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Introduction: Voxel hierarchy on dynamic brain graphs is produced by k-core 
percolation on functional dynamic amplitude correlation of resting-state fMRI.

Methods: Directed graphs and their afferent/efferent capacities are produced 
by Markov modeling of the universal cover of undirected graphs simultaneously 
with the calculation of volume entropy. Using these methods, state stationarity 
was tested for resting-state positive and unsigned negative brain graphs 
separately on sliding-window representation. The spatiotemporal progress of 
voxels was visualized and quantified.

Results and discussion: The voxel hierarchy of positive graphs revealed abrupt 
changes in coreness k (k-core) and maximum k-core (kmaxcore) voxels 
on animation maps representing state transitions interspersed among the 
succession. Afferent voxel capacities of the positive graphs revealed transient 
modules composed of dominant voxels and independent components as well 
as their exchanges compatible with transitions. Moreover, this voxel hierarchy 
and afferent capacity corroborated each other only on the positive directed 
functional connectivity graphs but not on the unsigned negative graphs. The 
Spatiotemporal progression of voxels on positive dynamic graphs constructed 
a hierarchy by k-core percolation and afferent information flow by volume 
entropy and directed graph methods. We disclosed the non-stationarity and 
its temporal progress pattern at rest, accompanied by diverse resting-state 
transitions on resting-state fMRI graphs in normal human subjects.
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Introduction

The spatiotemporal trajectory of neurons is structured to represent 
population codes that support behavior and the underlying mental 
processes in humans and animals. The limited spatial and temporal 
resolution of measuring devices such as functional magnetic 
resonance imaging (fMRI) has obstructed the investigation of human 
mental processes, which has been further complicated by computing 
resources. The resting-state fMRI might have been widely used 
clinically, especially considering its ready availability but not, for 
assessing mental states’ fluctuation or transition in humans (Chang 
and Glover, 2010; Handwerker et al., 2012; Hutchison et al., 2013; 
Allen et al., 2014; Huh et al., 2022). Another barrier to ready use was 
the technological one, where we had to use regions of interest or 
principal components as the analytic units, instead of voxels.

However, improved brain imaging devices and pre- and post-
processing technology with enhanced computing resources (Vidaurre 
et al., 2017; O'Neill et al., 2018; Vidaurre et al., 2018; Deco et al., 2021; 
Vidaurre, 2021; Vidaurre et  al., 2021) now allow voxel-based 
investigations, which are currently the smallest macrocomplexes of 
neurons and allies. There have been attempts to investigate voxel level 
with dynamic functional structures of time-varying measures, 
although voxels themselves still contain an average of 100,000 
neurons/mm3 (Vidaurre et al., 2017; Zhang et al., 2018; Huh et al., 
2022; Matkovic et al., 2023). For instance, the time-varying features of 
instantaneous amplitude correlation, reduced to a few principal 
components, were successfully correlated with dynamic resting states 
and even personality traits based on their elucidation (Vidaurre et al., 
2017). We now need to expand these pilot investigations to refined 
intervoxel studies while respecting the identities of voxels and propose 
proper measures to represent human resting states and their quantified 
contributions. The literature on intervoxel amplitude correlation has 
already revealed an equal prevalence of amplitude correlation and 
anticorrelation on voxel-based approaches (Wu et al., 2013; Huh et al., 
2022; Fransson and Strindberg, 2023), unlike previous investigations 
that observed mostly positive region-based correlations (Wong et al., 
2012; Wu et al., 2013; Parente and Colosimo, 2020; Noro et al., 2022). 
Resting-state fMRI yields the output of two immiscible graphs, equally 
propense graphs of correlation and anticorrelation, awaiting novel 
approaches to understanding how voxels compete and collaborate in 
composing resting states in humans, both in dynamic plots and in the 
static state (Huh et al., 2022).

The parameters of functional brain graphs had been either related 
to graph theory or classical many-body pairwise embedding 
technology. These methods had setbacks in terms of their implicit 
assumption that graphs are reducible to principal components 
(Vidaurre et al., 2017; O'Neill et al., 2018; Vidaurre et al., 2018; Deco 
et  al., 2021; Vidaurre, 2021; Vidaurre et  al., 2021) and that 
understanding the parameter and its distribution (i.e., degree and 
degree distribution for the rich-club coefficient) would be suitable for 
elucidating the hidden structure of intervoxel interactions (Zhou and 
Modragon, 2004; Colizza et al., 2006; Kim and Min, 2020). They are 
correct in terms of searching for the global characteristics of graphs or 
networks. However, investigators implicitly ignored the identities of 
voxels. What if voxels, not neurons as voxels, are already a 
macrostructure of neuron–glia–vessel complexes, and 1 min is enough 
time for making ensembles, calculating, and acting independently to 
release emergent behaviors with higher-order interactions? 

We attempted to restore the identity of voxels by calculating their 
characteristic contributions to the functional hierarchy (Huh et al., 
2022) and in-degree (i.e., afferent to the nodes) information flow 
capacity in dynamic functional graphs.

Another limitation of mainstream brain connectivity 
investigations is their inability to produce dynamic representations of 
functional brain graphs (Chang and Glover, 2010; Handwerker et al., 
2012; Hutchison et al., 2013; Allen et al., 2014; Huh et al., 2022) and/
or their ignorance of the possibility to make directed weighted graphs 
using pairwise undirected observables (such as amplitude correlations) 
of dynamic functional brain graphs (Wu et al., 2013; Khazaee et al., 
2017; Razi et al., 2017). We recently explored these uncharted methods 
and introduced the following schemes of investigation for using 
resting-state fMRI to characterize voxel hierarchy (Huh et al., 2022) 
and afferent or efferent node capacity, which are intended to represent 
the dynamic functional graphs of mental-state fluctuation and 
transition in humans.

In this study, we  assumed that (1) dynamic functional brain 
graphs derived from resting-state fMRI represent the fluctuating and 
sometimes transitioning brain states of human minds at resting state 
(Hutchison et al., 2013; Mooneyham et al., 2017; Gonzalez-Castillo 
et al., 2021); (2) sliding-window time binning of resting-state fMRI 
(Figure  1) enables visualization of continuous (non-explosive) 
temporal changes in composition (Hindriks et  al., 2016) with the 
waxing and waning voxel behavior over time; (3) waveforms of each 
voxel, once observed pairwise, act as the simplest representation of 
their higher-order interaction (Lambiotte et al., 2019; Battiston et al., 
2020), which might reveal the inherent characteristics of many-body 
intervoxel interactions (Khona and Fiete, 2022; Bollt et al., 2023); and 
(4) the above pairwise-observed amplitude correlations are the sum 
of signals (functional connectomic dynamics) and redundancy 
(including inherent and measurement-related error/noise) (Khona 
and Fiete, 2022; Varley et al., 2023). The first of the above assumptions 
is not refutable, meaning that this investigation cannot prove or refute 
it (Whi et  al., 2022b); however, the remaining three are to 
be corroborated or partially proven for some measures or disproved 
for others by our study results.

Among graph-based methods, percolation has been successfully 
introduced to reveal hierarchical organization of resting-state fMRI 
connectivity in a mouse model (Bardella et al., 2016) and in humans 
(Bordier et al., 2017; Mastrandrea et al., 2017), to disclose disease-
related differences (Mastrandrea et al., 2021). Percolation analysis on 
the multi-unit array data in primates revealed a hierarchical structure 
of neuronal interaction in movement control or motor inhibition 
(Bardella et al., 2020; Bardella et al., 2024). Hierarchical consideration 
of edges in the structure of individual graphs has been shown to 
benefit percolation for optimal thresholding (Bordier et al., 2017), 
remove weaker edges for sparsification (Nicolini and Bifone, 2016), or 
maintain the scale-free structure of functional graphs by removing 
redundancy (Huh et al., 2022). Recently, graph neural networks (Cui 
et  al., 2023; Li et  al., 2023) have enabled the extraction of spatial 
features in a generative deep learning especially using transformer and 
attention methods (Kim et al., 2021; Kan et al., 2022), primarily on 
static resting-state fMRI. The spatiotemporal progression of dynamic 
spatial and temporal features can be analyzed using methods such as 
temporal convolution networks and spatial self-attention blocks 
(Thapaliya et al., 2025a; Thapaliya et al., 2025b). Until now, most of 
the methods and the packages (Cui et al., 2023; Thapaliya et al., 2025b) 
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allowed the data input in hundreds of regions but not in voxels. 
Several thousand voxels, now available as inputs made possible by this 
study, can be used to reveal spatiotemporal characteristics of mental 
states on resting-state fMRI.

Based on our preliminary research, described in previous studies 
(Huh et al., 2022; Whi et al., 2022b), the threshold range of dynamic 
brain graphs was set to guarantee scale-free degree distribution 
(distribution freedom) while cropping a large number of voxels. This 
thresholding was later found to be necessary for revealing the state 
transition of maximum coreness k (k-core) voxels, but not for 
discovering the abrupt module exchange of afferent node capacity on 

dynamic-directed weighted graphs. The sliding-window method (Huh 
et al., 2022; Whi et al., 2022b) was adopted to find intervoxel amplitude 
correlations separately for positive and unsigned negative graphs to 
determine intervoxel similarity per time bin for further analysis of (1) 
the production of k-core animation maps and corollary plots such as 
glass brain, flag plots, and timepoint plots with trajectory tracing and 
(2) afferent and efferent node capacity maps on animation. Upon 
varying thresholds using an exemplary case and the same threshold 
for all the time bins of individuals from the Human Connectome 
Project (HCP) (Glasser et al., 2013; Van Essen et al., 2013; Elam et al., 
2021), the total sum of k-core voxels or temporal progression of 

FIGURE 1

Schematic representation of methodological procedure. (A) Sliding-window representation of resting-state fMRI and its spatiotemporal visualization in 
matrix and MRI-overlaid animation plots. Resting-state fMRI acquired 15 min, 0.72 s for each frame were converted to 1-min time bin, 3 s of time-bin 
shifts, and then 280 time bin of timepoints were obtained for the HCP cohort. For 180 individuals from the Human Connectome Project, from 1,200 
frames for 2 mm × 2 mm × 2 mm fMRI images, 280 time bins were derived, and the downsampled total number of voxels was 5,937 voxels for 
6 mm × 6 mm × 6 mm and 1,489 voxels for 10 mm × 10 mm × 10 mm. The former was used for k-core percolation, and the latter was used for 
directed graph construction. Brain graphs consisted of 280 time-bin images of 5,937 × 5,937 (or 1,489 × 1,489) matrices or 280 time-bin images of 
36-slices brain MRI-overlaid k-core map plots or afferent/efferent node capacity map plots. For both images, the final output in the form of MRI-
overlaid brain images was in audio–video interleave (AVI) files and best viewed with animation play software of any kind. (B) Observed pairwise 
intervoxel correlations of brain graphs of the Human Connectome Project using the initially reconstructed 2 mm × 2 mm × 2 mm resolution (160,299 
voxels), 6 mm × 6 mm × 6 mm resolution (5,937 voxels), and 274 anatomical regions of interest. Propensity of intervoxel correlations derived from the 
160,999 voxels (2 mm × 2 mm × 2 mm) with 12.9 billion undirected edges, 5,937 voxels (6 mm × 6 mm × 6 mm) with 17.6 million undirected edges, 
and 274 anatomical volumes-of-interest (VOIs) with 37 K edges. Positive shift (less amounts of negative-valued edges than positive-valued edges) was 
already there but in small fraction in the initial 2 mm × 2 mm × 2 mm or 6 mm × 6 mm × 6 mm resolution brain graph, however, in brain graphs with 
274 VOIs, negative correlations ranges from −0.3 to 0 and the area was just quarter of positive correlations. (C) Scheme to estimate volume entropy 
and afferent and efferent node capacities by making directed weighted graphs from the observed pairwise intervoxel undirected amplitude correlations 
after thresholding separately on positive and unsigned negative graphs. The graphs we acquired from resting-state fMRI brain imaging were, after 
thresholding, put into the calculation of volume entropy reported by Lee et al. (2019) and Lim (2008). An undirected graph was transformed to a 
universal cover, which is equivalent to the brain graph of interest. By modeling the graph geodesic configuration search with a generalized Markov 
system, the edges of the universal cover were traced by a random walker on the surface (N-1 dimensional) of the N-dimensional ball to infinity. The 
random walk is asymptotically yielding a volume bounded by the maximum and minimum (Lim, 2008). This volume was equivalent to the geodesic 
topological invariant of (N-1) dimensional surface of an N-ball, called volume entropy. While volume entropy defines the total information flow of the 
graph of interest, the edge lengths of the universal cover at the limit to infinity for the radius of the N-ball, once cropped as a matrix, yielded an edge 
matrix. As we used 1,489 nodes, 1,107,816 undirected edge-matrix before modeling, it was supposed to become a 2,217,121-element asymmetric 
matrix. The equivalence of a random walker on the universal cover in edge-matrix and eigen decomposition was adopted to calculate edge matrix and 
volume entropy (Lee et al., 2019), and MATLAB function eigs was used for the exact calculation. Finally, we could produce the edge length (capacity) 
matrix, and thus we summed up all the incoming edge weights to a node, to call it afferent node capacity, and all the outgoing edge weights from that 
node, to call it efferent node capacity (Ha et al., 2020). The final products of afferent/efferent node capacity were the normalized ones, and thus 
timepoint plots could be drawn for afferent and efferent node capacities, separately for positive and negative graphs of an individual. Top-right path 
diagram in Figure 1C; Reproduced from Lee et al., Scientific Reports, 2019, licensed under CC BY 4.0.
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afferent node capacity were compared with graphs’ sums of the 
number of edges, and the threshold effect was determined based on 
the following findings of this investigation.

Thus, in this investigation, using resting-state fMRI data from the 
HCP (Glasser et al., 2013; Van Essen et al., 2013; Elam et al., 2021), 
we performed k-core percolation (Azimi-Tafreshi et al., 2019; Kong 
et  al., 2019; Whi et  al., 2022b) for dynamic intervoxel amplitude 
correlations and calculations of volume entropy, estimating afferent/
efferent node capacity (Lee et al., 2019; Ha et al., 2020). We investigated 
whether time-binned figures of k-core and maximum k-core 
(kmaxcore) voxels produced from sliding-window method. (Huh et al., 
2022; Whi et al., 2022b) prepared using a sliding-window approach 
would successfully display dynamic spatiotemporal changes in state 
transitions involving the participating components of k-core and 
kmaxcore. Additionally, we compared whether the state transitions in 
the voxel hierarchy study were similarly represented on information-
flow maps of in-degree (afferent) and out-degree (efferent) voxel 
capacities for both positive and negative graphs. Finally, 
we investigated whether the voxels themselves could be traced on the 
quantified maps in animation as well as on timepoint plots, which may 
enable identifying each voxel on the temporal axis by its 
characteristic values.

Methods

Data preprocessing

We downloaded resting-state fMRI (rsfMRI) data from the HCP.1 
We selected 180 participants aged 22 to 36 years without any significant 
history of psychiatric disorders or neurological or cardiovascular disease 
(Van Essen et al., 2013; Elam et al., 2021). We used resting-state fMRI 
FIX-Denoised preprocessed data (Glasser et al., 2013) and performed 
further preprocessing, including smoothing with a 6-mm full-width at 
half-maximum Gaussian kernel and bandpass filtering (0.01–0.1 Hz). 
Next, we  downsampled the data from 91 mm × 109 mm × 91 mm 
voxels to 2 mm × 2 mm × 2 mm voxels, and then from 
31 mm × 37 mm × 31 mm voxels to 6 mm × 6 mm × 6 mm voxels, 
which reduced the computational load. We  applied a mask to 
exclude  voxels that did not belong to the brain, resulting in 5,937 
voxels for k-core percolation. For the volume entropy calculation and 
directed graph composition, another downsampling with a 
10 mm × 10 mm × 10 mm voxel resulted in 1,489 voxels.

Independent component analysis

We performed independent component analysis (ICA) to 
identify independent components (ICs), that is, resting-state 
networks, using multivariate exploratory linear decomposition into 
independent components (MELODIC) (Beckmann et  al., 2009). 
We obtained spatial maps of ICs and applied a threshold (Z > 6) to 
generate binary masks. In this study, we  included seven ICs: the 
default mode network (DMN), salience network (SN), dorsal 

1 www.humanconnectomeproject.org

attention network (DAN), central executive network (CEN), 
sensorimotor network (SMN), auditory network (AN), and visual 
network (VN).

Dynamic data analysis: sliding-window 
analysis

For the HCP data, we used sliding-window analysis to investigate 
the non-stationary and time-dependent dynamics of the brain. The 
window size was set close to 1 min (84 volumes, 60.48 s) with a shift 
of 4 volumes (2.88 s), resulting in 280 windows. A connectivity matrix 
of each window was calculated to conduct k-core percolation. 
We implemented k-core percolation for each connectivity matrix after 
applying the threshold, which ensures the scale-free network, to 
generate a binary matrix. Edges with values greater than 0.65  in 
positive graphs and 0.5 in negative graphs are assigned a value of 1; 
otherwise, they are assigned a value of 0.

k-core percolation

We conducted k-core percolation to investigate the core structure 
of an individual’s functional brain network (Azimi-Tafreshi et al., 
2019; Whi et al., 2022b). Metaphorically, this method peels away the 
layers of the network, much like peeling an onion. This procedure first 
removes nodes of degree 1 (k = 1). As nodes are removed, the degree 
of the remaining nodes also changes. Some nodes, whose degrees were 
not initially 1, are eventually removed if they meet the removal 
criteria. The procedure is performed recursively by incrementing k by 
1 until no further processing is possible. A subgraph, known as the 
k-core, is obtained by removing all nodes with degrees less than k. The 
last surviving core was called the kmaxcore. After k-core percolation 
was performed on each subject’s data, we classified kmaxcore voxels 
using IC maps.

Volume entropy calculation and 
construction of directed weighted graphs

During the volume entropy calculation, we  modeled the 
functional brain graphs to have directedness using a generalized 
Markov system on universal covers of the undirected graph matrices. 
Matrix elements were detected via pairwise correlations of the voxels’ 
waveforms on resting-state fMRI. Universal coverage allowed 
one-directional random walkers to traverse all possible paths from any 
node to infinity, yielding an N-dimensional ball of infinite radius. The 
topological dynamics representing the capacity of information flow 
over the graphs were proven to have an asymptotic invariant specific 
to the graph. These intermediary edge matrices were supposed to 
reveal the in- and out-flow capacity of information via every edge 
from the standpoint of the information flow along the brain graphs 
(Lee et al., 2019). We refer to the in-flow capacity of certain nodes as 
the afferent node (voxel–node) capacity and the out-flow capacity as 
the efferent node capacity, as described in our previous study (Ha 
et al., 2020). Thus, edge length (or distance) derived from pairwise 
intervoxel amplitude correlation was used to define the hidden 
directed functional brain network.

https://doi.org/10.3389/fnhum.2025.1543854
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
http://www.humanconnectomeproject.org


Lee et al. 10.3389/fnhum.2025.1543854

Frontiers in Human Neuroscience 05 frontiersin.org

As the N-dimensional ball of the universal cover expanded toward 
infinity with an increasing radius, the geodesic sum of the distance 
traveled by the random walker was modeled using a generalized 
Markov system. Eigendecomposition replaced the random walker 
model and yielded edge capacity matrices. A total of 10 mm × 10 mm × 
10 mm downsampling resulted in a maximum of 1,489 × 1,489 edges, 
and after thresholding with the same criteria as for the 
6 mm × 6 mm × 6 mm image data, approximately 2 million (incoming 
and outgoing) edges remained, allowing for the creation of 
2,000,000 × 2,000,000 matrices for eigen decomposition. The eigs 
function of MATLAB® 2024b (The MathWorks, Inc., Natick, MA, 
USA) was used to calculate edge matrices via Krylov–Schur 
decomposition, and then volume entropy was calculated in 2–3 h of 
computing time per time bin. This led to the completion of the 
calculation of edge matrices and volume entropy per individual within 
weeks (4 weeks for HCP data with 280 time bins per individual).

Data visualization

Using graphs with 5,937 voxels and 6 mm × 6 mm × 6 mm brain 
volume images, k-core percolation was performed. The resulting 
outputs were visually represented as (1) animation maps of edge-
scaled k-core values overlaid on 36-slice magnetic resonance imaging 
(MRI) templates, (2) edge-scaled flag plots on the runs of voxels with 
their IC labels, (3) kmaxcore stacked histograms on the runs with their 
IC labels, (4) edge-scaled k-core value plots, (5) animation glass brain 
lateral or transaxial images for 280 time bins of 1-min duration (84 
acquisition bins) with approximately 3 s (4 bins = 2.88 s) shifting from 
1,200 acquisition bins (0.72 s/bin) of the HCP datasets. All these maps 
are presented as positive and unsigned-negative brain graphs. The 
total number of edges counted after thresholding was used to 
normalize (divide) k-core voxel values. These edge-scaled k-core 
values were used for animation plots, flag plots, and voxel trajectory 
timepoint plots per IC (voxel/IC trajectory timepoint plots).

Using graphs with 1,489 voxels and 10 mm × 10 mm × 10 mm 
brain volume images, the volume entropy was calculated again for 
positive and negative graphs, while simultaneously producing directed 
weighted graphs for each type of graph. The resulting outputs were 
visually represented as (1) animation maps of afferent or efferent node 
capacity overlaid on MRI templates and (2) afferent and efferent 
timepoint plots representing each voxel’s trajectory and their collective 
picture separately according to their belonging to ICs (DMN, SN, 
DAN, CEN, SMN, AN, and VN) and left cerebellum (L_Cbl), right 
cerebellum (R_Cbl), vermis (V), and the unclassified (Unc).

Results

Effect of thresholds on the number of 
edges, the k-core voxel, and the afferent 
voxel capacity

For the cohort of 180 individuals from the HCP [with 280 time 
bins each with sliding-window methods (Figure 1)], to crop the giant 
component including at least 85% of voxels but having a guaranteed 
scale-free (distribution-free) voxel degree distribution, thresholds 
were set to 0.65 for the amplitude correlation for positive graphs and 

0.50 for negative graphs. Among these individuals, one exemplary case 
was selected to evaluate the effect of the total number of edges per 
time bin related to the preset thresholds. The thresholds were varied 
from 0.20 to 0.75 for the intervoxel correlations to construct 12 
positive graphs and 12 negative graphs (Supplementary Figures S1A–D). 
The number of voxels in the graphs varied from 100% (n = 5,937) to 
5% (n = 280) of the total voxels. Obviously, increasing thresholds 
decreased the number of voxels and the number of edges 
(Supplementary Figures S1E,F). The total number of edges showed an 
almost 1:1 correlation [1.09 ± 0.02 for 280 time bins with a threshold 
of 0.65 (voxel n; 5,622 − 5,174) in the positive network and 1.08 ± 0.02 
for 280 time bins with a threshold of 0.5 (voxel n; 5,937 − 5,833) in the 
negative network] (Supplementary Figures S1G,H), with the total sum 
of k-core values per graph in both the positive and the negative graph 
analyses. For 180 subjects, this relationship between the total sum of 
edges and the total sum of k-core values was consistent across all 
individual and time bins, despite the use of the same thresholds of 0.65 
for all positive graphs and 0.5 for all negative graphs.

Based on this equivalence of the total number of edges per time 
bin in every individual, the k-core voxel values were divided by the 
total number of edges to yield edge number-scaled k-core voxel values. 
Thus, edge-scaling represents normalization of coreness values of 
voxels by the total number of edges for the graph in each time bin. The 
k-core voxel timepoint plots initially showed remarkable similarity in 
terms of the contours of collective trajectory bundles per IC, which 
was due to the effect of varying the total edge number per time bin 
(Supplementary Figure S1A). Edge-scaled k-core trajectory bundles 
showed gross similarity with minute differences between ICs 
(Supplementary Figure S1B). Scale-freedom (an almost linear 
decrease in the log–log plot of the degree distribution) was observed 
in the positive graphs with thresholds ranging from 0.55 to 0.85 and 
in the negative graphs with thresholds ranging from 0.50 to 0.85 
(Supplementary Figures S1C,D). The voxel number of graphs allows 
us to disregard positive graphs with thresholds above or equal to 0.7 
and negative graphs with thresholds above or equal to 0.65, as the 
number of voxels in these graphs was less than 85%. Notably, the 
voxels within the same IC exhibited heterogeneity of trajectories, 
contributing to the shape of the collective k-core per IC, meaning that 
each voxel took turns in the collective rise and fall along the time-bin 
axis. At a threshold above or equal to 0.4, kmaxcore plots of positive 
graphs exhibited state transitions regardless of the number of edges in 
terms of the voxel composition of the kmaxcore voxels and their IC 
belongings. On positive graphs with thresholds below 0.4, the state 
transition disappeared, except for the remaining fluctuations 
(Figure  2A). In contrast, kmaxcore plots of negative graphs with 
thresholds of 0.35–0.55 rarely showed state transitions but depicted 
grossly similar fluctuating temporal progression (Figure 2B).

Volume entropy, a topological invariant of the brain graph using 
its equivalent of a universal cover, represents the unique characteristics 
of information flow of the functional graph shape (Figure 1C). It was 
not found to be linearly related to the total number of edges per time 
bin. This was scrutinized in this exemplary case. Once the number of 
edges decreased, either with or without loss of remaining voxels due 
to thresholding, the volume entropy proportionally decreased to the 
number of edges per brain graph (Figures 3A,B). When the lower limit 
of the total number of nodes was set to above or equal to 1,265 (85% 
of the total 1,489 voxels), the number of graph voxels did not influence 
volume entropy. In positive graphs with correlation thresholds below 
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or equal to 0.4 (ranging from 0.2 to 0.4), the calculated volume 
entropy remained constant across the graphs. At the same time, the 
total number of edges varied from 78 K (average for 280 time bins at 
a threshold of 0.5) to 330 K (average for a threshold of 0.2). As the 
threshold increased from 0.45 to 0.85, the total edge number decreased 
initially, following a curvilinear decrease in volume entropy, and then 
decreased linearly from the threshold of 0.65. In negative graphs with 
thresholds above or equal to −0.4 for anticorrelations (or below 0.4 for 
unsigned anticorrelations), the volume entropy remained constant 
across the graphs. At the same time, the total edge numbers varied 
from 45 K (for a threshold of 0.4) to 193 K (for a threshold of 0.2).

Notably, the volume entropy was the same at thresholds lower 
than certain values in both positive and in negative graphs, as they 
shared the same skeleton structure of information flow on the 
brain graphs regardless of the thresholds below these values. Extra 
surplus edges of the graphs with lower thresholds did not affect 
volume entropy, the topological invariant that represents 
information flow (Supplementary Figure S2). In other words, 
unlike the total number of edge-dependent k-core values, the 
volume entropy of a graph, whether positive or negative, 
represents the total amount of information flow capacity of a 
graph, independent of the additional number of edges therein. 

This finding was reiterated in the pattern of afferent capacity on 
the directed graphs, particularly in the positive graphs 
(Figures 3C,D). The modular shapes of the temporal progression 
of the afferent capacity of the positive graphs were precisely the 
same when the threshold was below or equal to 0.7 (i.e., from 0.2 
to 0.7), and this was also the case when the threshold was below 
or equal to 0.55 (from 0.2 to 0.55) in the negative graphs 
(Supplementary Figure S2). For the afferent capacity, the 
MRI-overlaid animation maps on the run showed the same 
pattern of modules and their exchanges, which was also the case 
for the timepoint plots of the positive graphs, regardless of the 
thresholds when they were above 0.7.

With these observations and analyses, it was found that the edge 
number affected the k-core values. Therefore, the k-core values were 
corrected by dividing them by their total edge number (edge-scaled 
k-core) per time bin. We compared these edge-scaled k-core values 
between intertime bins within individuals, between individuals, or 
between positive and negative graphs. In contrast, volume entropy 
and afferent/efferent node capacity were unaffected by the surplus 
edges when the thresholds were low enough, and we  did not 
perform edge-scaling for volume entropy or afferent/
efferent capacity.

FIGURE 2

The hierarchical top tier voxels according to the varying thresholds in the positive and the unsigned negative graph. Stacked histogram k-core values in 
positive graphs of the case identification #100206. Each IC contained 732 voxels for DMN, 351 for SN, 363 for DAN, 682 for CEN, 483 for SMN, 289 for 
AN, 1,104 for VN, and 2,691 for the unclassified. (A) On the stacked histogram plots of kmaxcore with the thresholds from 0.2 to 0.35, state transition was 
not found because the voxels from all the ICs participated evenly in the top tier voxels. (B) Stacked histograms of k-core values in unsigned negative 
graphs of the same case. The influence of the threshold of negative graphs was similar to that of the positive graphs, but more dramatic. With the 
thresholds between 0.2 and 0.3, the number of kmaxcore voxels alone changed without the composition. With the thresholds of 0.35 to higher, the total 
kmaxcore voxel numbers decreased, but the voxels/IC composition was still homogeneous. Apparent state transitions might as well show up, but with 
less confidence.
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Optimal thresholds were determined by (1) k-core (and its 
accompanying kmaxcore) value, (2) volume entropy (and afferent/
efferent node capacity), and (3) scale-free degree distribution among 
various thresholds in addition to the number of voxels (85%) 
(Supplementary Figure S2). Using separate thresholds for positive 
and negative graphs, we further analyzed the state fluctuations and 
transition of the kmaxcore maps with a glass brain representation to 
determine the dynamic voxel hierarchy. We also analyzed the capacity 
of afferent and efferent nodes overlaid on MRI slices in 180 HCP 
subjects, as well as the afferent/efferent capacities of voxels on their 
corresponding timepoint plots. With these preset thresholds, 
we sought the state fluctuation or transition associated with modules 

and their exchanges of afferent and efferent capacity of voxels or ICs 
in both positive and negative graphs.

k-core voxel values represent the 
hierarchical position of voxels in 
resting-state brain functional graphs

The intervoxel correlation of the voxel waveform amplitudes 
exhibited an almost symmetric distribution in the 17 million-edge 
histograms. We divided the positive and negative edges to construct 
positive and negative graphs, respectively, which are mutually 

FIGURE 3

The volume entropy values, modules, and exchange patterns of the voxel/IC composition were exactly the same for the graphs with surplus edges. 
(A) In positive graphs with thresholds of 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, and 0.85, the volume entropy was calculated 
separately per threshold (n = 14) for each time bin (n = 280). The abscissas of the total number of edges were plotted logarithmically because the total 
number of edges ranged from thousands to millions. In these positive graphs, with thresholds equal to or lower than 0.45, the volume entropy was the 
same between time bins and between thresholds, irrespective of the thresholds and the corresponding numbers of edges. The volume entropy of 
positive graphs ranged from 9 to 12 million between time bins in graphs with thresholds of 0.45–0.2, which was larger than the range of volume 
entropy of negative graphs with similar thresholds. (B) In the negative graphs, the pattern was similar, and once the number of edges decreased to less 
than 8 million, the volume entropy decreased dramatically and proportionally with the number of edges. The volume entropy of negative graphs with 
thresholds of 0.45–0.2 ranged from 8.5 to 9 million. (C) Examples of voxels belonging to the DMN or to the VN showing no difference between the 
positive graphs with varying thresholds from 0.2 to 0.6. Notably, the contour of the formed modules, as well as the trajectories inside and the 
maximum height of the modules, was exactly the same. We could be sure that the modules and their exchange did not depend on or vary with the 
choice of thresholds according to the criteria of Supplementary Figure S2; at least the number of nodes preserved was greater than the set point (85% 
in this study). IC, independent components; DMN, default mode network; VN, visual network.
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exclusive and interdependent. Edges with negative correlation 
(intervoxel anticorrelation) were converted to unsigned values; thus, 
a negative graph is, in fact, an absolute-valued negative network. All 
subsequent analyses were performed for positive and unsigned 
negative networks (Figure 1B).

After thresholding the brain graphs with the appropriate 
correlation values, the brain graphs were distribution-free (descending 
mostly linearly on the log–log plot in the voxel degree-prevalence 
distribution), preserved as many voxels [5,000 (85% of the total)] as 
possible and had a sparse number of edges (0.5–10%) along all the 
time bins and individuals from the HCP (n = 180). Python codes were 
used to perform k-core percolation as previously described (Azimi-
Tafreshi et al., 2019; Whi et al., 2022b). k-core values were annotated 
to 5,937 voxels and overlaid on 36 slices of MRI transaxial images 
(Supplementary Figure S3A). For 280 time bins of 180 individuals 
from the HCP project, animation movies for k-core voxel value maps 
revealed all k values, which varied in total sum and thus waxed and 
waned on animated displays. The total sum of the k-core values per 
graph was equal to the total number of edges for each time bin 
(Supplementary Figures S1G,H), while highly ranked k-core-valued 
voxels were displayed in scatters or clusters. According to the 
theoretical reasoning and the practical observation of the equivalence 
of the total number of edges and the total k-core values per time bin, 
animation movies were finally made using the edge-scaled k-core 
index (k-core voxel values divided by the total edge number per time 
bin), as well as animated edge-scaled flag plots and edge-scaled k-core 
timepoint plots (Supplementary Figures S3C,D).

The qualitative readout of these image-animation sets reveals 
fluctuating changes in hierarchical intensity, where red represents the 
highest position on the hierarchy, and blue represents the lowest 
position. Additionally, the jumping effect changed from one cluster to 
another cluster of hierarchically prominent voxels. The hierarchical 
dominance of clustered voxels seemed to be sustained for a varying 
short period and then quickly replaced by other clustered voxels. A 
stacked histogram for the hierarchically highest voxels on kmaxcore plots 
showed an abrupt and sharp transition of the dominant voxel clusters. 
We referred to this abrupt transition of kmaxcore voxels as the “state 
transition” of the hierarchically highest voxels 
(Supplementary Figure S3B). On the animated glass brain images of 
lateral (sagittal) and dorsal (transaxial) views, we  explored the 
alternating participation of voxels belonging to the same ICs 
(Supplementary Figure S3C). Seven well-characterized ICs and their 
voxels are colored using rainbow colors. Animated kmaxcore voxels/IC 
composition images, either stacked histograms or glass brains, easily 
revealed the hierarchical dominance of, for example, visual network 
(VN)-dominant kmaxcore voxels or default mode network/central 
executive network (DMN/CEN)-dominant kmaxcore voxels and their 
transition from the VN to the DMN/CEN from the DMN/CEN to the 
VN (Supplementary Figure S3D). Other combinations of kmaxcore 
voxel/IC compositions could also be  observed with every possible 
transition. In our previous report (Huh et al., 2022), we measured the 
intraoperator reproducibility of counting the number of state transitions, 
and the resulting reproducibility was indicated by a Pearson’s correlation 
coefficient of 0.88 (Supplementary Figure S4). These surveys were 
supplemented by animated flag plots of voxel k-core/IC compositions, 
which are the shuffled voxels displayed in the animation 
(Supplementary Figure S3D). This state transition was easily observed 
in the positive networks of almost all 180 normal adults (third to fourth 
decade in age) but was rare in the negative networks.

Among 180 individuals, the number of state transitions ranged 
from none to the most frequent in the positive graphs (Figure 4 and 
Supplementary Videos S1–S4). State transition was not observed in 17 
subjects, as the same state persisted throughout the entire period 
(Figures  4A,C and Supplementary Videos S1, S2). Only one state 
transition was observed with a half-and-half division of states in 10 
subjects (Figures  4E, 5A and Supplementary Video S3), and 
prominent, typical state transitions were observed on several occasions 
in 105 subjects (Figure 4G and Supplementary Video S4). The others 
exhibited an intermediate pattern; i.e., an intermediate pattern 
between no transition to one with half-and-half transitions 
(Supplementary Figures S5A,C), an intermediate pattern between one 
transition to indistinct/a few transitions, and an intermediate pattern 
between typical (Supplementary Figures S6A,C) or too-frequent 
transitions (Supplementary Figure S7A). Synchronized combinations 
of state fluctuations were rare but were present in 12 individuals, as 
illustrated in the eloquent case, are shown in the 
Supplementary Figure S8A Asymmetry of module composition of 
state was easily recognized on edge-scaled k-core animation images, 
one of which showed alternating contributions of the CEN (from left 
to right, then to left, and then to right) (Supplementary Figure S9A), 
another of which showed a left frontal lobe reminiscent of Broca’s area 
(Supplementary Figure S9C). The other showed ripples in the left 
cerebellum but not in the right cerebellum (Supplementary Figure S9F). 
All of these are shown in the positive graphs. Unlike in positive graphs, 
in unsigned negative graphs, the state transition was not remarkable 
but was vague, if any, and the kmaxcore and k-core animation revealed 
ripples with infrequent unison-like synchronization (Figure 5 and 
Supplementary Videos S5, S6). In an exotic case (only one of the 180 
individuals, Supplementary Figure S9C), animated k-core plots 
revealed the explicit state of Broca’s area twice in negative graphs 
(Figure  5B and Supplementary Video S6), which was the same 
combination of the left frontal area of the salience network (SN), 
dorsal attention network (DAN), CEN, and auditory network (AN) in 
the positive graph of the preceding time bins of the first half of the 
image acquisition (Supplementary Figure S9C). Otherwise, in all the 
other individuals, the negative networks did not exhibit a characteristic 
state composition or pattern of kmaxcore. They were ignorant of the 
individuation of the individuals on their behalf.

As k-core percolation was performed independently for each time 
bin in the positive or negative graphs produced with the same 
thresholds for each individual, the total sum of edges varied 
significantly per time bin within an individual as well as between 
individuals. In all individuals, the sum of the k-core values across the 
5,937 voxels was one-to-one match with the sum of all edges per graph 
time bin (Supplementary Figures S1G,H). This relationship was 
without exception. Thus, k-core timepoint plots were made using 
edge-scaled k-core values and were presented as quantitative plots.

Quantitative edge-scaled voxel k-core values were displayed 
based on voxels/IC composition, which enabled us to follow the 
trajectories of each voxel’s k-core values on the timepoint trajectory 
plots of voxels per IC. From the DMN to the VN, the seven 
components, as well as the left and right cerebellum and vermis and 
their corresponding voxels, were displayed using MATLAB or 
Microsoft Excel. On both outputs, the 10 ICs exhibited quasi-similar 
contours due to the confounding effect of edge numbers if we used 
edge-non-scaled voxel k-core for timepoint plots. After edge-
scaling, transient increases, decreases, or ripples remained on the 
contour surface (Supplementary Figures S1A,B). The subtle 
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FIGURE 4

Various types of states and state transitions on kmaxcore voxels/ICs from the DMN to the VN and modules, and their exchanges on afferent capacity 
voxel/IC timepoint plots. The color strips range from sky blue (DMN), red (SN), orange (DAN), yellow (CEN), green (SMN), blue (AN), violet (VN), and gray 
(unclassified). (A) Glass brain image animation and stacked histogram plots along 280 time bins of the kmaxcore. Voxels belonging to VN, AN, SMN, SN, 
and DMN joined the kmaxcore all around the time bins. No state transition was observed in this individual, and the total number of kmaxcore voxels 
fluctuated. See Supplementary Video S1. (B) Afferent node–voxel capacity, labeled AffECSum, was plotted along the time bins separately for ICs 
annotated for every voxel, such as the DMN, SN, DAN, CEN, SMN, AN, VN, L Cbl, and R Cbl. The density of modules composed of the VN, SMN, SN, AN, 
etc. varied over time, but there was no dropout or exchange. A few loose threads were observed in the voxels/IC plots of the DMN, CEN, DAN, and AN. 
(C) Glass brain images and stacked histogram along 280 time bins of the kmaxcore. Voxels belonging to DMN, CEN, and the unclassified group were the 
dominant and exclusive participants of the kmaxcore throughout the time bins. Few state transitions were observed in this individual at approximately 
the 205th and 245th timepoints. See Supplementary Video S2. (D) On time-varying afferent node capacity voxel plots derived from positive brain 
graphs, voxels belonging to the DMN, CEN, and unclassified network dominated with larger afferent node capacities continuously during the entire 
period. The VN, SMN, SN, and AN splashed briefly at the end of the period. (E) In this individual, kmaxcore plots revealed initial DMN and CEN dominance 

(Continued)
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differences in edge-scaled voxel k-core timepoint plots did not affect 
the evaluation of the distribution heterogeneity of voxels and their 
trajectories. In this study, although we used voxel annotation by ICs 
derived from group static ICA of 180 individuals’ cohorts, voxel 
trajectories were grouped into recognizable modules for each voxel/
IC composition. In addition to the collective behavior of the 
temporal progression of the voxel/IC composition, these timepoint 
plots enabled us to follow through the voxel behavior of joining by 
taking turns in the kmaxcore. Each voxel has its own characteristic 
recognizable trajectory or temporal path along the time bins, 
meaning that (1) heterogeneity was present between voxels taking 
hierarchical top-tier positions although their associated ICs were the 
same and (2) despite this heterogeneity, the voxels for each IC 
collectively constituted a discernible trajectory along the temporal 
axis according to the ICs to which they belonged. This was the 
requisite for the hierarchical temporal progression of voxels 
themselves and their assigned identity, based on their characteristic 
belonging to ICs.

Volume entropy, regardless of surplus 
edges, functions as a global parameter of 
information flow over resting-state brain 
functional graphs

To reduce the computational burden, brain graphs (with a 
threshold of 0.65 for positive graphs or −0.5 for negative graphs) 
were downsampled to 1,489 voxels and subjected to volume entropy 
calculations using the model described in our previous report (Lee 
et al., 2019). In short, each graph was transformed into a universal 
cover consisting of nodes and edges from the individual original 
graph (Figure 1C). According to the theorem of minimum volume 
entropy (Lim, 2008), a random walker’s journey on the metric 
surface of the metric ball of the universal cover converges to an 
asymptotic end as the radius of this metric ball increases to infinity. 
The topological invariant, volume entropy of a brain graph, h, on the 
exponential term is now defined on the metric ball of the universal 
cover of the original graph (Figure 1C). In the previous study (Lee 
et al., 2019) and in the following application study (Ha et al., 2020), 
instead of using numerical analysis to find asymptotically converging 
values of volume entropy, we applied a generalized Markov system 
on the edge transition matrix and eigen decomposition. Volume 
entropy is a global measure that represents the total sum of the 

information flow over the edges of functional brain graphs, whether 
positive or negative.

The volume entropy of a graph depends on the number of nodes 
and edges, and the graph’s constitution. We first tried to remove the 
confounding effects of the number of nodes and then to understand 
those of the edges. In the positive and negative graphs, we used graphs 
with the same thresholds of our choice for all the HCP individuals. 
The number of nodes was higher than 70% of 1,489 voxels (>85% of 
5,937 voxels). We found that the number of nodes did not affect the 
volume entropy on the timepoint plots when we compared the volume 
entropy of time bins per se and the volume entropy divided by the 
number of nodes (Supplementary Figure S10A). Therefore, although 
variable, if above a certain percentage of nodes were included, 
we could ignore the effect of the number of nodes. The impact of the 
number of edges was slightly more complex, as expected, regarding 
the relationship between the number of edges and the graph structure.

By varying the thresholds in individual graphs and observing 
the entire cohort, we  obtained the following findings. First, the 
number of edges per time bin varied greatly (from 5,000 to 200,000) 
for every individual. Volume entropy decreased proportionally to 
the number of edges below a certain threshold, specific to each brain 
graph. For example, first, in an individual (Figure 3A), an average of 
50,000 or fewer edges showed a coarsely proportional decrease in 
volume entropy. Second, in this individual, the average of 
approximately. 330 K (threshold of 0.2) to 78 K (threshold of 0.5) 
edges in positive graphs or approximately 193 K (threshold of 0.2) 
to 45 K (threshold of 0.4) in negative graphs, the volume entropy 
was approximately 9–12 million in positive graphs, or 
approximately 8.1–9 million in negative graphs (Figures  3A,B). 
Third, unlike nodes (regularized within an individual, referred to as 
edge-scaled), the volume entropy divided by the total number of 
edges waxed and waned in timepoint plots in all individuals 
(Supplementary Figure S10A). Volume entropy with preset 
thresholds for an individual (across all time bins) or for the entire 
cohort of individuals could not be  used for comparisons 
(Supplementary Figure S11). Nor could the edge-scaled volume 
entropy per time bin. This observation limited the use of volume 
entropy in brain graphs as a global parameter of information flow 
capacity for comparisons among individuals; instead, the 
co-production of afferent and efferent node capacity on directed 
brain graphs could be  used. The timepoint plots of the afferent 
capacity of the positive graphs revealed module formation and 
exchange. The same modules with voxel/IC compositions and their 

and later VN dominance with a small SMN or DMN or others. See Supplementary Video S3. (F) Afferent node capacity voxel plots corroborated the 
kmaxcore plots, implying that kmaxcores were run by positive afferent node–voxel capacity, the sum of node-linked edge capacities coming in from 
other voxels, of the DMN and CEN, with a small amount of DAN during the first half of the period. At approximately the 115th timepoint, the dominance 
of the DMN and CEN voxels abruptly abated, and the dominance of the VN voxels decreased with little help from the SMN and scant help from the 
DMN, DAN, and CEN. (G) Glass brain images and stacked histogram of the kmaxcore. State transitions from VN dominance to DMN, CEN, and DAN, or 
vice versa, are repeatedly shown. At the 80th timepoint, a sharp transition from sole VN dominance to DMN, DAN, CEN, and VN dominance was found. 
A single-petal bin preceded just before the transition. Between the 100th and 150th time bins, VN dominance occurred first, followed by DMN, DAN, 
CEN, and unclassified codominance. See Supplementary Video S4. (H) Afferent node–voxel capacity, labeled as AffECSum on the ordinate, plots. 
Previously developed ICA using images of 180 static individuals defined the modules of ICs. Interestingly, the DMN, DAN, and CEN modules gathered 
together to make module congregates of similar (but with small variations) progress over time bins. The modules were prominent for all ICs, the left 
and right cerebellums, and the unclassified. Attention might be given to time bins around the 100th one, which showed a razor-sharp transition from 
the DMN, DAN, and CEN comodules to the VN module and back to the DMN comodules. This was a clear representation of the effect of the kmaxcore 
‘state transition’ on afferent node capacity. IC, independent components; DMN, default mode network; SN, salience network; DAN, dorsal attention 
network; CEN, central executive network; SMN, sensorimotor network; AN, auditory network; VN, visual network; Cbl, cerebellum; L, left; R, right.

FIGURE 4 (Continued)
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changes were identified (Figures 3C,D). The plateauing relationship 
between volume entropy and the total number of edges with lower 
thresholds (e.g., ≤0.4 in positive graphs) is the first observation that 

the surplus edges did not contribute to the globally cumulative 
information flow in a graph represented by volume entropy, a 
topological invariant of a graph (Figures 3A,B).

FIGURE 5

Hierarchically top-tier voxels on stacked histogram timepoint plots of kmaxcore voxels or hierarchically colored MRI-overlaid animation plots. Animation 
images were captured via snapshots for visualization. (A) In this individual presented in the above Figure 4E, who showed initial DMN and CEN 
dominance and later VN dominance in positive graph (left side of this picture), in the unsigned negative graph on the right side, a sustained state of 
voxels belonging to most ICs was observed across all the time bins. This case was representative of the negative graphs of all individuals, in whom the 
edge number scaled (abbreviated edge-scaled) k-core images showed a characterless flickering pattern of ripples. See Supplementary Videos S5A,B. 
(B) In this individual, the positive graph presented a typical state transition on the stacked histogram timepoint plots of kmaxcore voxels but 
extraordinarily showed the top tier of the left frontal cortex (Broca’s area) in the first half of the time bins’ progression, intervened by right frontal lobe 
leveling up (arrows) on the k-core animation plots. However, the negative graph did not show any abrupt state transition but only fluctuations in the 
stacked histogram of kmaxcore. At later timepoints (125th to 170th), the left frontal prominence of the negative graph accompanied the prominent left 
frontal area of the positive graph (120th to 180th). See Supplementary Videos S6A,B. IC, independent components; DMN, default mode network; CEN, 
central executive network; VN, visual network.
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Directed functional brain graphs yielded 
afferent/efferent voxel–node capacities as 
surrogates for edge transition matrices

Edge weights of nodes to and from any nodes yielded edge 
transition matrices, which were asymmetric in our previous study by 
Lee et al. (2019), using 274 node regions. By incorporating pairwise 
intervoxel correlation in this study, rather than the previous inter-
regions of interest correlation, we  reproduced the asymmetry of 
directed edge matrices per time bin. The edge matrix was huge, with 
a rare possibility of direct visualization; thus, the edge metric was 
converted to a node metric. That is, from the edge matrices, marginal 
values were calculated to yield afferent (sum of columns representing 
“to the node”) and efferent (sum of rows representing “from the 
node”) values. These afferent and efferent node capacities were 
overlaid on the MRI slices, and the time bins were merged to create 
audio–video interleave (AVI) files for animation playback. Positive 
and negative graphs, along with their afferent and efferent node 
capacities, produced 2 × 2 (a total of four) animations per individual 
(Figure 1 and Supplementary Video S7).

The animated afferent node capacities of positive graphs were 
unique in their revelation of voxels’ composition of modules and their 
exchanges along the time-bin axis, but not efferent capacities or 
afferent/efferent capacities of negative graphs (Figure 6). As each time 
bin’s edge capacity and volume entropy calculation were already 
normalized during calculation (Lee et al., 2019), comparable modules 
popped up from the baselines with exponential height, took temporary 
union in various combinations of ICs, and took turns, which we called 
‘module exchange’ (Figure 6A and Supplementary Video S7A). For 
example, in these positive graphs, DMN voxels frequently coalition 
with CEN voxels, SN voxels with AN or sensorimotor network (SMN) 
voxels, or VN voxels with a variety of IC voxels. The transition from 
prominent DMN/CEN modules to VN modules, or vice versa, was 
observed frequently during our read-outs. On the animated afferent 
node capacity of positive graphs, we observed a waving or undulating 
progress with collective ICs, sometimes almost all the ICs 
(Supplementary Figure S12A). In contrast, animated efferent node 
capacities of positive graphs were nearly stationary with small 
multifocal flickering on MRI-overlaid brain animation plots (Figure 6B 
and Supplementary Video S7B). Animated afferent node capacities of 
negative graphs showed ripples of collective voxels (Figure 6C and 
Supplementary Video S7C). Negative graphs tended to rarely generate 
modules, which differed from the afferent node capacity of positive 
graphs but also formed the unison of smaller module collections with 
much lower maximum heights of modules (one-third to one-eighth of 
positive graphs) (Supplementary Figures S12, S13). The animated 
efferent node capacities of the negative graphs were stationary with 
multiple small flickers (Figure 6D and Supplementary Video S7D).

The quantitatively assessed afferent node capacities were 
displayed in voxel-run timepoint plots (point line-connection 
figures) based on the voxels/IC composition, which followed each 
voxel’s spatiotemporal trajectory of afferent node capacity along the 
time bins for each IC (Figures 6A,C; Supplementary Videos S7A,C; 
Supplementary Figure S12A). Afferent node capacities of the positive 
graphs exhibited individually distinct envelopes of the voxels’ 
trajectories for each IC, characterized by exponential increases and 
decreases, as well as on-and-off movement along the temporal 
time-bin axis. These modules were interchangeable between any 

combination of ICs, changing from one IC to another and vice versa. 
This module exchange reminded patterns of state transition of 
animated stacked histograms of kmaxcore voxels.

Interestingly, voxel trajectories were highly heterogeneous in 
making modules for every IC. In other words, when we used an Excel 
chart display for every voxel (n = 69–247) belonging to ICs (AN ~ 
VN) with the capability of each voxel trajectory tracing, a voxel was 
on the highest swing in one module but on the baseline without any 
ascent in the next module (Figure 7). A priori entitlement of voxels 
could only manifest the correspondence of voxels to a specific IC. This 
pattern was universal among individuals in the cohort in terms of the 
voxels’ behavior along the temporal axis, as it belonged to an IC 
macroscopically and groupwise; however, participation was ad hoc 
and alternated with that of the colleague voxels (Figures 7E,F). This 
immediately defied the simplicity of the region of interest (ROI) 
approach for following up the collective trajectories of voxels in an 
ROI. The center-of-mass assumption of inter-ROI correlation was 
computationally convenient but based on an incorrect assumption in 
the previous ROI, as investigated in studies including ours (Lee et al., 
2019; Ha et al., 2020).

Voxel hierarchy and afferent capacity of 
functional brain positive graphs represent 
resting-state transition at rest

We asked questions regarding whether the voxel–node hierarchy of 
a dynamic functional brain graph can be represented by the afferent or 
efferent node capacity thereof for each individual, either or both on the 
positive and the unsigned negative graphs. While voxel k-core values 
were derived from the undirected graphs, which were the aggregates of 
in- and out-degrees of voxel nodes, afferent and efferent node capacity 
was derived from the directed graphs produced independently using 
universal cover/Markov modeling, which separately represented the 
afferent (incoming) and the efferent (outgoing) edges with their own 
weights (Figure  1). Both the voxel k-core value and afferent node 
capacity timepoint plots, as well as their overlaid MRI animations, 
revealed the module exchanges during the progression of the temporal 
time bins, but not on the efferent node capacity plots. In the positive 
graphs, the animated stacked histogram (or glass brain display) of the 
kmaxcore voxels (Figures  4A,C,E,G; Supplementary Videos S1–S4; 
Supplementary Figures S5A,C, S6A,C, S7A, S8A, S9A,C,E) and the 
animated afferent node capacity of the voxels/IC composition 
(Figure 6A; Supplementary Videos S7A,C; Supplementary Figure S12A) 
well disclosed these module exchanges, corroborating each other. 
Unique to the afferent node capacity of the positive graphs, the timepoint 
plots of the afferent node capacity well represented the voxel/IC module 
formation and exchanges and are presented in the Figures 4B,D,F,H and 
Supplementary Figures S5B,D, S6B,D, S7B, S8B, S9B,D,F. However, this 
was not the case for the efferent node capacity, even in the positive graphs 
(Figure 6B; Supplementary Video S7B; Supplementary Figure S12B). In 
unsigned negative graphs, rare examples of module exchange were 
present (Supplementary Figures S13A,C,E,G), even in the afferent 
capacity, but obviously not in the efferent capacity. Thus, positive graphs, 
but not unsigned negative graphs, were the main source of fMRI 
evidence of module exchanges. Notably, the voxel k-core was derived 
from undirected graphs, and the afferent and efferent voxel capacities 
were derived from directed graphs.
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FIGURE 6

Differences between positive and negative graphs of afferent and efferent voxel capacity timepoint plots were common on the directed graphs of all 
the individuals. Afferent node capacity showed characteristic patterns on both timepoint plots and MRI-overlaid map animations. Afferent capacity was 
greater than efferent capacity for voxels in general and for voxels/ICs. Afferent capacity of the positive graph was greater than that of the negative 

(Continued)

https://doi.org/10.3389/fnhum.2025.1543854
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Lee et al. 10.3389/fnhum.2025.1543854

Frontiers in Human Neuroscience 14 frontiersin.org

The next question was whether positive animated stacked 
histograms of kmaxcore and/or positive animated afferent node 
capacity are complementary or redundant for revealing state 
transitions by showing the exchange of voxels/IC composition within 
modules. Both methods were found to reveal similar numbers and 
timing of state transitions, which were sometimes clearer in positive 
animated stacked histograms of kmaxcore voxels and, at other times, 
more easily recognized in positive animated afferent node capacity 
brain overlaid images. Scrutiny of the timepoint plots of both the 
kmaxcore and afferent node capacity revealed that they were the same 
in their ability to identify state transitions or module exchanges 
during the resting state. However, these observations in individuals 
did not overlap entirely, and one did not include the other. Eventually, 
trajectory tracing of single voxels, for example, enabled us to 
determine that their trajectories were unrelated to each other 
(Supplementary Figure S14). Voxel/IC timepoint plots of afferent 
node capacity and stacked histograms of kmaxcore voxels were the 
most effective for revealing the state transitions and module 
exchanges once they were observed in collective plots along their IC 
compositions. Both parameters were helpful in revealing the time 
bins of the start and end of the modules, the combination of the 
modules, and the contribution of combination products 
(simultaneously activating voxels belonging to the ICs at that 
moment), not exclusive to one or the other modality.

Timepoint plots of k-core voxels per se were found to be intensely 
dependent on the total number of edges for each time bin; thus, the 
seemingly self-similar feature per se was an artifact of the confounding 
effect of varying the total number of edges. In contrast, the kmaxcore 
was free from this confounding effect, at least within certain threshold 
ranges. The afferent node capacity on the directed positive graphs was 
theoretically and data-wise free from the edge-number confounding 
effect. The following enabled the discovery of resting-state fMRI 
evidence of fluctuating/transitioning human resting states: 
confirmation of the scale-free degree distribution, finding the 
hierarchical skeleton of brain graphs and the subsequent k-core 
percolation, relabeling the centrality of voxel degrees with 
hierarchically structured values of k-core and, finally, an information/
graph topological approach producing directed graphs and afferent/
efferent node capacity. Both methods independently went on to 
unravel module switches, reminiscent of resting-state transitions in 
their own ways, and corroborated each other. Eventually, the timepoint 
plots of both measures clearly showed that they were not adequately 
proportional to cancel or include one within the other 
(Supplementary Figure S14).

The following simple question was whether the voxels’ behavior, 
along the temporal axis of the time bins, occurred on the 

two-dimensional (2D) plane of the abscissa of the hierarchy, that is, 
the k-core value and the ordinate of the afferent node capacity. From 
the positive graphs, an exemplary case was selected, and an IC was 
selected. When the trajectory of a voxel (and others) was drawn along 
the temporal progression on this plane, exuberant paths were 
produced, which need to be modeled in future studies (Figures 7E,F). 
The heterogeneity of these voxel trajectories, both in terms of 
hierarchy and of afferent node capacity, was another advantage of 
these methods, which involved animated display of pairwise voxel-
based amplitude correlation studies in resting-state fMRI.

To compare the state progression and transition patterns of 
kmaxcore over time, we also analyzed four centrality measures from 
graph theory, such as degree centrality, eigenvector centrality, 
betweenness centrality, and clustering coefficient. As shown in the 
Supplementary Figure S15, except for betweenness and clustering 
coefficient, the other measures exhibited considerable similarity, as 
seen in the glass brain visualization. However, in the stacked 
histogram, we observed that kmaxcore changes were more pronounced 
in revealing transitions compared to degree, eigenvector, and strength 
centrality. To compare with kmaxcore, we identified the maximum voxel 
for each measure by determining the percentage of voxels 
corresponding to kmaxcore in each time window and designating voxels 
with values equal to or above this threshold as max voxels for the 
respective measures. To facilitate the understanding of complex 
results, Figure 8 presents a tabulation of summarized results and a 
reconstructed version of Figure 5.

Discussion

In this study, state progression and transition on resting-state 
networks were investigated using two separate methods: k-core 
percolation on the degree sequence and information flow analysis 
of constructed directed graphs, both positive and negative. k-Core 
percolation overcame the current ignorance of voxels, producing 
collective trajectories that give rise to emergent modules and state 
transitions at rest. Disregarding the principal components, 
we focused on the voxels on the hierarchical ladders of functional 
brain graphs, exploring their transience of combinatorial actions. 
Information flow measures of topological invariant searches of 
volume entropy allowed us to construct the most probable directed 
weighted graphs and their corollary quantitative afferent and 
efferent capacities. This latter approach automatically transformed 
pairwise edge information into node characteristics, known as 
afferent or efferent voxel–node capacities. Fortunately, both 
methods demonstrated the presence of state and state transitions at 

graph. (A) Time-bin timepoint plot of voxels/DMN and voxels/VN of afferent node capacity of positive graphs. Module formation and switching were 
visualized with MRI-overlaid animation plots (shown here with snapshots of the 120th to 230th time bins) for afferent node capacity. The maximum 
height of the module was 0.05, which was 50 times greater than the 0.001 for the efferent node capacity. See Supplementary Video S7A. (B) Timepoint 
plots of efferent node capacity were homogeneous, which was also well observed in the animation plots with monotonous snapshots. This 
characterlessness was common in all the individuals. See Supplementary Video S7B. (C) Timepoint plot for the afferent node capacity of unsigned 
negative graphs. The contour and trajectory of the voxels/IC (DMN, AN, and VN) looked similar to those of the positive graphs. However, the height of 
the module was only one-seventh that of the positive graphs. Nevertheless, the 0.006 afferent node capacity in the negative graph was almost 9 times 
the efferent node capacity (0.0007) in the negative graph. See Supplementary Video S7C. (D) Monotonous and smaller efferent node capacities of 
negative graphs are shown. See Supplementary Video S7D. DMN, default mode network; CEN, central executive network; AN, auditory network; VN, 
visual network.

FIGURE 6 (Continued)
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rest caught by resting-state fMRI and visualized the modules 
composed of voxels pre-annotated to ICs with either animation or 
timepoint plots. Voxel trajectories have now been understood to 
join popular ICs, that is, the DMN, CEN, SN, VN, or others. Further 
investigation of trajectory clustering is warranted to understand 
their within-IC taking turns in timepoint progress. Of course, the 

underlying mechanism of state transition or module switching can 
be  elucidated by combining phase coherence and amplitude 
correlation. The role of negative correlations (i.e., anticorrelations) 
requires further study, although we considered negative correlations 
as unsigned correlations in this study and found that their unsigned 
pseudo measures did not contribute substantially to the state 

FIGURE 7

The voxel trajectories showed extreme heterogeneity in terms of the afferent node capacity and edge-scaled k-core timepoint plots. (A) A total of 172 
voxels of the DMN were traced along the 280 time bins. The plot revealed that each voxel took its own trajectory, meaning that it contributed once to 
form a module and then at the next module, either idled or contributed, and then at the third module, unexpectedly behaved, etc. Despite these 
behaviors of individual voxels, an IC in this case, the DMN made a plausible module to be named a characteristic IC with the support of the voxels’ 
unpredictable trajectories. (B) The behavior of the 247 trajectories of VN voxels was similar to that of the DMN voxels. VN voxels seemed to consist of 
two clusters to make modules, that is, if we labeled 1–5 for medium-to-large-sized modules from the start, whitish modules of 1 and 5, bluish modules 
3 and 4, and mixture, the two clusters might have been dissociated as separate ICs beforehand. (C) and (D) k-Core (edge-non-scaled) showed the 
same contour for the DMN and VN. This was because the total number of edges per time bin was the major determinant of total k-core. The behavior 
of the trajectories of each voxel, either the DMN or VN, followed its own fate to take any or no route of contribution precariously to form ICs, but 
collectively made the rise and fall of each peak. (E) A total of 153 CEN voxels were followed for their trajectories of afferent node capacity. One can 
easily follow the luxury of heterogeneity of each voxel. (F) Trajectory images with entire voxels/IC would have made resolving impossible; thus, 
we chose 10 random trajectories of the SN (79 voxels). Timepoint plots of these 10 voxels showed the heterogeneity of trajectories, making it 
unbelievable that they belonged to the same IC or SN. IC, independent components; DMN, default mode network; VN, visual network; CEN, central 
executive network; SN, salience network.
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transition. We have briefly summarized our results as a graphical 
figure and tabulation in Figure 8.

Unlike structural brain graph interpretation, functional dynamic 
brain graph interpretation requires understanding graph flexibility. 
When we  interpret functional brain graphs, we need to note that 
functionally, the brain is not a closed system but an open system 
receiving inherent emergent (Bianconi and Rahmede, 2017; Calmon 
et al., 2022; de Schotten and Forkel, 2022; Calmon et al., 2023) and/or 
external perturbation stimuli (Brändas, 2024). This is also the case for 
the resting state, although people erroneously assume that the 
stationary state of the human mind will be observed in resting-state 
fMRI studies. Neuron–glia complexes consisting of brain voxels serve 

as connected or independent identifiers of inherent emergent 
behaviors, with the characteristics of a microcanonical ensemble (Wu 
et al., 2013; Huh et al., 2022; Whi et al., 2022b). This openness of 
voxels leads to the spatiotemporal expansion of interactions with 
adjacent and remote voxels, resulting in graph structures that exhibit 
both positive and negative correlations/coherences. The sliding-
window analysis method for brain blood oxygen level-dependent 
(BOLD) waveforms needed to be chosen to discretize the temporal 
expansion of the fMRI signals, which made the analysis 
computationally burdensome. Fortunately, computing resources, 
whether hardware or software, are available and affordable; thus, 
voxels and their trajectories can now be traced. The observables from 

FIGURE 8

Graphical summary and tabulation of the results. (A) The spatiotemporal progression of hierarchical structure was investigated in dynamic positive and 
unsigned negative brain graphs, respectively. Spatiotemporal progression of voxels’ hierarchical information was visualized in four representative 
subjects. Voxel hierarchy of positive graphs showed transition and succession; however, the transition was not distinct in the unsigned negative graph. 
The negative networks did not show a characteristic state composition or pattern of kmaxcore. (B) The voxel hierarchy in positive graphs displayed 
abrupt changes and state transition/succession through animated coreness maps and kmaxcore representation, such as stacked histograms and glass 
brain visualization. The afferent voxel capacity in the directed graph showed dynamic module exchange in the positive graph, but not efferent 
capacities in the positive graph or afferent and efferent capacities in the negative graph.
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this voxel-wise volume of the brain graph consist of voxel-sized quanta 
spatially and 1-min window-sized quanta temporally. Functional 
interactions between adjacent or remote voxels are endowed with a 
luxurious time for 1 min (several rounds of global communication via 
electrical and chemical interactions between neuron–glia complexes 
within each voxel), and adjacency or neighborliness in their similarity 
characteristics of functional correlations are then free from any 
constraint of structural connections between voxels. The BOLD 
waveforms of voxels and the intervoxel correlation values thereof now 
depend solely on their observed correlation and coherence. In other 
words, the behavior of several thousand voxels is more likely to be that 
of a three-dimensional lattice, where the nodes can communicate 
within the observed period of 1 min, regardless of the Euclidean 
physical or structural distance. Only the observed similarity between 
voxels dictates further interpretation of brain graphs. We  did not 
integrate phase coherence in this study.

Percolation has been used for decades to understand the 
configuration space or the temporal axis, and phase transitions are 
well understood in statistical physics. Pioneering works have reported 
the use of percolation in brain mapping and connectivity analysis 
(Alexander-Bloch et al., 2010; Gallos et al., 2012; Morone and Makse, 
2015; Del Ferraro et al., 2018). This percolation was also adopted to 
understand hierarchical organization and optimal thresholding of 
functional brain graphs (Bardella et al., 2016; Nicolini and Bifone, 
2016; Whi et  al., 2022b). Degree was commonly used to find the 
hierarchy of nodes as well as edges using k-core percolation on 
resting-state fMRI. Most recently, investigators used transfer entropy 
(TE) using a multivariate TE toolbox of MATLAB for 
electrophysiological measurements in primates to understand motor 
behavior-related hierarchical organization of directed weighted graphs 
derived from TE preprocessing. TE is another excellent measure of 
representing directed information flow over the edges made of a 
hundred nodes (Bardella et al., 2024). Compared to this approach, 
we used an adjacency matrix derived from an amplitude correlation 
matrix, applied k-core percolation to spatiotemporal data, and 
considered undirected connections between 18 million voxel pairs. 
Temporal sampling and its tracing of top-tier voxels were the 
uniqueness of our study. Directed information flow over the 
spatiotemporal functional brain graphs was investigated using another 
directed graph format, whose afferent and efferent capacities overlaid 
on the voxel nodes to reveal the state transition, which was observed 
only in the afferent capacity. Information flow was observed without 
neuronal measurement (instead, using BOLD) or percolation process 
(instead, using afferent capacity overlaid on MRI templates).

In the Introduction section, the first assumption was announced 
to be  untestable in our investigation (Hutchison et  al., 2013; 
Mooneyham et al., 2017; Gonzalez-Castillo et al., 2021); however, on 
resting-state fMRI, we discovered modular on-and-off phenomena 
and module exchanges at rest in humans. Edge weights and simplified 
adjacency matrices, which represent degrees, have been used for 
understanding networks. The long-held assumption that every edge 
could be  treated as equal was challenged by investigators using 
percolation (Bordier et al., 2017; Huh et al., 2022; Whi et al., 2022b; 
Bardella et al., 2024). We also challenged another assumption that 
undirected graphs would suffice to understand the mechanism of 
functional brain graphs safely, using the observed amplitudes and 
their correlations on fMRI. Correlation analysis produces only 
undirected graphs, and investigators used transfer entropy (Bardella 

et  al., 2024) to make directed graphs. We  tested the following 
questions: (1) What if we eliminate the equality of edges and adopt 
hierarchical repositioning of adjacency matrices (and degrees) into 
k-core and (2) What if we  create directed graphs using a graph 
universal cover/Markov model and observe the afferent voxel–node 
capacity of these directed graphs. This approach overcame the 
bottlenecks of limited representation and consequent insufficient 
understanding of the dynamic states on resting-state fMRI, which 
were now shown to be non-stationary. Post hoc, we suggest that the 
state transitions or module exchanges on fMRI represent spontaneous 
resting-state succession or transition at rest in humans.

The second assumption was whether sliding-window time 
binning of resting-state fMRI (Figure  1) reveals the waxing and 
waning behavior of modules or states made by the gathering and/or 
dissociating of voxels to demonstrate the continuous changes in the 
composition of voxels/ICs on timepoint plots (Hindriks et al., 2016; 
Mokhtari et al., 2019; Lurie et al., 2020; Whi et al., 2022b). In the 
unsigned negative graphs, spontaneous succession without any abrupt 
transition of states was noted in the temporal progression of the 
animated k-core/kmaxcore images of all the individuals. In contrast, in 
the positive graphs of almost all individuals, in addition to the 
fluctuating voxels/IC composition, abrupt state transitions were also 
observed. The duration of one state varied, and the number of state 
transitions from one to another varied likewise among individuals 
[15 min in the HCP database (Van Essen et al., 2013; Elam et al., 
2021)] and within a session [5 min in the standard positron emission 
tomography (PET)/fMRI or Kirby database (Choe et al., 2015)], as 
detailed in our preprint in bioRxiv (Huh et al., 2022). Figures 4–6 and 
Supplementary Figures S5–S9, S12, S13 show the kmaxcore and afferent 
capacity spectra of voxel nodes in representative individuals. A 15-min 
period of resting-state fMRI was sufficient to reveal the diversity of 
human resting states and their succession/transitions. We suspect that 
we observe the luxury of fluctuating states in individuals over the 
15-min period. If we  had only observed the first or last 5 min, 
we might have seen partial results and related our findings to the 
characteristics of the subjects, which might have led to categorizing 
their traits erroneously (Whi et al., 2022b). In our previous report 
(Huh et al., 2022), a person in the Kirby project underwent a resting 
fMRI study once a week for 3.5 years, which was visualized using our 
kmaxcore voxel/IC composition timepoint plots. The dominant 
compositions were mostly similar during certain consecutive weeks 
and months and then changed to another pattern over a certain 
period. Thus, the feasibility of studying the association between 
dynamic characteristics and individuals’ traits is called into question. 
The characteristic cores of DMN/CEN or VN dominance, as observed 
with a static hierarchy in our previous study (Whi et  al., 2022b), 
should also be reinterpreted in terms of their significance. It is easy to 
assume that the observed period is stationary during the resting state 
in terms of functional graph structure. If static data in one block were 
studied using percolation, we  can also assume that it might have 
yielded a pattern of dominant voxels per study of an individual, 
assuming stationarity. However, our findings showed that this was not 
the case, using kmaxcore as non-stationarity is absolute with a time 
resolution of 3 s. A diverse pattern of succession and transition of 
voxels’ temporal progression was prominent at this time resolution, 
and we referred to the change in pattern as a state transition. Here, 
state transition implies non-stationarity and underlying succession. 
The question of the possible representativeness of static analysis for 
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time-varying, fluctuating, and transitioning states warrants subsequent 
studies from the points of hierarchy and the afferent capacity of 
positive and negative graphs.

State transition is currently being interrogated using complex 
network theory to determine its underlying mechanisms (Bianconi 
et al., 2015; Alet and Laflorencie, 2018; Heyl, 2018; García-Pérez et al., 
2020; Nokkala et al., 2024). A growing many-body system (Khona and 
Fiete, 2022; Bollt et al., 2023) was the basis of the network’s hyperbolic 
geometry, which emerged from the many-body interactions in the 
simplicial complex (Bianconi and Rahmede, 2017). Brain voxels have 
been considered as elements or quanta in many-body interactions, 
which are suitable for hyperbolic embedding with scale freedom and 
phase transition (Bianconi and Rahmede, 2017; Whi et al., 2022a; Whi 
et  al., 2022b). In our previous study, a many-voxel collective 
configuration showed abrupt transitions in k-core percolation (Huh 
et  al., 2022; Whi et  al., 2022a; Whi et  al., 2022b) and abrupt (or 
explosive) changes in the kmaxcore voxel timepoint plots (Huh et al., 
2022). The former was on the configuration space, and the latter was 
on the temporal axis. The abrupt increase in the afferent node capacity 
of the directed graphs corroborated these findings in this study. Voxel 
hierarchy and information flow revealed intervoxel correlations and 
anticorrelations. This may be the essence of the dynamic criticality of 
the functional brain connectivity observed in the resting state, 
extending beyond stability or metastability (Cocchi et al., 2017). In 
future study, the reason why the positive graphs had recognizable state 
transitions and an explosive emergent rise and fall of afferent modules 
will be investigated, while negative graphs did not.

The combination of the third and fourth assumptions were 
observed pairwise waveforms of each voxel (García-Pérez et al., 2020; 
Huh et al., 2022; Whi et al., 2022a) act as the simplest representation 
of their higher-order interaction (Cinelli, 2019; Lambiotte et al., 2019; 
Battiston et al., 2020; Boccaletti et al., 2023) and that the pairwise-
observed amplitude correlation as an observable is the sum of signals 
(functional connectomic dynamics) and redundancy (including 
inherent and measurement-related error/noise) (Pitkow and Angelaki, 
2017; Luppi et al., 2023). These assumptions were implicit basics for 
all our analyses of dynamic functional brain graphs, such that 
observables like intervoxel similarity consisted of signals and 
redundancy (or noise/error). According to these assumptions, 
we removed measurement-related errors and noise, as well as inherent 
redundancy, by evaluating log–log plots of the degree distribution of 
intervoxel pairwise similarity (Whi et al., 2022a; Whi et al., 2022b). 
Unexpectedly, the afferent node capacity and volume capacity 
remained unaffected by the increase in the number of edges by several 
orders of magnitude (from thousands to millions) when we varied the 
thresholds from 0.45 to 0.7 and increased the number of edges by 
several orders of magnitude. Technically, this guaranteed the resilience 
of the information flow analysis using a topological approach/Markov 
modeling, and we  did not need to remove the redundant weakly 
connected edges beforehand. Theoretically, this could also mean that 
the surplus edges do not contribute to the information flow or global 
information capacity of the graphs. Surplus edges consisted mainly of 
redundant edges and small amounts of errors/noises. This would make 
sense if the redundancy did not confound or help the information flow 
in the brain graphs with surplus edges. Proving or falsifying this idea 
requires further studies using computational modeling with 
population codes simulating neuron–glia complexes. Intervoxel 
similarity of the signals was determined solely by amplitude 

correlation in this investigation, and we disregarded intervoxel phase 
similarity and differences (Kringelbach et al., 2020). The amplitude-
based similarity measures might have constrained the surplus edges 
to avoid contributing to the calculation of graph volume entropy or 
afferent/efferent capacity, as the edges were stripped of their 
phase information.

The thresholding of intervoxel correlations in making brain 
graphs to expose the skeleton of their hierarchical structures was an 
essential prerequisite for effective k-core percolation. In the recent 
reports using percolation (Nicolini and Bifone, 2016; Mastrandrea 
et al., 2017) for characterization of hierarchical organization, weaker 
edges were removed in our previous study (Huh et al., 2022; Whi et al., 
2022a; Whi et al., 2022b), and we extracted scale-free cores for the 
following percolation. When we  used the unthresholded or 
underthresholded data of the same individual for k-core percolation, 
the percolation proceeded without yielding state transitions on the 
k-core animation plots or any abrupt changes in the kmaxcore voxels/
IC composition timepoint plots. The distribution-free or scale-free 
characteristics of the degree distribution dictated the lower limit of the 
threshold. Instead, the node (voxel) number criterion, that is, 85% or 
more voxels, determined the upper limit of the threshold, which could 
maintain enough nodes to form the giant connected component. 
Positive correlation-based brain graphs, as well as unsigned negative 
correlation-based brain graphs, allowed thresholds to range from 0.45 
to 0.7, within which the ranges of windows, scale freedom, edge 
number–total k-core proportionality, and consistency of volume 
entropy were conserved (Supplementary Figure S2). We  set the 
thresholds separately for each group of subjects (a cohort) in the HCP 
or Kirby database (Choe et al., 2015; Huh et al., 2022), based on their 
positive and negative graphs.

In the 180 individuals of the HCP cohort, with 280 time bins each, 
outlier time bins were rare in terms of the number of voxels. Timepoint 
plots of both edge-scaled total k-core and volume entropy were not 
affected by the number of voxels (Supplementary Figure S10A). The 
number of edges was also not affected as well, but for different reasons. 
The total k-core was strictly proportional to the total number of edges 
and was normalized by dividing it by the number of edges. After 
scaling with a number of edges, comparisons were possible between 
any time bins within or between individuals using various edge-scaled 
plots, such as animated edge-scaled flag plots, edge-scaled k-core 
timepoint plots, and k-core map plots. Meanwhile, kmaxcore plots such 
as stacked histogram timepoint plots and glass brain voxel/IC 
animation were free from any edge number effects, since they show 
top-tier voxels irrespective of the remaining edges after thresholding.

The volume entropy and afferent node capacity were also 
unaffected by the number of edges, not requiring an edge-scaling 
process. A redundant surplus of edges with full participating voxels 
less than a certain threshold (e.g., below 0.5 in the positive network 
in one case) did not influence the calculated values of volume 
entropy for all 280 time bins (Figure 3). We concluded that the 
volume entropy of a brain graph (per time bin) reflects the core 
skeleton of functional brain connectivity graphs, rather than the 
surplus of edges. Thus, thresholding was not necessary for assessing 
volume entropy or quantifying afferent and efferent capacities. 
However, the same thresholds were used in this investigation for 
both k-core percolation and directed graph construction, as well as 
for determining the afferent capacity to facilitate side-by-
side comparisons.
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As mentioned, the kmaxcore (hierarchical structure) and afferent 
node capacity (sum of edge weights of voxels on a directed weighted 
graph) of positive graphs corroborated each other, revealing 
spontaneous module switches and suggesting resting state transitions. 
In unsigned negative graphs, however, the kmaxcore and afferent node 
capacity rarely showed state transition or module switches, as did the 
efferent node capacity of positive graphs. The quantified timepoint 
plots of the afferent capacity for the negative graphs showed a much 
lower capacity than those of the positive graphs. The volume entropy 
of negative graphs also tended to be lower than that of positive graphs. 
For the 180 individuals in the HCP cohort, the mean number of 
average (over 280 time bins) edges per individual in the negative 
graphs (thresholds of 0.5) was 240 K compared with 490 K in the 
positive graphs (thresholds of 0.65). Unfortunately, we  could not 
directly compare the measures of positive and negative graphs because 
these positive and negative graphs are separate entities from the same 
individuals. In almost all the subjects, negative graphs did not reveal 
state transitions or module switches. Thus, the discovery of state 
transitions and module switches in positive graphs was remarkable 
and was considered to indicate that the resting state is non-stationary.

In directed functional brain graphs as previously observed (Lee 
et al., 2019; Ha et al., 2020) and in this study, we found discordance 
between afferent and efferent flows. In our previous study, discordance 
in the edge matrix of afferent and efferent was observed on static 
functional directed brain graphs, but we  could not explain this 
phenomenon. In this investigation, we cropped many (280 time bins 
per individual) dynamic directed graphs and their corresponding edge 
matrices for each individual. We calculated afferent and efferent node 
capacities from the edge capacities on the volume entropy calculation 
program written in MATLAB, and the calculation was normalized 
with the volume (Lee et al., 2019), and the brain-overlaid image was 
normalized to the maximum value of all the voxels of afferent and 
efferent node capacities in an individual. Discordance, which cannot 
be an artifact, prevailed with no exception. Animated efferent node 
capacity was less bright without discernible module exchanges on the 
brain-overlaid dynamic displays.

Only the positive afferent node capacity on the animated brain-
overlaid (or on kmaxcore stacked histogram timepoint plots) showed 
definitive modules and module exchanges (states and state transitions) 
during the resting-state fMRI acquisition session. Negative afferent 
nodes showed ripples and small multifocal flickering without any 
modules or module exchanges. Therefore, we propose that positive 
afferent node capacity is the source of state transition in the resting 
state in humans. This finding reminded us of the earlier report by 
Logothetis et al. (2001) that found that local field potential (LFP) was 
an immediate source of BOLD signals in a visual stimulus task study 
using monkeys in a simultaneous EEG/fMRI machine. Local field 
potential represents the amplitude of afferent (presynaptic) collective 
inputs at the synaptic buttons in the dendrites of neurons. Postsynaptic 
potentials were the output from the designated neurons. The difference 
is that Logothetis et al. (2001) used a task paradigm, not a resting-state 
scheme, and the LFP is not merely equivalent to afferent voxel 
capacity. We propose this analogy because this finding is new and 
encourages future computational modeling studies to address 
this puzzle.

Although state transition per se was a novel discovery enabled by 
sliding-window hierarchy and information flow analysis, we  also 
observed that the voxel/IC representation allowed us to reveal the 
heterogeneity of voxel participation at each time bin (Huh et al., 2022) 

(Figure 7 and Supplementary Figure S14). This interesting observation 
was derived from the selection of the input, not the ROI, but the voxels 
being considered as independent entities. As we  disregarded the 
topography of voxels’ BOLD signals but rather on the pairwise 
intervoxel correlation edges, we might also assume that voxels were 
independent during the 1-min-long 3-s shift time-bin window, even 
allowing us to disregard spatial adjacency. This is different from the 
situation of structural connectivity. Recent advances in hardware, 
central processing units (CPUs), and memory for universal Linux/
Windows workstations have led to the routine use of intervoxel pair 
matrix computation, including eigen decomposition. When 
we downsampled the original 2 mm × 2 mm × 2 mm fMRI data to 
6 mm × 6 mm × 6 mm or 10 mm × 10 mm × 10 mm resolution, the 
propensity of the edges in any individual of any cohort was half 
positive and half negative. After making this inadvertent observation, 
we could no longer reduce the fMRI data to ROIs, such as 274 parcels, 
without showing positive correlation bias (Lee et al., 2019; Ha et al., 
2020; Whi et al., 2022a). Therefore, voxel-based calculations seemed 
appropriate for every subsequent investigation (Whi et al., 2022b). To 
facilitate the identification of voxels, ICA with a readily available 
algorithm was used to annotate every voxel to 7 or more ICs. The 
remaining voxels (a collection of smaller ICs) were unclassified.

Currently, network science or graph research has accumulated 
sufficient knowledge about network and graph structures with an 
emphasis on communities hidden in graphs using metric measures 
and their geometric meanings (Boguña et al., 2021; Leus et al., 2023). 
The communities were determined by the network/graph structures 
themselves (Azimi-Tafreshi et al., 2019; Shang, 2020; Young et al., 
2021; Hajibabaei et al., 2023; Peixoto and Rosvall, 2023) or separately 
defined using biological annotations within the networks/graphs 
(Bazinet et  al., 2023a; Bazinet et  al., 2023b). Among these many, 
simplicial complexes for higher-order networks or synchronization 
(Gambuzza et  al., 2021; Baccini et  al., 2022), higher-dimensional 
hyperbolic embedding with popularity similarity (Boguña et al., 2021; 
Kovacs et  al., 2022; Leus et  al., 2023), and generalized k-core 
percolation (Kovacs et al., 2022) led us to the community hidden in 
the graphs. Instead, in our investigation, we annotated each voxel 
belonging to ICs defined a priori using ICA outputs.

The trajectories of voxels belonging to the same ICs were 
surprisingly heterogeneous for both spatiotemporal deployments of 
k-core and of afferent capacity. Voxels took turns performing their 
jobs of emergent construction of modules, rising to the top of the 
hierarchy during the short 15-min period (Figure 7). Edge-scaled 
k-core was grossly similar but differed in terms of the contours of the 
collective trajectory maps (Supplementary Figure S1). The afferent 
capacity of voxels exhibited an on-and-off pattern of module 
formation and switching between ICs, whereas the efferent capacity 
did not (Figure 6; Supplementary Video S7; Supplementary Figure S12). 
The afferent and efferent capacities of voxels and their module-
forming characteristics were initially assumed to form a hierarchical 
structure of edge composition in a collective, allowing the top-tier 
voxels to climb up to reach the kmaxcore. This naïve expectation was 
not accurate regarding the role of the efferent capacity, as it was fairly 
homogeneous despite spatiotemporally scattered small flickering 
(Figure 6 and Supplementary Video S7). In a separate analysis of 
negative graphs in the form of unsigned graphs, we did not observe 
prominent modules nor top-tier voxels/ICs with any transitions, even 
in terms of afferent capacity. Thus, we suggest that the afferent node 
capacity of positive graphs contributes to hierarchical edge 
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characteristics. If so, we needed to survey whether one belongs to 
another; that is, the two spatiotemporal trajectories of hierarchy or 
afferent capacity would be inclusive or overlapping if they were plotted 
together (Supplementary Figure S14). For any voxel on the surface or 
three-dimensional (3D) plots, no relationship was observed between 
the two measures, the k-core and the afferent capacity of the positive 
graphs. They looked varied on their own on their axes of abscissa and 
ordinate. One was not replaceable by the other. We presumed that the 
underlying mechanism behind their spatiotemporal progression 
needs to be further scrutinized if we want to understand the nature of 
state transition on fMRI.

Our investigation differed from previous studies that used various 
centrality measures in that those studies examined the structure of the 
networks, whereas we  paid attention to the voxels themselves. Their 
results revealed that the degree distribution represented global graph 
characteristics but did not accurately reflect the voxel entities in their 
structural graphs. This created a difference in the interpretation of their 
various centrality measures, such as degree centrality, betweenness 
centrality, eigenvector centrality, and PageRank centrality (Curado et al., 
2023), compared to our k-core values (Whi et al., 2022b). Interestingly, 
our volume entropy/afferent node capacity works by taking advantage of 
the fact that eigen decomposition is equivalent to the asymptotic measure 
of a random walker job, regardless of its variations of adaptive signed, 
return, quantum or hypergraphs (Carletti et al., 2020; Curado et al., 2023; 
Sotero and Sanchez-Bornot, 2023). It would be interesting to determine 
whether any relationship exists between the afferent/efferent node k-core 
measure and other centrality measures on the separated afferent and 
efferent directed networks we  produced in this investigation. This 
comparison study is underway, and the pilot results are included as 
Supplementary Figure S15. Degree and strength animations were similar 
to k-core animation, but betweenness centrality was different. Top-tier 
voxels’ behavior on the stacked histogram animation plots would show 
their capability to reveal states and state transitions, although there are no 
reasonable criteria that exist to define top-tier voxels. A less popular, rich 
club coefficient would avail a similar representation of centrality as 
percolation, but has not been investigated yet.

Our findings raise the following questions: The first refers to the 
nature of state transition, revealed by an observation here using 
resting-state fMRI. fMRI observables were analyzed easily using (1) a 
classic statistical physics method (k-core percolation) and (2) the 
construction of directed weighted graphs based on a detection scheme 
of topological invariants of graphs. Currently, there is no plausible 
explanation for these “state transitions,” which were observed 
universally between individuals and even within sessions in an 
individual (Huh et al., 2022). The question of what caused these state 
transitions has not yet been answered, but clues include (1) non-linear 
dynamic interpretations ranging from criticality and self-organizing 
characteristics of neurons in the literature (Shew and Plenz, 2013; 
Hesse and Gross, 2014; Zimmern, 2020), represented as voxels in our 
investigation; (2) large-scale neuronal theory, recently refined as a 
neuronal communication system (Avena-Koenigsberger et al., 2017; 
Hahn et al., 2019; Tian and Sun, 2022) or voxels’ communication 
dynamics in our investigation; and (3) information theory perspectives 
for complex networks (Anand and Bianconi, 2009), von Neumann 
entropy and its transition interpretation (Minello et al., 2019; Krohn 
et al., 2023) or complexity entropy, such as Kolmogorov interpretation 
(Mateos et al., 2018), or a topological invariant named graph volume 
entropy (Lim, 2008; Lee et al., 2019) in our investigation. Further 

investigation is underway to explore these clues as time allows, as it is 
a very time-consuming process for computation.

The spatiotemporal trajectories gained momentum for 
visualization and quantification in our investigation. Once traced, 
these outputs can be inserted into refined computational models for 
dynamic functional brain voxels with higher spatiotemporal resolution 
along discrete time-bin axes. Recent introduction of graph neural 
networks (GNNs) or their improved versions, such as the graph 
isomorphism network with relational updates or spatiotemporal 
GNN, may allow comprehensive modeling of normal states’ temporal 
progression (Cui et  al., 2023; Li et  al., 2023). Specifically, time 
convolution over the spatial self-attention block methods may aid in 
constructing norms for healthy individuals’ resting-states on fMRI 
(Thapaliya et al., 2025a; Thapaliya et al., 2025b). The possibility of 
explaining spontaneous or stimulus task-associated resting-state 
changes in humans, whether normal; sleeping; conscious, sedated, 
semi-conscious, or comatose; or in the states of disorder or disease 
during their course or rehabilitation after successful or unsuccessful 
treatments, is an issue to be investigated soon.

In conclusion, we have two distinct methods for producing one 
spatiotemporal deployment of hierarchical realization of functional 
brain graphs (k-core images on animation) and producing another 
spatiotemporal realization of normalized afferent/efferent node 
capacity. These two methods were derived from each discipline and 
model. Exact computing was reproducible in calculations without any 
inter-operator bias, across all the chosen thresholds. However, there 
appeared to be a narrow window enabled the observation of state 
transitions on the kmaxcore or a wider window that allowed for module 
exchanges on afferent node capacities.
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