine-tune these

stimulation parameters to enhance the therapeutic and cognitive

benefits of taVNS, it is crucial to ensure that these optimizations do

not compromise safety. Thus, understanding the safety profile of

taVNS is essential to better inform its application in both clinical

and research settings. Previous studies have identified some side

effects of taVNS, such as skin irritation (Lampros et al., 2021;

Evensen et al., 2022; Ventura-Bort and Weymar, 2024), headaches

(Lampros et al., 2021), pain (Mertens et al., 2020) and dizziness

(Aihua et al., 2014; Jacobs et al., 2015), which, although generally

mild and transient, may be linked to the anatomical features

of the vagal afferent network. For example, skin irritation, neck

contractions and neck pain may result from the stimulation of

somatic afferent fibers within the auricular branch of the vagus

nerve (ABVN) (Ruffoli et al., 2011), which innervates the external

ear canal as well as parts of the larynx, pharynx and proximal

esophagus (Jackson, 1949; Panebianco et al., 2016; Oliveira et al.,

2017; Möbius and Welkoborsky, 2022) (for review see Yuan and

Silberstein, 2016). Electrical stimulation in these areas might trigger

localized responses, such as increased blood flow and sensitivity,

as well as muscle contractions in the neck, potentially causing

symptoms and discomfort. On the other hand, headaches and

dizziness could be linked to the activation of the nucleus tractus

solitarius (NTS) and its projections the locus coeruleus (LC)

(Yakunina et al., 2017) (for review see Henssen et al., 2019). These

regions are known to regulate autonomic functions such as blood

pressure and heart rate, which could be disrupted during vagal

nerve stimulation (Guiraud et al., 2016; Yuan and Silberstein,

2016). However, many studies do not report significant side effects

(Kim et al., 2022) and so far only two studies have systematically

examined the safety and tolerability of taVNS by comparing

multiple studies. Redgrave et al. (2018) concluded that taVNS is

generally well-tolerated with mild side effects like skin irritation,

headaches, and nasopharyngitis. However, their review included

a broader range of transcutaneous VNS techniques, making it

difficult to isolate taVNS-specific side effects. More recently, Kim

et al. (2022) conducted a systematic review and meta-analysis

focused exclusively on taVNS and found that the most commonly

reported side effects were ear and headache pain, tingling, and skin

redness. Notably, these effects were generally mild and transient.

Their analysis also explored the relationship between stimulation

parameters and the likelihood of side effects. While they found no

significant association between age or gender and the development

of side effects, they did identify a positive significant relationship

between stimulation duration and the likelihood of side effects.

However, variability across the included studies was high (e.g.,

different stimulation devices and side effect reporting methods).

Although these systematic reviews and meta-analyses highlight

the generally mild and transient nature of taVNS side effects,

it remains important to further clarify how specific stimulation

parameters might influence the occurrence and severity of these

effects. The present study therefore aimed to investigate potential

side effects of taVNS by pooling together raw data from multiple

studies of our own lab. Through a cumulative link mixed model

approach, we explored how stimulation parameters, such as

stimulation type (continuous stimulation vs. interval stimulation),

stimulation intensity and the duration of stimulation, as well as

age and gender may influence the occurrence and severity of

potential side effects. To address previous limitations (e.g., high

variability in study characteristics), only studies were included

that employed the same taVNS device with the stimulator

consistently placed in the same position of the ear for both

active taVNS (i.e., cymba cochae) and control stimulation (i.e.,

earlobe), as well as the same questionnaire and scale to report

potential side effects. This questionnaire (adapted from Jacobs

et al., 2015) assessed physical symptoms such as headaches,

nausea, dizziness, neck pain, muscle contractions in the neck/face,

stinging sensations under the electrode, and skin irritation at

the ear, as well as psychological symptoms like concentration

fluctuations, mood changes, and unpleasant feelings. It was

hypothesized that taVNS would be well tolerated and would

not lead to increased reports of these symptoms compared

to sham stimulation, with no significant differences expected

between the two conditions. Ultimately, the goal of this study

is to contribute to the development of safer and more effective

taVNS protocols.

2 Methods

2.1 Sample

Side effect ratings were available for a total of 488 healthy

participants across ten included studies that applied taVNS

and sham control stimulation (Mage = 23.51, SDage =

4.73, 71.1% female). All studies were conducted either at the

University of Greifswald or at the University of Potsdam, with

informed written consent given by all participants. All participants
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were German speakers (at least C1 level) and had normal or

corrected-to-normal vision. Exclusion criteria were neurological

or psychiatric disorders, brain surgery, undergoing medication

or drug use, pregnancy, a history of migraine and/or epilepsy,

cardiac diseases, metal pieces in the body (i.e., a pacemaker), and

active implants or physical alterations in the ear (e.g., a cochlear

implant). Ethical approval for the study protocols was obtained

in accordance with the principles outlined in the Declaration

of Helsinki.

Detailed characteristics of each study and participants

demographics are provided in Table 1. Additional information

regarding data collection for published studies can be found in

their respective publications. All raw data from this study have

been made publicly available on the Open Science Framework

(OSF) platform (https://osf.io/cdvkr/).

2.2 Transcutaneous auricular vagus nerve
stimulation

The device that was used for stimulation in all the studies

consisted of two titanium electrodes mounted on a holder

resembling in-ear headphones, connected to a battery-operated

stimulation unit (CMO2, Cerbomed, Erlangen, Germany). In the

taVNS condition, electrodes were positioned below the tragus

in the cymba concha area, which has been shown to have the

densest projections of the auricular branch of the vagus nerve

(ABVN) (Badran et al., 2018; Peuker and Filler, 2002). In the sham

condition, electrodes were attached to the center of the earlobe, an

area assumed to lack vagal innervation (Peuker and Filler, 2002).

Participants were randomly assigned to receive either taVNS or

sham stimulation using predetermined randomization lists across

all studies, ensuring objective allocation. Electrical stimulation

was delivered either continuously or in intervals alternating in

30-s cycles of on and off phases. The preset parameters of the

device included a pulse width of 250 µs and a frequency of

25 Hz. The included studies employed a single-blind design,

where participants were blinded to the stimulation condition,

but experimenters were necessarily aware due to device setup

requirements. The stimulation intensity was individually calibrated

in all the included studies using the same standardized procedure.

Participants underwent a series of stimulation trials and rated

their subjective sensation of the stimulation on a 11-point scale,

ranging from 1 (nothing), 3 (light tingling), 6 (strong tingling) to

10 (painful). Stimulation began at an intensity of 0.1 mA, which

was incrementally increased by 0.1 mA until participants reported

a sensation of 9. This intensity was repeated to confirm the rating

before gradually decreasing in 0.1 mA steps until participants

reported a sensation of 6 or below. This process was conducted

twice, and the final stimulation intensity was calculated as the

average of the four intensities rated as 8 (two from the increasing

and two from the decreasing trials). This calibration ensured the

intensity was above the sensory threshold but below the pain

threshold, accounting for individual differences in sensitivity while

maintaining participant comfort. The mean stimulation intensity

for the taVNS condition was 1.35 mA (range: 0.1–4.6 mA) and for

the sham condition, it was 1.52 mA (range: 0.1–4.5 mA).

2.3 Side e�ects

At the end of each experiment, all participants completed a

questionnaire (adapted from Jacobs et al., 2015) to assess potential

side effects of the stimulation on a 7-point scale (1 being not at all

and 7 being very much). The assessed potential side effects included

physical symptoms such as headaches, nausea, dizziness, neck pain,

muscle contractions in the neck/face, stinging sensations under the

electrode, and skin irritation at the ear, as well as psychological

symptoms like concentration fluctuations, mood changes, and

unpleasant feelings.

2.4 Statistics

All statistical analyses were carried out in the R environment

(R Core Team, 2023). To test whether the reported severity of

the side effects differed between taVNS and sham stimulation

conditions and to explore whether additional predictors modulate

the relationship between taVNS and the reported side effects, we

conducted a series of cumulative link mixed models (CLMMs) for

each side effect using the ordinal package (Christensen, 2019). As

fixed effects, we included the effect of stimulation (taVNS vs. sham),

the effect of stimulation type (interval vs. continuous stimulation),

the effect of gender (female vs. male vs. diverse), and the effects of

stimulation intensity, stimulation duration and age (group mean-

centered; see Richter and Naumann, 2002). As random factors,

we included participant (N = 429) and study (N = 9) with

a total amount of 665 observations (i.e., due to missing data in

Ventura-Bort et al., 2018).We included a random intercept for each

participant, with participants nested within their respective studies.

The selected random-effect structure was identical for all models

and included theoretically relevant variance components (c.f., Bates

et al., 2015).

To determine the best-fitting model for each side effect,

pairwise model comparisons were performed using likelihood ratio

tests and the Akaike Information Criterion (AIC) (Meteyard and

Davies, 2020). Each comparison evaluated whether the inclusion

of interaction effects between key predictors improved model fit

compared to the full model with only main effects. For example,

to test whether the interaction between stimulation intensity and

stimulation duration improved the model fit for headaches, we

compared the full model with the model containing the interaction

term: If the model with the interaction term showed a significantly

better fit (e.g., a smaller AIC, or a significant p-value from the

likelihood ratio test), it was retained as the best model. This

systematic approach was conducted separately for each side effect

and ensured that the final models for each side effect were

optimally specified, allowing us to identify significant predictors

and interactions while controlling for participant- and study-level

variability. The models were fit using Maximum Likelihood (ML)

estimation, as this method is preferred over restricted ML (REML)

when comparing models with different fixed effects (Bates et al.,

2015; Meteyard and Davies, 2020).

To interpret the effect sizes in eachmodel, we reported the odds

ratio (OR) for the predictors (McGough and Faraone, 2009). The

OR represents the odds of an outcome occuring given a particular

exposure compared to its absense (Szumilas, 2010) and provides an
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TABLE 1 Overview of the study characteristics and the stimulation parameters.

Study Reference N Task Design Stimulation
duration

Stimulation
type

1 Ventura-Bort et al. (2018) N = 21, Mage = 20.3 Oddball paradigm Within-subject 35 min Continuous

2 Giraudier et al. (2020) N = 61,Mage = 23.4 Lexical decision Between-subject 23 min Interval

3 Ventura-Bort et al. (2021) N = 36, Mage = 23.1 Passive viewing Within-subject 7 min Continuous

4 Incoronato et al. (2021)1 N = 67, Mage = 23.5 Passive viewing Between-subject 46 min Interval

5 Ventura-Bort and Weymar, (2024)2 N = 27, Mage = 23.8 N-back paradigm Within-subject 40 min Interval

6 Ventura-Bort et al. (2024) N = 31, Mage = 21.3 Passive viewing Within-subject 15 min Interval

7 Ventura-Bort et al. (2024) N = 65, Mage = 24.3 Passive viewing Between-subject 15 min Interval

8 Giraudier and Weymar (2024)3 N = 57, Mage = 24.0 Passive viewing Within-subject 35 min Interval

9 Ventura-Bort and Weymar (2024) N = 53, Mage = 23.8 Heart beating

counting

Within-subject 45 min Interval

10 Giraudier et al. (2024) N = 70, Mage = 23.9 Serial reaction time,

oddball paradigm

Within-subject 80 min Continuous,

interval

Oddball task: participants completed a rotated-heads task with standards, targets, and novel stimuli to assess task performance. Lexical decision task: participants determined whether letter

strings were real German words, focusing on speed and accuracy. Passive viewing task: participants passively viewed emotional or neutral images. N-back task: a working memory task requiring

participants to match current stimuli to those presented previously. Heart-beating counting: participants focused on counting their own heartbeats, providing a measure of interoceptive

awareness. Serial reaction time task: participants responded to sequences of visual stimuli by pressing corresponding keys, examining response selection and sequence learning. The studies

employed both within- and between-subject designs, with stimulation durations ranging from 7 to 80 min and stimulation types being either continuous, interval (alternating in 30-s cycles of

on and off phases), or both.

intuitive measure of effect strength. An OR of 1 implies that the

exposure (i.e., taVNS) does not affect the likelihood of the outcome

(i.e., the side effect) compared to the reference group (i.e., sham

stimulation).

3 Results

3.1 Descriptive data

The descriptive data indicate that the ratings of all assessed

side effects were generally low on average. As shown in Figure 1,

the subjective ratings were on average below 2 (M = 1.86,

SD = 1.36), suggesting that participants experienced minimal side

effects overall.

3.2 E�ects of stimulation

Stimulation did not result in any significant differences for the

majority of the assessed side effects, including headaches, neck

pain, neck contractions, dizziness, skin irritation, concentration

and fluctuations in feelings (ps > 0.07). Detailed results for

1 Incoronato, G., Giraudier, M., Ventura-Bort, C., and Weymar, M. (2021).

E�ects of transcutaneous vagus nerve stimulation (tVNS) on episodic

memory for trustworthy and untrustworthy faces: an ERP study [unpublished

data].

2 Ventura-Bort, C., and Weymar, M. (2024). E�ects of transcutaneous

auricular vagus nerve stimulation (taVNS) on working memory [unpublished

data].

3 Giraudier, M., and Weymar, M. (2024). E�ects of transcutaneous auricular

vagus nerve stimulation (taVNS) on the processing and recognition of

emotional and neutral faces [unpublished data].

non-significant effects can be found in the Appendices A1–A10.

However, participants in the sham group were 32.4% less likely to

report unpleasant feelings compared to those who received taVNS

(β = −0.39, p = 0.040;OR = 0.676). Notably, however, this effect

was driven primarily by ratings in the lowest range of the scale for

unpleasant feelings, as illustrated in Figure 2.

3.3 E�ects of stimulation type

The type of stimulation played a noteworthy role in

moderating several side effects. Compared to continuous

stimulation, interval stimulation was associated with a

51.6% reduction in the likelihood of reporting neck pain

(β = −0.73, p = 0.042;OR = 0.484). Furthermore, interval

stimulation combined with higher stimulation intensity further

reduced dizziness (β = −0.78, p = 0.047;OR = 0.460) and

unpleasant feelings (β = −0.79, p = 0.040;OR = 0.454), both

reflecting a 54% reduction in likelihood. Participants receiving

sham interval stimulation reported significantly lower levels of

nausea (β = −2.39, p = 0.018;OR = 0.092), corresponding

to a 91% reduction, and lower levels of stinging sensations

(β = −0.93, p = 0.038;OR = 0.396), corresponding to a 60%

reduction, compared to other participants.

3.4 E�ects of stimulation duration

Longer stimulation durations were associated with an ∼6%

increase in the odds of experiencing several side effects, including

headaches (β = 0.03, p < 0.001;OR = 1.027), neck pain

(β = 0.06, p < 0.001;OR = 1.059), neck contractions (β =

0.06, p < 0.001;OR = 1.059) and concentration issues (β =
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FIGURE 1

(A) Mean ratings of all the assessed side e�ects for taVNS (orange) and sham stimulation (blue), presented as bar charts. (B) Table displaying the mean

ratings and standard deviations (SD) for all assessed side e�ects, comparing taVNS and sham stimulation.

FIGURE 2

Predicted probabilities of the side e�ect unpleasant feelings for taVNS and sham stimulation, separately across seven plots corresponding to each

point on the 7-point scale (1 being not at all and 7 being very much).

0.06, p < 0.001;OR = 1.060). Moreover, stimulation duration

interacted with stimulation type for some side effects. The effect of

longer stimulation durations was mitigated for interval stimulation

compared to continuous stimulation for both neck pain (β =

−0.03, p = 0.013;OR = 0.972) and neck contractions (β =

−0.03, p = 0.004;OR = 0.966), with an ∼3% decrease in the odds

of experiencing these side effects. For concentration, the positive

effect of longer stimulation was reduced during interval stimulation

(β = −0.04, p = 0.003;OR = 0.958). Specifically, for participants

receiving interval stimulation, longer stimulation durations were

associated with a slightly lower probability (4.2% lower odds) of

reporting concentration issues (OR= 0.958).

3.5 E�ects of stimulation intensity

Higher stimulation intensity was associated with a reduced

likelihood of experiencing neck contractions (β = −0.33, p =

0.036;OR = 0.721), stinging sensations (β = −0.39, p =

0.002;OR = 0.674), skin irritation (β = −0.67, p = 0.028;OR =

0.510) and fluctuactions in feelings (β = −0.42, p = 0.040;OR =

0.659). During interval stimulation, higher stimulation intensity

was further associated with less unpleasant feelings (β =

−0.79, p = 0.040;OR = 0.454) and decreased dizziness ratings

(β = −0.78, p = 0.047;OR = 0.460).

3.6 E�ects of age and gender

Age showed a notable effect on concentration. The negative

coefficient indicates an inverse relationship between age and the

likelihood of experiencing concentration-related side effects (β =

−0.06, p = 0.038;OR = 0.943), implying that older participants

were associated with lower levels of concentration issues.

Males were significantly less likely to report severe headaches

compared to females (β = −1.06, p = 0.008;OR = 0.347)
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and were also less likely to experience unpleasant feelings (β =

−0.89, p = 0.008;OR = 0.412).

4 Discussion

Previous work has suggested that taVNS can lead to mild

and transient side effects compared to sham stimulation, although

findings across individual studies have been inconsistent. Some

studies report side effects such as skin irritation (Fischer et al.,

2018; Lampros et al., 2021; Evensen et al., 2022; Ventura-Bort and

Weymar, 2024), headaches (Lampros et al., 2021), pain (Mertens

et al., 2020) and dizziness (Aihua et al., 2014; Jacobs et al., 2015).

Others, however, do not find evidence of side effects (Busch et al.,

2013; Giraudier et al., 2020; Ricci et al., 2020; Sharon et al., 2021;

Konjusha et al., 2023), and many studies do not even report on side

effects at all (cf. Kim et al., 2022). To reduce variability and address

inconsistencies found in previous research (cf. Kim et al., 2022),

the present project aimed to clarify the safety profile of taVNS

by systematically examining side effects across a large and more

homogeneous dataset, for instance by only including studies using

the same taVNS device, stimulation position and standardized side

effect questionnaire.

Overall, participants reported low ratings for all assessed side

effects and taVNS was generally not associated with a higher

severity of side effects compared to sham stimulation, supporting

our hypothesis. However, participants receiving sham stimulation

were 32.4% less likely to report unpleasant feelings compared to

those receiving taVNS. Notably, this effect was primarily driven

by a higher likelihood of sham participants selecting a rating of 1

(indicating not at all when experiencing unpleasant feelings). In

contrast, participants receiving taVNS were less likely to report

this lowest rating. Importantly, as ratings increased beyond 1, the

probabilities remained comparable across the higher ratings (2

through 7). This indicates that the observed difference was limited

to the lowest range of unpleasant feelings and did not persist at

higher levels, suggesting that the practical relevance of this effect

is limited and can be dismissed. Moreover, participants receiving

interval stimulation, compared to those receiving continuous

stimulation, demonstrated an ∼54% reduction in the likelihood

of reporting neck pain, dizziness and unpleasant feelings (for

dizziness and unpleasant feelings particularly in combination

with higher stimulation intensities). This advantage of interval

stimulation in reducing the likelihood of some of the assessed side

effects independently of vagal activation may be attributed to the

recovery periods it offers, which could help alleviate discomfort

that continuous stimulation tends to provoke. Alternatively, this

effect could also be attributed to differences in total gate charge,

as interval stimulation consists of on and off phases, thereby

reducing the total gate charge compared to continuous stimulation.

Surprisingly, interval stimulation was associated with fewer side

effects, specifically a reduced likelihood of reporting nausea and

stinging sensations, particularly among participants receiving sham

stimulation. However, these differences were most pronounced

at the lowest rating levels (i.e., a rating of 1), similarly to the

effect of stimulation on unpleasant feelings. One might argue that

continuous stimulation, in contrast to interval stimulation, may

more consistently activate autonomic centers in the brainstem, such

as the NTS and LC (Yakunina et al., 2017), which regulate essential

functions like blood pressure and heart rate (for review see Yuan

and Silberstein, 2016). While this could theoretically contribute

to side effects like nausea and dizziness (i.e., disruptions in these

autonomic processes may contribute to the onset of such side

effects) (Guiraud et al., 2016), the data does not suggest a clear

increase in discomfort with continuous stimulation compared to

(sham) interval stimulation. Instead, sham stimulation appears to

be associated with a higher likelihood of participants selecting not

at allwhen reporting certain side effects, particularly under interval

stimulation. However, since the overall side effect ratings remain

low across all stimulation conditions and types, this suggests that

taVNS does not significantly increase side effects compared to

sham, but rather that sham participants tend to report no side

effects more frequently, particularly during interval stimulation.

Although several statistically significant effects were observed

for stimulation duration, the magnitude of these effects suggested

limited clinical relevance. Specifically, longer stimulation was

associated with an increased likelihood of experiencing headaches,

neck discomfort and concentration issues. However, the small

coefficients (ranging from 0.03 to 0.06) and odds ratios (close

to 1) indicate minimal changes in the likelihood of experiencing

these side effects, even with extended stimulation periods. This

implies that while these effects were statistically significant, they

likely do not represent a meaningful clinical impact (Deyo and

Patrick, 1995). Similarly, the effect of interval stimulation, which

combined with longer durations was associated with a reduced

likelihood of reporting neck discomfort, also exhibited small

coefficients and odd ratios. In the case of concentration, while

longer durations during interval stimulation were associated with

a reduced likelihood of concentration issues, the small coefficient

suggests that the effect is minimal. This underscores the importance

of not relying solely on p-values for interpreting the significance

of findings; instead, focusing on the coefficients provides a clearer

understanding of the practical implications of these findings (Solla

et al., 2018; Halsey, 2019). Nonetheless, it is also important to note

that these effects may be more related to the overall duration of

the experimental task rather than taVNS itself (i.e., which might

have led to general discomfort or fatigue, potentially contributing

to headaches, neck discomfort and concentration difficulties

independent of the stimulation) (Ackerman and Kanfer, 2009).

In practical applications, reducing task duration or incorporating

breaks could help minimize the likelihood of fatigue-related

side effects.

Equally relevant for the setup of taVNS studies is the calibration

of the stimulation intensity, which was adjusted individually for

each participant in all included studies so that it was above the

sensory threshold but below the pain threshold. This approach,

while ensuring participant comfort, also introduces variability

based on individual sensitivity levels. Participants who tolerated

higher intensities possibly had a naturally higher threshold for

discomfort, influencing not only their chosen stimulation intensity

but also their lower reports of side effects such as neck contractions,

stinging sensations, fluctuations in feelings and unpleasant feelings.

Indeed, previous research showed that individual sensitivity levels

significantly influence side effect reports and symptom attribution
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(Petrie et al., 2004; Faasse et al., 2015; MacKrill et al., 2021). This

suggests that the reduced likelihood of these side effects at higher

intensities may be more related to individual pain tolerance rather

than intensity itself. While individually calibrated stimulation

offers some advantages (e.g., same amount of distraction due

to the stimulation), it may also introduce biases by effectively

grouping participants based on their sensitivity levels, highlighting

the importance of further investigating individual differences in

sensitivity and their potential influence on side effects of taVNS.

Similarly, individual differences across participants were also

evident in the effects of age and gender on side effects, contrasting

previous results (Kim et al., 2022). Older participants in the

present dataset reported lower levels of concentration difficulties

independent of stimulation, which contrasts with the expectation

that older individuals may be more vulnerable to treatment-

induced side effects, particularly cognitive impairments (e.g.,

Magnuson et al., 2016). However, older participants in this dataset

consisted entirely of students and were not representative of elderly

individuals (i.e., as the maximum age was 46 years). This effect

aligns with existing literature indicating that pain thresholds tend to

increase with age (Lautenbacher et al., 2017), potentially explaining

the lower reports of discomfort among older participants. However,

the statistical significance of this effect should be interpreted with

caution, as the coefficient of –0.06 reflects only minimal changes

in likelihood, suggesting limited clinical relevance. Moreover, male

students were found to be significantly less likely to report severe

headaches compared to female students and they were also less

likely to experience unpleasant feelings. This, however, aligns with

findings showing gender differences in experiencing and reporting

adverse effects, suggesting that females may be more sensitive or

more likely to report discomfort in response to various treatments

(e.g., Jokerst et al., 1999; Haack et al., 2009; Alghamdi et al., 2021;

Colombo et al., 2016).

While our pooled analysis offers valuable insights, several

limitations must be acknowledged. First, there is noticeable

heterogeneity across studies, for instance with diverse cognitive

tasks (see Table 1), potentially affecting the reported side effects.

Additionally, variability in stimulation protocols, such as the

limited use of continuous stimulation (applied in only three

studies) compared to interval stimulation, may introduce biases

and affect the reliability of the findings. The broad range of

stimulation durations (7–80 min) across studies could have further

contributed to variability in outcomes. Addressing these limitations

in future research is crucial, for example, including amore balanced

representation of stimulation types and establishing standardized

protocols would minimize variability, improve comparability

across studies, and provide clearer insights into the effects of taVNS

parameters on side effects. Moreover, the current study focused

solely on subjective ratings to assess side effects. Future research

could also consider incorporating physiological assessments to

further enhance our understanding of the safety profile of taVNS.

Despite these limitations, the consistently low levels of reported

side effects support the general safety and tolerability of taVNS,

emphasizing its potential as a safe intervention and informing

future protocol optimization.

In summary, our findings support the hypothesis that taVNS

does not lead to increased adverse side effects compared to sham

stimulation, especially with the moderating effects of stimulation

type (interval stimulation). Importantly, the low levels of reported

side effects across participants suggests that, if present, they

are relatively mild and manageable. While our results revealed

statistically significant effects of stimulation type, duration, and

intensity on side effects, it is important to consider whether these

findings are clinically relevant. Some effects, such as the influence

of interval stimulation on neck pain, dizziness, and unpleasant

feelings, may hold potential for optimizing taVNS protocols.

However, the magnitude of certain effects, such as the impact

of longer stimulation durations, requires further consideration of

their practical significance. Our results show a favorable safety

profile for taVNS, with most side effects being very mild and well-

tolerated, supporting taVNS as a safe, non-invasive tool in basic and

clinical research studies.
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