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Introduction: Movement-based brain-computer interfaces (BCIs) utilize brain

activity generated during executed or attempted movement to provide control

over applications. By relying on natural movement processes, these BCIs

o�er a more intuitive control compared to other BCI systems. However,

non-invasive movement-based BCIs utilizing electroencephalographic (EEG)

signals usually require large amounts of training data to achieve suitable

accuracy in the detection of movement intent. Additionally, patients with

movement impairments require cue-based paradigms to indicate the start of a

movement-related task. Such paradigms tend to introduce long delays between

trials, thereby extending training times. To address this, we propose a novel

experimental paradigm that enables the collection of 300 cued movement trials

in 18min.

Methods: By obtaining measurements from ten participants, we demonstrate

that the data produced by this paradigm exhibits characteristics similar to those

observed during self-paced movement.

Results and discussion: We also show that classifiers trained on this data can

be used to accurately detect executed movements with an average true positive

rate of 31.8% at a maximum rate of 1.0 false positives per minute.

KEYWORDS

electroencephalography, self-paced brain-computer interface, cue-based paradigm,

movement-related cortical potential, asynchronous detection

1 Introduction

For the control of applications with a brain-computer interface (BCI), intuitive

control is important to achieve long-term acceptance among users. Particularly individuals

with motor disabilities such as locked-in syndrome require an accessible alternative to

conventional communication methods. While electroencephalography (EEG) -based BCIs

utilizing modalities such as visual evoked potentials (VEPs) or P300 offer high accuracy for

the selection of targets (Edelman et al., 2024), these systems rely on externally generated

signals and require users to be attentive to the displayed screen. In comparison, the

utilization of executed, imagined or attempted movement as a control signal poses lower

burden on the users since it resembles natural processes (Müller-Putz et al., 2016; Edelman

et al., 2024; Müller-Putz et al., 2021) and does not necessarily require overt attention.

The utilization of neural correlates of movement as a control signal relies on the

detection of motor-related dynamics in the neural signals.Whenmultiple movements need

to be differentiated, this involves categorization of the detected motion. This detection

of movement events, which are not necessarily time-locked to certain external events,

is defined as asynchronous movement detection. A limited number of studies have

investigated the asynchronous detection of movements from EEG, most of which focus
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on motor imagery (Müller-Putz et al., 2010; Niazi et al., 2013; Lin

et al., 2016; Niazi et al., 2011; Pfurtscheller and Solis-Escalante,

2008; Townsend et al., 2004; Pereira et al., 2018) with some

addressing movement execution (Zhang et al., 2024; Niazi et al.,

2013; Lin et al., 2016; Niazi et al., 2011; Fatourechi et al., 2007, 2008;

Hasan and Gan, 2010; Xu et al., 2014; Liu et al., 2018) and attempts

(Ofner et al., 2019).

Most models that are used for asynchronous movement

detection need to be trained on labeled data and therefore require

knowledge of the exact timing of the movement. While for non-

disabled participants executed movements can be tracked with

electromyography or motion capture technology and the actual

movement onset can be assigned to the neural data, the generation

of labeled training data for individuals with impaired movement

requires the attempt or imagination of the movement based

on a cue of which the exact timing is known. Traditionally,

visual cues are elicited on a display and participants execute or

attempt/imagine the corresponding movement based on this cue.

However, Ofner et al. (2019) showed that the usage of abrupt

visual cues elicits neural patterns which alter EEG signals, thereby

producing a superposition of visual and motor potentials during

the movement which differs from the neural data elicited during

self-paced motion. These differences result in reduced performance

when training models to detect neural correlates of movement

during self-paced action. Ofner et al. (2019) also showed that fading

cues diminish these visual effects and should preferably be used

when collecting training data for asynchronous movement-based

BCIs. Suwandjieff and Müller-Putz (2024) further investigated

the neural correlates elicited during cue-based movement tasks

and additionally investigated the effects of different cues on the

timing of the actual movement onset relative to the intended

onset. Especially for motor-impaired patients which cannot execute

movements, it is crucial that the actual onset of the movement

attempt is accurately aligned with the cue. While a constant delay

between cue and movement does not pose any challenges, it is

important to minimize the standard deviation of the difference

between movement onset and cue in order to extract more

consistent and reliable neural patterns. Suwandjieff and Müller-

Putz (2024) determined that out of multiple investigated cues,

a rotational cue was the most effective in reducing visual cue

interference andminimizing variability in movement onset timings

relative to the cue. For this cue, a rotating cross was displayed

over a fixed cross and participants performed a movement

whenever rotating and fixed cross overlapped. Traditional cue-

based paradigms for generating training data, such as the one

described in Suwandjieff and Müller-Putz (2024) and Ofner et al.

(2019), typically lead to longer training periods as the time

between the cue symbols being presented and the actual cue for

executing the movement must be sufficiently long to allow for

VEPs to subside. Durations of more than 8 s are common in these

paradigms. This suboptimal characteristic of traditional cue-based

paradigms facilitates the adaptation and implementation of new,

improved paradigms.

In the current study, we opted to design a paradigm focused

on minimizing visual effects while maintaining short inter-trial

intervals (ITI). We hypothesized that extending the existent

rotational cue by incorporating a continuous rotation at varying

rotational speed would minimize visual cue effects since no

abrupt visual cues are introduced during the waiting phase for

the next motion. Further, since the constant rotation enables the

consecutive execution of movements, the paradigm allows for the

reduction of ITI compared to traditional cue-based paradigms.

We hypothesized that this fast generated training data could be

used to train a decoder to detect the executed motions during

self-paced movement.

2 Materials and methods

2.1 Participants and setup

Ten healthy, right-handed participants (6 female) with normal

or corrected-to-normal vision took part in the study. Participants

gave written informed consent prior to the study and received

monetary compensation for their time. The study was approved

by the Ethics Committee at Graz University of Technology and

was conducted in accordance with the Declaration of Helsinki. One

participant was excluded from further processing due to problems

during the recording. Participants were seated comfortably in front

of a display (distance: 80 cm) and were equipped with a cap

containing 60 EEG electrodes positioned according to the 10 − 10

system (Oostenveld and Praamstra, 2001). Four electrooculography

(EOG) electrodes were attached on the outer canthi of the eyes and

above and below the left eye. The right hand of the participants

was placed on a table in a natural resting position (palm down).

A colored marker was attached to the nail of the index finger of

the participants to allow for motion tracking of the finger. The

complete setup is given in Figure 1A. Participants further had

access to a keyboard which they could position in reach of their

left hand.

EEG and EOG data was recorded with biosignal amplifiers

(BrainAmp, Brain Products GmbH, Gilching, Germany) at a rate

of 500Hz. The position of the index finger was recorded via

motion capture algorithms that tracked the marker position and

was sampled at a rate of 30Hz.

2.2 Experimental paradigm

Eye-movement data was collected during a specific eye-

movement paradigm prior to the main experimental paradigm

to enable eye-artifact correction in the neural data. We utilized

the eye-movement paradigm from Kobler et al. (2020) in which

participants follow a circle on the screen to perform predefined

horizontal and vertical eye movements as well as blinks and

rest periods with their eyes. The eye-movement paradigm had a

duration of approximately 7min.

After this, the main experimental paradigm was displayed on

a screen in front of the participants. The paradigm comprised

four runs, of which the first three runs were cue-based runs

and the fourth run was a self-paced run. Between each run the

paradigm execution was halted to allow for breaks of variable

length. Participants could continue with the paradigm by pressing

the space bar as soon as they felt sufficiently prepared. During
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FIGURE 1

(A) Complete setup of the experiment comprising the EEG cap, display and motion capture marker. Participants were seated comfortably at a

distance of 80 cm in front of the display on which the paradigm was shown. (B) Experimental paradigm for generating cued training data. The

overlaid cross (rotation cross) rotated in clockwise direction relative to the fixed cross (fixation cross). Participants were instructed to execute the

movement whenever both crosses overlapped.

each cue-based run, two similar crosses were shown on the display

in front of the participant: one cross (fixation cross) was fixed

to an upright position while the other cross (rotation cross) was

overlaid to the fixation cross and rotated at a predefined velocity.

At the beginning of every run, the rotation cross was tilted by 10◦

compared to the fixation cross. After pressing the space bar to

continue with or start the paradigm, both crosses were statically

displayed for 1.5 s before the rotation cross started to rotate to

prepare participants for the upcoming movement. Participants

were instructed to execute a flexion movement of all fingers of

the right hand including the thumb to form a fist whenever the

fixation and rotation crosses overlapped. Instructions were given to

start the movement as soon as the crosses overlapped, maintain the

flexion for 500ms and then return the fingers to the original resting

position. The angular velocity at which the rotation cross rotated

was varied continuously to allow for variable inter-trial intervals.

ω(t) =
90◦

TITI
+ A · sin(2π · abase · t) · sin(2π · amod · t + ϕ) (1)

The velocity was chosen according to Equation 1 where A

determines the spread of the ITI and abase, amod and ϕ the speed

of the change in velocity. The mean ITI is defined by TITI . This

equation ensured that the changes in velocity were continuously

differentiable and no abrupt change in the velocity of the rotation

occurred. The average inter-trial interval was TITI = 3.3 s. Based

on visual inspection of the resulting angular velocity and the

distribution of the inter-trial intervals, values were selected as A =

10.24, abase = 0.032, amod = 0.016 and ϕ = 28.1 which resulted in

a minimum and maximum ITI of 2.50 and 4.75 s. We opted for a

slow variation in the inter-trial intervals over the course of one run

such that the angular velocity would not change abruptly within

one trial while also providing distributed slow and fast trials over

the run. Each run contained 100 trials, thus lasting for a duration of

333.9 s when accounting for additional times at the start and end of

a run. At the end of a run, the crosses were faded out 10◦ before the

next overlap and a break screen was displayed. The output of the

paradigm on the display is shown in Figure 1B.

During the self-paced run, only the fixation cross was displayed.

Participants were instructed to execute flexion movements similar

to those of the cue-based runs at times of their choosing. They were

asked to alternate between periods of fast consecutive movements

and periods of long breaks with about 10 s between each motion.

Further, participants were instructed to maintain an average ITI

consistent with that of the cue-based runs. The duration of the self-

paced run was similar to that of the individual cue-based runs. The

number of trials in a self-paced run was thus not fixed.

2.3 Data processing

We first trained the SGEYESUB algorithm (Kobler et al., 2020)

on data from the eye-movement paradigm to obtain a matrix which

could be used to remove eye movement artifacts. Following this,

the EEG data of cue-based and self-paced runs was filtered and re-

referenced. We applied a bandpass filter (Butterworth, 4th order)

between 0.5 and 70Hz and applied an affine transformation of

the obtained eye-paradigm matrix to eliminate eye artifacts. Low-

frequency time-series features were extracted by lowpass filtering

the data to 3.5Hz (Butterworth, 4th order) and downsampling

the data to 10Hz. Finally, the signals were re-referenced to the

common average of all EEG channels. For labeling the training

data, we further extracted the actual movement onset from the

motion capture data by detecting the time at which the speed of the

movement (s =

√

v2x + v2y) exceeded a threshold. An example of

the movement onset detection is displayed in Figure 2 (top). Since

the movement is shortly paused, one movement consisted of two

distinct peaks in the speed. Thus, the movement onset was defined

as the first threshold crossing of two consecutive crossings.

2.4 Decoder training and evaluation

A binary shrinkage linear discriminant analysis (sLDA)

(Blankertz et al., 2011) was trained to identify the initiation of

movement based on labeled windows of EEG data. sLDA is a

method that is commonly used in the classification of movement-

related data from EEG and has been successfully applied to
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FIGURE 2

Schematic of the detection of the movement onset from the motion capture data (top) and the evaluation of true and false positives on a sample-by

sample (middle) or event-by-event basis (lower). The upper image illustrates the movement speed extracted from the motion capture data. When

the speed exceeds a specified threshold, the movement onset is marked. The second peak, occuring shortly after the movement onset, corresponds

to the movement o�set.

multiple offline and online classification problems (Lotte et al.,

2018; Suwandjieff andMüller-Putz, 2024; Ofner et al., 2019; Pereira

et al., 2021, 2017). The model was implemented and trained in

Matlab (Matlab R2024a, Mathworks Inc. USA) (Dwinnell, 2025).

Each window was constructed from the low-pass filtered data

nwindow samples prior to a time point t. Windows were advanced

with a stride of one sample. Only windows where t corresponded

to a time point tonset + d, describing the time of the movement

onset tonset with the addition of a detection delay d, were labeled

asmovement while all other windows were labeled as no movement.

This delay was introduced to include sufficient information from

EEG before making a prediction and thus reduce false movement

detections. The binary sLDA was trained for multiple values of

nwindow and d on the data of the cue-based runs. To determine

optimal values for the number of samples of a window nwindow
and the detection delay d, we applied a 3-fold cross-validation

approach in a runwise fashion, where one cue-based run was

used for training while the remaining two runs served as the

testing set. The shrinkage coefficient of the sLDA was found

using the the quadratic-inverse shrinkage estimator method of

Ledoit and Wolf which provides a closed-form solution (Ledoit

and Wolf, 1996, 2022) (Matlab function QIS.m from Ledoit

et al., 2025). This closed-form estimator eliminates the need

to apply cross-validation for selecting the shrinkage coefficient,

saving considerable computation runtime. Additionally, it ensures

robustness as it does not introduce variation caused by the data

split process during cross-validation for regularization coefficient

selection. The optimal values of nwindow and d were subsequently

selected using the Matthews Correlation Coefficient (MCC)

(Matthews, 1975; Chicco and Jurman, 2020) as the performance

measure on the testing set for each participant individually. We

selected the MCC because of the class imbalance in the data, where

no movement labels were much more frequent than movement

labels. The MCC is a robust metric for handling imbalanced

datasets, as it accounts for true and false positives and negatives,

offering a more reliable assessment than accuracy alone and has

been successfully employed in our previous work (Kostoglou et al.,

2024). The optimal values for nwindow and d were then selected by

maximizing the cross-validated MCC. Finally, an sLDA model was

built using these optimal parameters and the complete training data

from all three runs.

We finally evaluated the model’s accuracy in predicting

movement onsets during the self-paced run. Unlike the training

phase, where performance (i.e., MCC) was assessed sample-

by-sample, the evaluation was conducted on an event-by-event

basis (Townsend et al., 2004). While the MCC finds an optimal

performance point based on the balance of true and false

predictions, it does not account for usability in an online BCI.

Thus, the event-by-event-based analysis allowed us to calculate

both the true positive rate (TPR) and the rate of false positives

per minute (FP/min). The TPR represents the percentage of true

movement onsets predicted correctly, while the rate of FP/min

measures the number of false positives occurring within a one-

minute period. TPR and FP/min values were computed with a strict
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temporal resolution of [−0.5;+1]s around the actual movement

onset. Additionally, a refractory period of 1 s was incorporated

to minimize the impact of closely spaced false positives. Figure 2

shows the detection of the movement onset from the speed of

the motion as well as the evaluation of true and false positives

based on a sample-by-sample or event-by-event basis. The sample-

by-sample-based evaluation utilized in the training of the model

regarded only those movement predictions as correct which were

detected at the exact time of the movement onset. In the event-

by-event-based evaluation, detected movements in a window of

[−0.5;+1]s around the movement onset were selected as correct

detections, if they were not preceded by another detected motion

in the same window. To ensure consistent analysis across all

participants, the model was finally tuned to optimize performance

based on a maximum rate of FP/min. This calibrated FP/min rate

was achieved by adjusting the probability threshold of the sLDA

model’s output individually for each participant, ensuring that

the rate of FP/min remained below a predefined value while also

maximizing the TPR in the self-paced run. The rate was set to 0.5, 1

or 2 FP/min to analyze the impact of different FP/min thresholds

on the TPR.

2.5 Analysis of neural correlates and
behavioral analysis

We investigated the neural correlates of executed movements

during cue-based and self-paced runs by analyzing low-frequency

time-series features. The neural response elicited during

movements in the low-frequency component of the EEG is

typically referred to as movement-related cortical potential

(MRCP). MRCPs are time- and phase-locked neural correlates of

movement that occur in the time-domain EEG. Typically, they

exhibit a negative deflection up to 2 s prior to the movement

onset and reach their maximum negativity at the time of the

movement onset (Shibasaki and Hallett, 2006). Post movement, a

positive potential emerges before returning to baseline. MRCPs are

generated in central motor areas contralateral to the movement.

Apart from executed motions, imagined or attempted movements

similarly produce MRCP patterns (Pereira et al., 2017, 2018).

To identify whether MRCPs during cue-based runs differed

significantly from those during self-paced movement execution,

we investigated the trials of all participants ±1.0 s around the

movement onset. For every channel and time sample, we identified

significant differences by applying a Mann-Whitney U test (Mann

and Whitney, 1947) and corrected for multiple comparisons using

the Bonferroni method (Dunn, 1961). In contrast to the extracted

low-frequency features for decoder training, we did not apply

any re-referencing to the signals during the analysis of neural

correlates. Further, we examined whether the dissimilarity between

MRCPs elicited during cue-based paradigm runs and MRCPs

elicited during self-paced movement execution had an impact

on the obtained performance. We calculated the average MRCP

±2.0 s around the movement onset of all cue-based runs and of the

self-paced run per participant. To estimate a metric of dissimilarity

between MRCPs in cue-based and self-paced runs, we obtained

the normalized root mean squared error (NRMSE) between the

MRCPs per participant. We then calculated the Pearson correlation

coefficient between the NRMSE and the TPR of all participants.

This analysis was repeated for all channels over central motor areas

(FC3, FC1, FCz, FC2, FC4, C3, C1, Cz, C2, C4, CP3, CP1, CPz,

CP2, CP4).

Apart from time-series correlates of movement, we also

analyzed the response of the cue-based and self-paced movements

in the time-frequency domain in the form of event-related

desynchronization and synchronization (ERDS) patterns. All types

of executed, but also imagined or attempted, movements result in

changes in band power relative to a reference period prior to the

movement. These changes occur in the form of desynchronization

in alpha and beta frequencies shortly before the onset of the motion

and during the movement followed by synchronization in beta

frequencies after the movement (Pfurtscheller and Silva, 1999).

We extracted time-frequency signals for 36 overlapping center

frequencies between 5 and 40Hz with a bandwidth of 2 Hz and

calculated ERDS maps as described by Graimann et al. (2002). The

reference interval was set to [−2; −0.5] s relative to the movement

onset. Significant ERDS patterns were identified using a bootstrap

algorithm (Graimann et al., 2002). ERDS maps were averaged

across all participants within a±4 s window around the movement

onset in cue-based and self-paced runs.

We further investigated the behavior of participants regarding

the accuracy with which they initiated their movement relative to

the cue and the difference of the ITI during the self-paced run and

the cue-based runs.

3 Results

The behavioral analysis of the movement timing during the

self-paced run revealed that participants executed their movements

with an average ITI of 3.9 s (standard deviation: ±1.4 s) compared

to the average ITI of 3.3 s (standard deviation: ±0.6 s) during the

cue-based runs. These results are depicted in Figure 3A where the

distribution of ITI per cue-based run is shown (orange) together

with the overall distribution of the ITI of all participants during

self-paced runs (red). The standard deviation of the mean ITI per

participant was 0.8 s while the mean of the standard deviations per

participant was 1.1 s, indicating that, while participants utilized a

larger spread of ITI during the self-paced run, they had similar

average ITI. Figure 3B shows the histogram of differences between

the cue and the actual movement onset as detected from themotion

capture data. On average, participants executed their movement

95ms (standard deviation:±151ms) after the cue.

The analysis of low-frequency time-domain neural correlates

of cue-based and self-paced movements revealed significant

differences between the two conditions in multiple channels.

Centro-parietal channels showed significant differences ±500ms

around the movement onset while channels over the central motor

area exhibited significant differences mostly around 200ms after

the movement onset. Grand-average MRCPs of all participants for

the two conditions in channel C1 are shown in Figure 4A together

with statistically significant differences highlighted in gray. The

figure also displays the topographical distribution of MRCPs for

both cue-based and self-paced runs 100ms prior to the detected

movement onset. Detailed figures displaying the distribution of
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FIGURE 3

(A) Inter-trial-intervals for cue-based runs (orange) and self-paced runs (red). The ITI distribution for cue-based runs is shown based on the cues per

run (100 trials) while the ITI distribution for self-paced runs comprises the time between movements from all participants in every self-paced run. (B)

Histogram of the time di�erence between the actual movement onset and the cue during cue-based runs. A positive di�erence indicates that

participants executed the movement later than intended by the cue. The mean value (+95ms) is indicated by a cross.

amplitude and differences between the conditions with highlighted

statistical significances for multiple timepoints can be found

in Supplementary Figures S1, S2. For individual paricipants, the

MRCPs can be found in Supplementary Figure S3.

The obtained ERDS maps for cue-based and self-paced

movements show typical desynchronization of alpha and beta

frequencies around the movement onset and synchronization

of beta frequencies after the end of the movement. These

patterns are shown in Figure 4B for channel C1 in cue-based

and self-paced runs. ERDS maps for all channels can be

found in Supplementary Figure S4 for cue-based runs and in

Supplementary Figure S5 for self-paced runs.

As outlined earlier, the optimal values nwindow and d were

determined by maximizing the cross-validated MCC on the

training runs. The final performance of the decoder model was

evaluated on the self-paced run for each participant individually

on an event-by-event basis, using the TPR and the rate of FP/min

as metrics. We individually adjusted the probability threshold of

the sLDA model’s output for each participant, aiming to keep

the rate of FP/min below a fixed value while maximizing the

TPR during the self-paced run. The average TPR of the model

for a maximum rate of 1 FP/min was 31.8% (standard deviation:

±29.8%) with a final occurrence of 0.8 (standard deviation: ±0.3)

FP/min during the self-paced run. For a calibrated rate of 0.5

and 2.0 FP/min, the average TPR was 22.3% (standard deviation:

28.5%) and 39.1% (standard deviation: 28.7%), respectively. The

actual occurrence of FP/min was 0.3 (standard deviation: 0.2) and

1.3 (standard deviation: 0.4). The results for all participants are

summarized in Figures 5A, B. The dependence of the TPR and

actual rate of FP/min on the sLDA output probability threshold for

all participants is shown in Supplementary Figure S6.

The analysis of the relationship between the TPR and the

dissimilarity between MRCPs elicited during cue-based and self-

paced runs (NRMSE) per participant revealed a significant negative

correlation for channels C3 (r = −0.80, p = 0.009) and

FC4 (r = −0.71, p = 0.031). In practical terms, this means

that when the MRCP patterns recorded at C3 and FC4 during

self-paced movements closely matched the patterns observed

during training, the decoder was better at correctly detecting

movements. Conversely, when there was greater dissimilarity,

the decoder’s detection performance declined. The results are

shown in Figure 5C. For all other channels, the correlation was

similarly negative (r < 0.0) but not significant (p > 0.05). The

full results of the correlation for all channels can be found in

Supplementary Figure S7.

4 Discussion

In this work, we presented a novel experimental paradigm

aimed at reducing the time required for the collection of training

data for movement-based BCIs while also addressing challenges

associated with traditional cue-based methods (Ofner et al.,

2019). The close resemblance of neural correlates of movement

during cue-based runs with those from self-paced movements

together with the fast pace at which cue-based movement can

be executed is novel and enables the collection of suitable

training data for asynchronous movement-based BCIs in very

short time. The paradigm utilizes a rotational, cross-based cue

(Suwandjieff and Müller-Putz, 2024) where a fixed cross (fixation

cross) and a rotating cross (rotation cross) are displayed on a

screen. Participants are instructed to execute a specific movement
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FIGURE 4

(A) Averaged low-frequency time-domain data ±2.0 s relative to the movement onset (gray dashed line) in cue-based (orange) and self-paced (red)

runs for channel C1. The data is displayed as the average from all trials and participants together with the standard error. Statistically significant

di�erences (p < 0.05) are marked in gray. Upper diagrams display the topological distribution of the amplitude of the averaged low-frequency

time-domain data at t = −0.1 s relative to the movement onset for all channels. (B) ERDS patterns (5-40Hz) for cued and self-paced movements ±3 s

relative to the actual movement onset. Desynchronization is marked in orange/red and synchronization in gray.

when both crosses overlap, serving as the cue for movement

initiation. While Suwandjieff and Müller-Putz (2024) introduced

the general concept of the overlapping, rotating cross, they

utilized the paradigm solely for synchronous classification. In

this traditional synchronous paradigm, participants experienced

long waiting times between movements, and the continuous

data was interrupted by visually evoked potentials caused by

the appearance and disappearance of the crosses between trials.

In our current work, we adapted the paradigm to feature a

continuously rotating cross, eliminating the disappearance of

the crosses between movements. This adjustment removed the

influence of abrupt visual appearances and enabled the utilization

of uninterrupted, continuous data from multiple, consecutive

movement executions. Further, we introduced variable inter-trial-

intervals by continuously adapting the velocity of the rotating cross.

Thus, our proposed setup allows for continuous data collection

with minimal breaks, thereby reducing the overall time needed for

the collection of training data. In traditional cue-based paradigms,

data collection is not continuous, necessitating breaks between cue

presentation and movement execution to minimize visual effects.

This leads to long inter-trial times such as described by Ofner et al.

(2019) with a minimum of 8.5 s. In comparison, the inter-trial time

in the proposed paradigm is on average 3.3 s. For a run of 300

trials, the traditional cue-based paradigms would therefore require

a duration of at least 42min while our proposed paradigm has a

duration of about 18min, thereby reducing the required training

time to less than half of the time of traditional paradigms. As a

result, the data acquisition process is significantly faster compared

to traditional paradigms, making it more suitable for practical

applications. This is particularly relevant for individuals withmotor

disabilities, since they often cannot endure prolonged experimental

sessions to collect sufficient training data. By incorporating

cue-based movements into a continuous, uninterrupted session,

participants also remain in an active state of readiness even during

rest periods. This design simulates real-world scenarios in which a

BCI user may be in a waiting state, such as preparing to click on a

screen or type in a speller in a self-paced and asynchronousmanner.

This active rest state ensures that the collected data better represents

typical BCI usage, where users often shift between periods of active

waiting and action.

While the current study relies on the movement onset as

detected from motion capture data, the analysis of time differences

between the cue and the actual execution of the movement shows

that participants generally executed the motions shortly after

the cue onset with a low standard deviation. This is relevant

especially for the inclusion of motor-impaired participants in the

future, since the actual movement onset cannot be inferred in

their case. The behavioral results suggest that the training of
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FIGURE 5

(A) True positive rate of the detected movements during the self-paced run for every participant. The results are shown for three di�erent calibrated

rates of false positives per minute. (B) The obtained rates of false positives per minute of the detected movements during the self-paced run for every

participant. The results show the actual number of false positives per minute that occurred during the self-paced run for three di�erent calibrated

maximum false positives per minute. (C) Statistically significant (p < 0.05) correlations between the TPR during the self-paced run and the NRMSE.

The correlation was estimated using the Pearson correlation coe�cient. Correlation coe�cients (r) and p-values (p) are displayed.

movement-based BCIs based on data labeled with cue timings

is possible.

A key advantage of the proposed paradigm is its ability to

generate brain activity that closely resembles the neural patterns

observed during self-paced movements, including both MRCPs

(Figure 4) and ERDS patterns (Supplementary Figures S4, S5).

While there exist significant differences after the movement

onset, no such differences were found prior to the movement.

Specifically, we did not find any evidence for visual evoked

potentials introduced by the proposed paradigm. Further, the

obtained ERDS patterns did not suggest any apparent difference

between cue-based and self-paced execution. This is a significant

improvement over traditional cue-based paradigms, which rely

on visual or auditory cues to synchronize movement (execution,

attempt or imagination) timing but inadvertently introduce evoked

potentials that overlap with movement-related brain signals (see

e.g. Ofner et al., 2019). Interestingly, Suwandjieff and Müller-Putz

(2024) found significant differences also prior to the movement

in their implementation of the rotational cue. This suggests that,

by incorporating a continuous rotation, visual influences of the

cue could be further reduced. By minimizing these artifacts, the

current approach captures more natural movement-related brain

signals, which are essential for training accurate BCI decoders.

However, even after minimizing the effects of the cues, our analysis

revealed differences between MRCPs elicited during self-paced

and cue-based runs. This suggests that, despite reducing cue-

related artifacts, distinct brain dynamics between voluntary (self-

paced) and externally driven movements persist. These residual

differences could still impact the accuracy of BCI systems,

potentially limiting the ability to consistently decode motor

intentions across different conditions. Pereira et al. (2018) also

investigated the neural dynamics associated with different types

of movement imaginations. They also found that externally-cued

movement imaginations elicited distinct EEG patterns compared

to self-paced movement imaginations. Specifically, externally-

cued movements were associated with increased activation in

the parietal and occipital regions, reflecting the processing of

external stimuli. This underscores the need for further refinement

in BCI designs to address these neural variations, ensuring more

reliable performance.

To evaluate the feasibility of the proposed paradigm and

approach to collect training data for movement-based BCIs, a

decoder was trained on the collected data and the performance

was tested on self-paced data. The model achieved an average

TPR of 31.8% for detecting movement at a calibrated rate of 1.0

FP/min, though performance varied greatly across participants.

In practical terms, for almost every three attempted movements,

approximately one was successfully identified by the system as an

intentional movement. The remaining 2 out of 3 were missed,

resulting in false negatives. The low rate of 1.0 FP/min indicates that

these missed detections did not result in incorrect detections but

were simply not detected. While some participants demonstrated

high TPR, others showed much lower values, underscoring the

impact of individual variability. Since higher similarity between

MRCPs in self-paced and cue-based runs correlated with higher

performances in the self-paced task, we suggest that these

individual performance disparities could be due to differences

in neural responses of participants to the utilized cue. Thus,

it needs to be investigated whether the neural response during

movements of participants is closer to the response during self-

paced movement execution for other cues which could therefore be

more useful.
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While other studies on the asynchronous detection of

movements show promising results, a comparison of the achieved

performance to these studies is difficult, since the calibrated

rate of FP/min has a large impact on the obtained TPR, as

has been shown above. Zhang et al. (2024) investigated the

accuracy of predicting movement onset using both synchronous

and asynchronous classification methods, specifically focusing on

MRCPs generated from hand movements at varying speeds. For

synchronous classification, where external cues were used to time

movement predictions, the average accuracy across six healthy

participants was 68.7% for fast movements and 70.6% for slower

movements. Asynchronous detection, however, was tested only in

one of the six participants, utilizing 320 trials for training over

a duration of approximately two hours, focusing on real-time

predictions without external cues. Niazi et al. (2011) reported an

average TPR of 55.4% and 11.4 FP/min among 15 healthy subjects

during asynchronous ankle dorsiflexion, utilizing 30 training

trials collected over approximately 10 minutes. However, they

demonstrated that spatial filtering techniques not only improved

detection performance, but also reduced the number of FPs. Xu

et al. (2014) used a manifold learning technique combined with

LDA which resulted in TPRs exceeding 80% and less than 2 FP/min

in nine healthy participants based on 30 training trials conducted

over approximately 10 min. Hasan and Gan (2010) employed both

supervised and unsupervised approaches to detect wrist extensions

in five healthy individuals and found that unsupervised techniques

led to increased asynchronous detection performance. Fatourechi

et al. (2007, 2008) proposed extracting both temporal and spectral

EEG features based on three neurological phenomena: MRCPs,

changes in the power of mu rhythms and changes in the power

of beta rhythms. For asynchronous finger flexion detection they

reported low FP rates at a modest TPR for four subjects, showing

on average 10 FP/min at a TPR of 41.1%, respectively, for the

initial BCI system design (utilizing approximately 320 training

trials recorded over a period of almost 50 min), and 0.7 FP/min

and a TPR of 56.2% for the improved version. The results from

Fatourechi et al. (2007, 2008) align with those presented in the

current study. While the rates of FP/min are similarly low, the

current study did not achieve an equivalently high TPR. However,

herein, the primary focus was on the experimental paradigm and

data collection, rather than on selecting features or decoders for

optimal TPRs. While decoding plays an important role, our goal in

this work was to establish a robust and efficient paradigm for data

collection that better captures natural brain dynamics.

When selecting different features, one limitation to consider

is that spectral features may require a longer inter-trial interval

than those used in the current study to accurately capture their

dynamics since ERDS patterns are observed on a larger and more

delayed time scale compared to MRCPs during neural processing.

However, this aspect requires further investigation from both

experimental and analytical perspectives. Aside from different

features, a limitation of the current study is the lack of investigation

of different models to increase the classification performance.

Future work will test multiple state-of-the-art models to achieve an

increase in the TPR while obtaining a similarly low rate of FP/min.

The main limitation of the current study is the lack of evaluation

within an online paradigm. While we showed that the collected

data is feasible for training a model to detect movements during

self-paced motion execution, it is currently not clear whether this

also applies to online paradigms such as spellers. Our next step

is therefore to apply this framework to an online detection task

within a spelling application, providing the opportunity for real-

time feedback and user engagement. This approach will enable us

to assess the effectiveness of our MRCP-based decoder for spelling,

allowing users to make selections on highlighted columns or rows

in a concept similar to P300 spelling (Farwell and Donchin, 1988).

Moving forward, we aim to improve our decoding system by using

cue onsets for labeling the data rather than relying on movement

onsets. For individuals who cannot perform physical movements,

the cue onset is the only reliable marker for detecting motor

intention. This adjustment is thus crucial for developing BCIs that

support motor-impaired individuals.

While the paradigm was designed and tested using non-

invasive EEG, its application is similarly important for invasively

recorded neural signals. By accelerating and improving the

collection of training data, the proposed paradigm has implications

also for real-world applications and patients which use BCIs for

daily communication. It is therefore relevant to examine the

behavior of the proposed paradigm during invasive recordings of

neural data and investigate the usage in invasive BCIs.
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