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Introduction: Motor imagery (MI) has emerged as a promising technique for 
enhancing motor skill acquisition and facilitating neural adaptation training. 
Attention plays a key role in regulating the neural mechanisms underlying 
MI. This study aims to investigate how attentional states modulate EEG-
based lower-limb motor imagery performance by influencing event-related 
desynchronization (ERD) and the alpha modulation index (AMI) and to develop 
a real-time attention monitoring method based on the theta/beta ratio (TBR).

Methods: Fourteen healthy right-handed subjects (aged 21–23) performed 
right-leg MI tasks, while their attentional states were modulated via a key-
press paradigm. EEG signals were recorded using a 32-channel system and 
preprocessed with independent component analysis (ICA) to remove artifacts. 
Attentional states were quantified using both the traditional offline AMI and the 
real-time TBR index, with time–frequency analysis applied to assess ERD and its 
relationship with attention.

Results: The results indicated a significant increase in ERD during high attentional 
states compared to low attentional states, with AMI values showing a strong 
positive correlation with ERD (r = 0.9641, p < 0.01). Cluster-based permutation 
testing confirmed that this α-band ERD difference was significant (corrected 
p < 0.05). Moreover, the TBR index proved to be an effective real-time metric, 
decreasing significantly under focused attention. Offline paired t-tests showed a 
significant TBR reduction [t(13) = 5.12, p = 2.4 × 10−5], and online analyses further 
validated second-by-second discrimination (Bonferroni-corrected p < 0.01). 
These findings confirm the feasibility and efficacy of TBR for real-time attention 
monitoring and suggest that enhanced attentional focus during lower-limb MI 
can improve signal quality and overall performance.

Conclusion: This study reveals that attentional states significantly influence 
the neural efficiency of lower-limb motor imagery by modulating ERD/AMI 
and demonstrates that the TBR can serve as a real-time indicator of attention, 
providing a novel tool for optimizing attentional processes in motor skill training.
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1 Introduction

Motor imagery (MI), a technique that enables mental simulation 
of movements without actual execution, has been shown to play a 
significant role in motor skill learning (Burianová et  al., 2013), 
performance enhancement (Guillot et al., 2010), and motor control. 
Studies (Jeunet et al., 2020) have demonstrated that athletes’ attention 
abilities are positively correlated with resting-state alpha power. 
Research in motor neuroscience indicates that cognitive processes—
particularly attention—play a critical role in modulating the neural 
substrates associated with MI. Numerous studies (Gabbard and Fox, 
2013; Nicklas et al., 2024) have revealed that heightened attentional 
states can improve the quality of motor imagery (Zhang et al., 2016; 
Sakurada et al., 2016), as evidenced by event-related desynchronization 
(ERD) (Groppe et al., 2013) and other neurophysiological indicators, 
such as the alpha modulation index (AMI) (Evans and 
Abarbanel, 1999).

2 Related work

In the realm of MI, attentional focus is recognized as a critical 
determinant of performance (Clark et al., 2015). McNevin et al. (2000) 
demonstrated that high levels of attention are essential for optimal 
motor skill acquisition, while research by Hall (2009) and Collet et al. 
(2011) indicated that appropriately paced MI can modulate actual 
motor performance, allowing athletes to make more effective 
corrections during movement. Recent advancements have further 
elucidated the role of attention in MI and motor control. Quadrato 
Motor Training (QMT) has emerged as an innovative form of 
movement meditation designed to enhance creativity and reflective 
capacity through the modulation of alpha activity (Ben-Soussan et al., 
2014). Concurrently, studies by Clark et al. (2015) and Posner et al. 
(2015) have underscored that mindful movement practices and 
attention training not only improve motor control but also mitigate 
lapses in cognitive focus. Neurofeedback interventions, as reviewed by 
Jiang et  al. (2017), provide additional evidence that training can 
enhance attention and memory, thereby preventing cognitive decline.

The relationship between neural oscillations and attentional states 
has been investigated for nearly a century, with Berger’s seminal work 
(Berger, 1929) establishing a link between alpha band activity and 
attention/arousal levels. Subsequent studies, such as those by Klimesch 
et  al. (1998), have confirmed that variations in alpha power, 
accompanied by corresponding changes in delta activity, serve as 
reliable indices of individual attentional engagement. Moreover, motor 
imagery is closely related to various neurophysiological indices (e.g., 
alpha, theta, and beta waves), which reflect verbal processing, 
conscious cognitive operations (Jeunet et al., 2020), and covert visuo-
spatial attention during motor skill acquisition (Parr et al., 2023).

Currently, most research has concentrated on upper limb (Cioffi 
et al., 2024) motor imagery (Lee et al., 2016) or its application in stroke 
rehabilitation (Ma et al., 2024). However, investigations into real-time 
attention monitoring during motor skill training and neural 
adaptation training in healthy adults, especially athletes, remain 
relatively scarce (Grilc et al., 2024). Traditional attention assessment 
methods such as the AMI, although effective in offline conditions, are 
inadequate for meeting the rapid feedback demands of motor training 
(Jeunet et al., 2020). To address this gap, the present study introduces 

the TBR as a real-time attention tracking index. Its high temporal 
resolution makes it a powerful tool for online monitoring of 
attentional states (van Son et al., 2019). Collectively, these studies 
provide a robust framework for understanding the neural 
underpinnings of attentional control in MI and motor performance.

The aim of this study is to develop and validate a novel EEG-based 
real-time attention tracking method that employs the TBR to 
investigate how different attentional states (high vs. low) modulate 
neural representations during lower-limb motor imagery in healthy 
adults by assessing neurophysiological indicators such as ERD and the 
AMI, thereby providing valuable insights for optimizing motor 
training protocols and advancing our understanding of cognitive–
motor interactions.

3 Materials and methods

3.1 Experiment subjects

The experiment was performed in the Lab of EEG Acquisition and 
Application, Tianjin University of Technology, China. These EEG 
experiments were approved by the Ethics Committee. The subjects in 
this experiment were 14 young volunteers (7 male and 7 female 
volunteers) who were physically and mentally healthy and had no 
mental illness in the past. The subjects were 21 to 23 years old, all 
right-handed, and none of them had experience in EEG experiment. 
The subjects had been informed of the purpose and precautions of the 
experiment. The purpose of the experiment is to collect the EEG 
signals during the subjects’ motor imagination for processing and 
analysis. These data are only used for the scientific research of this 
article and are not used for other purposes. Precautions of these 
experiments: There is a rest time between each trial. During that time, 
the subject relaxes the body as much as possible. When the next trial 
starts, the subjects should try not to carry out muscle activities as 
much as possible to reduce the interference of muscle activities on 
EEG signals. They can choose not to watch the video after they feel 
that they will perform motor imagery, to prevent the subjects from 
only performing action observation. Then, they signed the 
experimentally informed consent before the experiment.

3.2 Experiment paradigm

During the experiment, each subject was asked to sit in a 
comfortable chair with a computer screen about 50 cm away in front 
of his/her eyes. The experimental paradigm was designed with Python.

The experiment process is shown in Figure 1. During the −2–−1 s 
phase, the word “Ready” appeared on the display screen. This process 
lasted for 1 s, which meant that the experiment would start 
immediately and the subject would remain resting. At 1–0 s, the word 
“Start” appeared on the screen, giving the subject a hint for preparation 
to start soon. At 0–1 s, the computer screen showed “Select”; at this 
moment, an arrow pointing up or down would randomly appear on 
the screen. The judgment rule was as follows: An up-pointing or 
down-pointing arrow randomly appeared on the selection interface, 
and these two types of arrows appeared with the same probability, 
each accounting for 50%. The subject responded by pressing the 
corresponding (up arrow or down arrow) key as indicated by the 
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arrow on the screen. The key pressing process is used to improve the 
subjects’ alertness; meanwhile, the correctness was used to judge 
whether the subject had a high or low level of attention (Attention or 
Inattention). Because the research focus of this study is the 
improvement of the effect of motor imagination after the execution of 
“select,” not the change of attention during the execution of the arrow 
decision task, when designing the paradigm, it is considered that on 
the basis of reducing the impact of the paradigm on motor imagination 
as much as possible, the subjects can also focus their attention to a 
certain extent. After comprehensive consideration, the arrow decision 
task is adopted. During 1–5 s, the screen showed a video which lasted 
for 4 s. During this period, the subject followed the guided video to 
imagine the movement of the right leg. In 5–7 s, the word “Rest” 
appeared on the screen, allowing the subject to relax and set the brain 
into a resting state, which indicated that the experiment of one trial 
was over. For each subject, the experiment was conducted in 4 sets, 
each including 20 trials, and the subjects rested for 5 min between two 
sets to avoid negative effect on the experimental result due to fatigue. 
In the experiments mentioned below, this paradigm is applied in 
offline and online experiments.

3.3 EEG data acquisition and preprocessing

The experimental equipment Grael is an electrophysiological 
amplifier developed by Compumedics company in Australia. It has 32 
channels, and the electrode position is set in the international 10/20 
system. The collected EEG raw data were preprocessed by first 
resampling from 1,000 to 200 Hz and applying a band-pass filter 
(1–30 Hz) to remove power frequency interference. Subsequently, 
artifacts due to subject activity—including ocular movements, muscle 
artifacts, and other noise—were removed using independent 
component analysis (ICA) (Burianová et al., 2013). We applied ICA 
to decompose the raw EEG data into independent components. Each 
component was visually inspected based on its time course, spectral 
properties, and scalp topography. Components exhibiting 
characteristic artifacts—such as ocular movements, muscle activity, or 
electrical noise—were automatically identified using the ADJUST 
algorithm (Mognon et  al., 2011). Only components that met the 
criteria were rejected, ensuring that only artifact-related activity was 
removed. After the rejection process, the remaining components were 
transformed back into the electrode space using the inverse of the ICA 
mixing matrix, thereby reconstructing the artifact-free EEG signals. 
In this study, FP1 and FP2 leads are mainly used to eliminate the 
impact of blinking on the data. The baseline is the data of resting state 

(1 s before stimulation, i.e., −1–0 s), and the baseline correction is 
completed in the preprocessing stage.

3.4 Statistical methods

All statistical analyses in this study were conducted using Python 
programming with open-source scientific libraries, ensuring 
transparency and reproducibility. Below, we describe in detail each 
statistical method and associated parameters for the 
analyses performed.

Event-related spectral perturbation (ERSP) was calculated to 
quantify EEG spectral changes during motor imagery MI tasks. The 
ERSP values were computed using the formula:

 
( ) ( )=

= ∑
2

1
1, , ,N

kERSP f t K f t k
N  

(1)

where N  denotes the total number of trials, and ( ), ,K f t k  
represents the spectral estimate at frequency f  and time t  for the thk  
trial. Spectral estimates were obtained using Morlet wavelet 
transforms, implemented with the “Waveletpacket()” function from 
the PyWavelets library (pywt). The chosen mother wavelet was “db4” 
with a decomposition level of 8, yielding a frequency resolution 
covering 1–30 Hz. ERSP values were computed within a time window 
from −1 to 5 s, relative to the cue onset. ERD was quantified 
specifically within the alpha (8–13 Hz) frequency band and time 
period (1–5 s) corresponding to the MI phase. ERD was calculated 
according to following formula:

 
( )( )= =
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f f t tERD ERSP f t
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where 1f  and 2f  define the alpha frequency range, while 1t  and 2t  
denote the MI task time interval. ERD values provided an averaged 
measure of cortical desynchronization across trials and subjects.

To quantify attentional states, the alpha modulation index (AMI) 
was computed based on FFT-derived alpha power from EEG signals 
recorded at electrode F4. AMI calculation was as follows:

 

α α
α α

−
=

+
AR AW

AR AW
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(3)

where αAR  and αAW  represent FFT-produced alpha frequency 
band powers of one of the subjects’ attention-related leads for the right 
and wrong selection trials, respectively. FFT uses the “fft()” function 
in the SciPy library, and the parameters are the default values. The 
number of Attention state trials exceeds that of Inattention state trials, 
to ensure the test validity; when the offline processing is performed, a 
number of Attention state trials equal to that of Inattention state trials 
will be randomly extracted from the data of one set.

TBR index is shown in the Equation 4. ThetaE  is the energy of 
theta rhythm and BetaE  is the energy of beta rhythm. The rhythmic 
energy is calculated by wavelet transform. Wavelet transform uses the 
“Waveletpacket()” function in pywt library, the default value of 
parameter “wavelet” is “db4,” and the default value of parameter 
“maxlevel” is 8. A decrease in the ratio represents attention, and an 
increase in the ratio represents inattention.

FIGURE 1

Experimental paradigm.
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To statistically validate differences between attention conditions 
in time–frequency spectra (ERSP), we  employed cluster-based 
permutation testing, a non-parametric statistical approach robust to 
multiple comparisons (Maris and Oostenveld, 2007). Clusters were 
formed from adjacent time–frequency bins exceeding p < 0.05  in 
paired t-tests, with cluster masses defined as the sum of t-values. A 
null distribution of maximum cluster masses was obtained over 1,000 
permutations of within-subject condition labels, and observed clusters 
exceeding the 95th percentile (corrected p  < 0.05) were 
deemed significant.

Paired-samples t-tests were conducted to compare ERD, AMI, and 
TBR between Attention and Inattention conditions across subjects. 
Normality of data was verified using the Shapiro–Wilk test before 
performing parametric tests. Pearson’s correlation coefficients (r) were 
calculated to assess relationships between ERD and attentional 
measures (AMI and TBR). Statistical significance was set at a p-value 
of < 0.01 to correct for multiple comparisons and control the false 
discovery rate. All statistical computations were rigorously 
documented and implemented in Python (version 3.8.10), utilizing 
libraries including NumPy, SciPy, Matplotlib, and PyWavelets, 
ensuring full reproducibility of results.

4 Results

4.1 Time- and frequency-domain analysis 
and results

In the international 10–20 system, the Cz electrode is located at 
the vertex of the scalp—roughly halfway between the nasion and 
inion—and is widely recognized as being sensitive to neural activity 
originating in the sensorimotor cortex. However, it is important to 
note that the electrode measures only scalp-level electrical activity and 
does not directly localize specific cortical structures. Without applying 
source localization techniques, any inference regarding the precise 
underlying cortex should therefore be  made with caution. In this 

study, we used ERSP values recorded at Cz to generate time–frequency 
maps (1–30 Hz) using Python.

To investigate the spectral dynamics associated with the 
“attention” and “inattention” conditions, we  computed the grand-
average ERSP across all 14 participants. This yielded two time–
frequency representations: Figure 2a for the attention condition and 
Figure 2b for the inattention condition, each spanning the 1–30 Hz 
frequency range over a − 1 to 5 s time window. As shown in Figure 2a, 
the attention condition exhibits a pronounced negative power (blue 
region) in the alpha band during the motor imagery period, indicating 
a stronger ERD. In contrast, the inattention condition (Figure 2b) is 
more diffuse and does not display a comparably pronounced negative 
power shift in the alpha band.

To assess whether the observed differences between the Attention 
and Inattention conditions were statistically significant, we applied a 
cluster-based permutation test. Our analysis revealed a significant 
cluster in the alpha band, confirming that the difference in ERSP 
between the Attention and Inattention conditions is statistically robust 
(p < 0.05, corrected). In Figure 2c, only those time–frequency bins 
comprising that significant cluster are displayed (all other bins set to 
zero), highlighting a coherent α-band desynchronization emerging 
approximately 1 s and persisting throughout the motor imagery 
period. These results underscore the critical role of attentional 
modulation in facilitating cortical desynchronization and highlight 
the importance of incorporating attention-focused paradigms when 
investigating motor imagery. These findings suggest that under higher 
attentional demands, cortical activation in the alpha frequency range 
undergoes significant modulation. The group-level results align with 
our individual-level analyses, reinforcing the notion that attention can 
enhance ERD during lower-limb motor imagery tasks.

4.2 Frequency- and time-domain energy 
analysis and results

To further explore the ERD phenomenon under Attention and 
Inattention conditions in the alpha and beta bands, Python 
programming is used. After obtaining the ERSP value according to 
Equation 1, with the superposition of ERSP values in time domain, the 
brain electric energy change curves in frequency are obtained.

FIGURE 2

Grand-average ERSP (dB) from −1 to 5 s and 1–30 Hz under (a) Attention and (b) Inattention conditions, and (c) the cluster-based permutation-tested 
difference (Attention − Inattention; p < 0.05, corrected; non-significant bins zeroed out). Dashed red lines mark the α band (8–13 Hz) and key-press 
window (0–1 s).
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Figure 3a shows average frequency-domain energy curves of the 
14 subjects, and the energy value of high attention is lower than that 
of low attention in alpha frequency band. Figure 3b is the average 
time-domain energy curves of the 14 subjects, which was obtained by 
the superposition of ERSP values in the frequency domain, a method 
different from that used in Figure 3a. It can also be seen that the ERD 
phenomenon under Attention condition is more significant than that 
under Inattention condition.

4.3 Spatial domain analysis and results

The alert function is responsible for persistent attention. Sustained 
attention (or alertness) is necessary for long, tedious tasks. Although 
the attention neural network has not been fully understood, it seems 
that the scope mainly involves the right hemisphere of the brain 
(frontal and parietal lobe), including the right inferior parietal lobule, 
AG area, and thalamus area (Nimmy John et al., 2019).

The AMI and ERD of 32 electrodes were computed and plotted 
via Python. Since F4 lies within the right-frontal “alert” network, AMI 
values at F4 are visibly lower under Attention than Inattention, 
indicating enhanced attentional engagement (Figures 4a,b). Similarly, 
ERD around Cz is markedly stronger under Attention, reflecting 
deeper α-band desynchronization during lower-limb motor imagery 
(Figures 4c,d).

To statistically confirm these observations, we extracted mean 
AMI and ERD values at each electrode and performed a cluster-based 
permutation test (1,000 permutations; initial threshold p < 0.05). A 
single significant cluster was identified over right-frontal sites (F4, 
FC4), with cluster mass = −12.8 (corrected p = 0.023), validating that 
α-band desynchronization under focused attention is reliably localized 
in this region.

4.4 ERD and AMI analysis and results

From the spatial domain analysis, this study mainly selects the 
mean AMI from EEG data of F4 to evaluate attention state according 
to Equation 3 and the ERD mean value of each subject’s Attention and 

Inattention on the alpha frequency bands was obtained from EEG data 
of Cz according to Equation 2.

The statistical analysis methods were used to obtain the 
average of the total data of the 14 subjects’ value (mean), p-value 
of paired t-test. It can be seen from Table 1 that the mean of the 
average ERD of all subjects’ Attention is lower than that of 
Inattention (−1.7700 < −0.0094), which shows that the ERD 
phenomenon of Attention is more significant than that 
of Inattention.

As shown in Table  1, on the premise of Attention 
(p = 2.8310*10−8 < 0.01), the mean of ERD is significantly positively 
correlated with AMI, and AMI can be used as a quantitative index to 
measure the degree of attention.

4.5 TBR offline analysis and results

Figure 5a shows the 1- to 5-s TBR values in the two different states 
of “Attention” and “Inattention.” In Figure  5a, “Attention” and 
“Inattention” curves represent the mean values of the experimental 
results of each subject in a high or low attention state.

The value of TBR of all subjects under the condition of Attention 
is less than that under the condition of Inattention. Since the value of 
TBR is negatively correlated with the degree of attention, that is, the 
lower the value, the higher the degree of attention, so the attention 
state under Attention condition is better than that under Inattention 
condition. In terms of correlation, it shows that this paradigm is 
helpful to improve the attention state of motor imagery to a 
certain extent.

Figure  5b is obtained by offline data processing, and it is the 
average time-domain TBR curves of the 14 subjects. Unlike the real-
time coverage of online data, offline data can produce continuous TBR 
indicators every second, which can further refine the changes of 
TBR. As can be seen from Figure 5b, the TBR index in the Attention 
state is less than that in the Inattention state within the −1–5 s time 
range, which shows that attention is more focused on the former state 
than in the latter state.

A paired-samples t-test on mean 1–5 s TBR confirmed a 
significant reduction under Attention (2.55 ± 0.15) versus 

FIGURE 3

(a) Frequency-domain energy curve. The abscissa represents the frequency (Hz), and the ordinate represents the average value (DB) of brain energy in 
the corresponding frequency band of the 14 subjects in the time range of 1–5 s. (b) The time-domain energy curves. The abscissa represents the time 
(s), and the ordinate represents the average value (DB) of brain energy in the corresponding frequency band of the 14 subjects in the time range of 
1–5 s.
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Inattention [2.58 ± 0.17; t(13) = 5.12, p = 2.4 × 10−5, Cohen’s 
d = 1.37], demonstrating TBR’s validity as an offline index of 
attentional state.

The statistical analysis methods were used to obtain the average of 
the total data of 14 subjects (mean) and the p-value of paired t-tests. 
As shown in Table  2, a p-value of < 0.01  in both attention states 
indicates that the mean ERD is significantly positively correlated with 
mean TBR, supporting TBR as a quantitative ERD index.

4.6 Online time-domain analysis and 
results

Due to the poor real-time performance of AMI indicators, AMI 
is not suitable to reflect the attention state during the implementation 
of motor imagery in real time, while TBR can be used as the index of 
real-time evaluation according to Equation (4). The program is set to 
read and process 1-s data in the buffer each second. At the same time, 

because the data are discontinuous, the TBR index of online data can 
only be calculated once a second.

Figure 6a shows the mean value of TBR of the 10 subjects over 
time. In the range of 1–3 s, TBR index decreases in both Attention 
and Inattention states, indicating that attention is focused. Within 
the time range of performing motor imagery (1–5 s), the TBR value 
of Attention is less than that of Inattention, which shows that the 
TBR index can well distinguish the two attentional states. Figure 6b 
is a graph of the average alpha rhythm energy of the 14 people over 
time. Consistent with Figure 6a, the energy of alpha rhythm shown 
in Figure 6b decreases in the range of 1–3 s, indicating that there is 
an obvious ERD phenomenon. The TBR index and ERD 
phenomenon have some consistency in time domain, which 
indicates that the effect of motor imagery and attention degree 
(TBR) has certain correlation. At the same time, in the range of 
1–5 s, the changing trend of TBR in Attention state is consistent 
with that of alpha rhythm energy, indicating that TBR index can 
be used as a real-time judging criterion.

FIGURE 4

Averaged brain topographical map. (a,b) The AMI of Attention and Inattention and (c,d) the ERD of Attention and Inattention.
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To statistically validate online discrimination, paired-samples 
t-tests were performed at each second from 1 s to 5 s with Bonferroni 
correction (α = 0.01/5). Significant TBR reductions under Attention 
were observed at 2 s [t(13) = 5.28, corrected p = 4.3 × 10−5], 3 s 
[t(13) = 5.45, corrected p = 2.8 × 10−5], and 4 s [t(13) = 4.92, corrected 
p = 6.1 × 10−5], closely matching concurrent α-energy decreases and 
confirming TBR’s real-time sensitivity.

5 Discussion

MI as a key technique for enhancing motor skill acquisition and 
neural adaptation training, via the mental simulation of actions, has 
attracted considerable attention in the fields of exercise science and 
brain–computer interfaces (BCI) (Burianová et al., 2013). EEG-based 
MI BCI systems offer novel approaches to optimizing motor 
performance by decoding neurophysiological features such as ERD 
and the AMI (Agosti and Sirico, 2020). In this study, we propose a 
novel experimental paradigm that combines a key-press task to 
modulate attentional states with the real-time advantages of the TBR 
to systematically investigate the relationship between attention levels 
and neural activity (ERD/AMI) during lower-limb MI in healthy 
adults. Our findings confirm the practical utility of TBR in lower-limb 
MI, complementing the results of Gu et al. (2020) on the lateralization 
of beta rhythm networks. However, compared with upper limb MI 
studies (Zhang et al., 2016), the ERD intensity during lower-limb tasks 
is generally lower, which may be related to differences in motor cortex 
activation patterns (Grilc et  al., 2024). Moreover, the real-time 
performance of TBR surpasses that of traditional neurofeedback 
indicators, supporting its potential application in motor training 
(Cheng et al., 2024).

In comparison with previous research, our results align with the 
conclusions of Gabbard and Fox (2013) regarding the impact of 
attentional states on MI quality and further support (Jeunet et al., 
2020) view on the limitations of traditional offline indicators in real-
time monitoring. Unlike most studies that focus solely on offline 
data analysis, this research implements real-time monitoring of 
attentional states (Souza and Naves, 2021) through the introduction 
of the TBR index. We acknowledge that although online systems 
offer significant advantages in terms of immediate feedback, there 
remains room for improvement in signal precision. The 
discrepancies between online and offline experimental results 
mainly stem from differences in the real-time processing and 
accuracy of data. Offline experiments allow for the use of larger 
datasets for filtering and post-processing, thereby yielding more 
stable ERD and AMI indices; in contrast, online experiments are 

TABLE 1 ERD mean value and AMI.

Subjects Attention Inattention

ERD AMI ERD AMI

S1 −2.0164 −0.0573 −1.5252 −0.0703

S2 −2.3600 −0.0688 −1.6173 −0.0759

S3 −3.4486 −0.0974 −1.1518 −0.0694

S4 −0.8000 −0.0205 0.1548 0.0021

S5 −2.4723 −0.0613 1.1942 0.0804

S6 −0.1843 0.0274 −0.8234 −0.0154

S7 −1.1349 −0.0385 0.6306 0.0469

S8 −0.8348 −0.0231 0.5188 0.0365

S9 −0.0784 0.0157 −0.3884 −0.0046

S10 0.7046 0.0486 0.5164 0.0344

S11 −4.3186 −0.0986 0.6518 0.0476

S12 −3.1437 −0.0894 0.5769 0.0371

S13 −2.7763 −0.0653 0.5098 0.0342

S14 −1.9164 −0.0591 0.6209 0.0466

Mean −1.7700 −0.0419 −0.0094 0.0093

SDT 1.3849 0.0446 0.8816 0.0483

r 0.9641 0.9495

p 2.8310*10−8 2.1229*10−7

Mean stands for the average of 14 subjects in each column, and the p-value corresponds to 
the correlation coefficient between ERD and AMI in the state of Attention and Inattention, 
respectively.

FIGURE 5

TBR index curves of Attention and Inattention. (a) TBR value chart of 14 subjects. (b) Average time-domain TBR curves of the 14 subjects.
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FIGURE 6

Time-domain curves of mean diagram of TBR and energy: (a) line chart of TBR mean of the 14 subjects and (b) average time-domain alpha energy 
curve of the 14 subjects. The abscissa of the two graphs is time. The purpose is to observe the trend of TBR value and power over time.

constrained by the speed of real-time data transmission and 
processing, which may result in slight fluctuations in these indices. 
Nevertheless, we contend that despite the presence of some noise, 
the real-time TBR index can provide immediate feedback that is of 

practical value for rapidly adjusting attentional states during motor 
training (Tan et al., 2024).

Furthermore, some studies have suggested that low gamma 
waves may carry information regarding higher-order cognitive states 
(Grassini et al., 2019) and emotional changes—a topic that we believe 
warrants further investigation in future research (Saibene et  al., 
2023). Importantly, our spatial analysis confirmed a right-frontal 
α-band cluster (F4, FC4; p = 0.023) via cluster-based permutation 
testing, validating the topographic specificity of attentional ERD. In 
addition, we  have also reached cooperation with Tianjin Union 
Medical Center. The ethics agreement document number is TJUMC-
2022-C05. In the future, if conditions permit, data will be collected 
for experimental research with the consent of patients. Other 
EEG-based indicators have also shown potential in monitoring 
cognitive states and attention levels, such as the Engagement Index 
(EI) and the Mental Workload Index (MWI). These indices may 
complement each other in capturing different aspects of attention 
and cognitive load and thus warrant further exploration in 
future research.

6 Conclusion

This study revealed that attention state significantly affects 
the neural efficacy of lower-limb motor imagery by regulating 
ERD/AMI and confirmed that TBR can be used as a real-time 
attention monitoring indicator. The results demonstrated that 
subjects exhibited more pronounced ERD under high attentional 
states, and a significant correlation was observed between the 
TBR index and the AMI, thereby confirming the feasibility and 
efficacy of TBR as a real-time attention metric. Cluster-based 
permutation tests further established that α-band ERD 
differences are statistically robust (corrected p < 0.05), and paired 
t-tests demonstrated significant offline TBR reductions 
[t(13) = 5.12, p = 2.4 × 10−5] and online discrimination 

TABLE 2 ERD and TBR for the subjects performing motor imagination.

Subjects Attention Inattention

ERD TBR ERD TBR

S1 −2.0164 2.3812 −1.5252 2.3041

S2 −2.3600 2.3354 −1.6173 2.3956

S3 −3.4486 2.3867 −1.1518 2.3754

S4 −0.8000 2.7402 0.1548 2.7892

S5 −2.4723 2.4687 1.1942 2.5904

S6 −0.1843 2.4665 −0.8234 2.5572

S7 −1.1349 2.6942 0.6306 2.7405

S8 −0.8348 2.5445 0.5188 2.4922

S9 −0.0784 2.6741 −0.3884 2.7631

S10 0.7046 2.8144 0.5164 2.8642

S11 −2.1853 2.3856 −0.7518 2.4522

S12 −1.2965 2.5771 0.4769 2.6837

S13 −0.5537 2.6593 −0.2098 2.6508

S14 −1.9164 2.5884 −1.4405 2.4663

Mean −1.7700 2.5511 −0.3154 2.5803

SDT 1.3849 0.1459 0.8863 0.1667

r 0.7658 0.6987

p 0.0014 0.0054

ERD represents the mean value of 1–5 s ERD energy for the Subject. TBR represents the 
mean value of 1–5 s TBR. Mean stands for the average of 14 subjects in each column, and the 
p-value corresponds to the correlation coefficient between ERD and TBR in the state of 
Attention and Inattention, respectively.
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(Bonferroni-corrected p < 0.01). Our findings suggest that lower-
limb motor imagery conducted under high attentional states can 
improve signal quality and enhance the overall effectiveness of 
motor imagery. In summary, this study provides a novel real-time 
attention tracking method for motor skill training and neural 
adaptation training, thereby extending the neuroscientific 
foundation for optimizing motor performance.
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